METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE"

Transkripsi

1 METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE oleh HILDA ANGGRIYANA M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SEBELAS MARET SURAKARTA commit 2013to user i

2 ii

3 ABSTRAK Hilda Anggriyana, METODE ITERASI VARIASIONAL PADA MA- SALAH STURM-LIOUVILLE. Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Sebelas Maret. Pada proses penyelesaian induksi panas dengan teknik pemisahan variabel muncul masalah Sturm-Liouville. Masalah Sturm-Liouville berdasarkan bentuk persamaan diferensialnya terdiri dari dua jenis, yaitu linear dan nonlinear. Ide pokok menyelesaikan masalah Sturm-Liouville linear dan nonlinear adalah menentukan parameter eigen (λ) dan fungsi eigen (y(x)) yang bersesuaian dengan λ. Pada beberapa masalah Sturm-Liouville, penyelesaian eksak tidak mudah atau bahkan tidak dapat ditentukan, sehingga perlu ditentukan penyelesaian hampiran sebagai aternatif. Metode iterasi variasional dapat digunakan untuk menyelesaikan masalah Sturm-Liouville linear dan nonlinear. Penyelesaian hampiran yang diperoleh dengan metode iterasi variasional ditentukan dengan memformulasikan persamaan diferensial orde dua linear dan nonlinear ke bentuk fungsi koreksi y n+1 (x) = y n (x) + x 0 µ(l[y n (s)] + N[ỹ n (s)] g(s))ds, dengan L adalah operator diferensial linear dan N adalah operator diferensial nonlinear. Metode ini dinilai efisien dan akurat. Tujuan utama skripsi ini, yaitu mengkaji kembali penggunaan metode iterasi variasional untuk menyelesaikan masalah Sturm-Liouville linear dan nonlinear berpangkat dua. Berdasarkan pembahasan diperoleh kesimpulan bahwa metode iterasi variasional dapat digunakan untuk menyelesaikan masalah Sturm-Liouville linear dan nonlinear. Pada kasus linear penyelesaian eksak dapat diperoleh hanya dengan satu iterasi, sedangkan pada kasus nonlinear berpangkat dua peyelesaian hampiran diperoleh melaui dua iterasi. Kata kunci: metode iterasi variasional, masalah Sturm-liouville, nilai eigen, fungsi eigen. iii

4 ABSTRACT Hilda Anggriyana, VARIATIONAL ITERATION METHOD FOR STURM-LIOUVILLE PROBLEMS. Faculty of Mathematics and Natural Sciences, Sebelas Maret University. By separating the variables in a heat conduction problem occurs Sturm- Liouville problems. Based on the differential equation form, there are two types of Sturm-Liouville problems, linear and nonlinear. The main idea to solve linear and nonlinear Sturm-Liouville problems are determined the (λ) parameter as eigenvalue and eigen function (y(x)). It is not easy to find an exact form solution of some Sturm-Liouville problems, so that an aproximate solutions to these problems is needed, for alternative. Variational iteration method is used to solve linear and nonlinear Sturm- Liouville problems. Aproximation solutions obtained by formulated the linear and nonlinear second order differential equation to the following correction function y n+1 (x) = y n (x) + x 0 µ(l[y n (s)] + N[ỹ n (s)] g(s))ds, where L is a linear differential operator and N is a nonlinear differential operator. These method is efective and accurate. The main purpose of this thesis are to review an applied variational iteration method to solve the linear and nonlinear second order Sturm-Liouville problems. The results shows that the exact solution of linear case obtained only by one iteration, while for nonlinear second order, approximation solutions are obtained by two iterations. Key words: variational iteration method, Sturm-Liouville problems, eigen value, eigen function. iv

5 MOTTO Keberhasilan dapat diraih, hal ini harus diyakini, dan untuk mencapainya harus dengan kerja keras serta doa pada Allah SWT yang selalu kontinu. (Penulis) v

6 PERSEMBAHAN Karya sederhana ini kupersembahkan kepada : kedua orangtuaku dan keluarga Om Joko-Tante Indah di Klaten. Terima kasih untuk doa, semangat, dan cintanya. vi

7 KATA PENGANTAR Segala puji dan syukur penulis panjatkan kepada Allah SWT yang telah melimpahkan rahmat dan hidayah-nya, sehingga penulis dapat menyelesaikan skripsi ini. Penulis menyadari bahwa dalam penulisan skripsi ini tidak lepas dari bantuan, dorongan, serta bimbingan berbagai pihak. Oleh karena itu penulis mengucapkan terima kasih kepada 1. Bapak Drs. Sutrima, M.Si. selaku Pembimbing I dan Ibu Dra. Yuliana Susanti, M.Si. selaku Pembimbing II yang telah membimbing dan mengarahkan dalam penyusunan skripsi ini. 2. HIMATIKA dan teman-teman mahasiswa Jurusan Matematika angkatan 2009 atas kebersamaan dan kebahagiaan yang menambah semangat penulis, serta seluruh pihak yang telah membantu dalam penulisan skripsi ini. Semoga skripsi ini dapat bermanfaat bagi pihak yang memerlukan. Surakarta, Desember 2013 Penulis vii

8 DAFTAR ISI HALAMAN JUDUL i ABSTRAK iii ABSTRACT iv MOTTO v PERSEMBAHAN vi KATA PENGANTAR vii DAFTAR ISI ix DAFTAR GAMBAR x DAFTAR NOTASI DAN SIMBOL xi I PENDAHULUAN Latar Belakang Masalah Perumusan Masalah Batasan Masalah Tujuan Manfaat II LANDASAN TEORI Tinjauan Pustaka Pengali Lagrange Variasi Gâteaux Kondisi Stasioner Metode Iterasi Variasional commit to. user Masalah Sturm-Liouville viii

9 2.1.6 Ruang Fungsi Eigen Sturm-Liouville Kerangka Pemikiran III METODE PENELITIAN 13 IV PEMBAHASAN Penyelesaian Masalah Sturm-Liouville Linear Penyelesaian Masalah Sturm-Liouville Nonlinear Contoh V PENUTUP Kesimpulan Saran DAFTAR PUSTAKA 29 ix

10 DAFTAR GAMBAR 4.1 Plot Fungsi Eigen y(x) = y k (x) = C k sin(kx) (3+16k 4.2 Plot Fungsi Eigen y 1 (x, λ) = C k sin( 2 π 2 ) 27(1+x) 4 x) (1+x) Plot Fungsi Eigen y 2 (x, λ), 0 x x

11 DAFTAR NOTASI DAN SIMBOL µ : pengali Lagrange λ : nilai eigen y(x) : fungsi penyelesaian eksak y n (x) : fungsi penyelesaian hampiran yang diperoleh melalui n-iterasi y n+1 (x, λ) : fungsi koreksi T : operator diferensial L : operator diferensial linear N : operator diferensial nonlinear ỹ n (x, λ) : variasi terbatas δỹ n (x, λ) : variasi Gâteaux dari variasi terbatas δy n+1 (x, λ) : variasi Gâteaux dari fungsi koreksi R : himpunan bilangan real P : pangkat dari fungsi y(x) y 0 : fungsi awal λ k : nilai eigen ke-k y k : fungsi eigen dari suatu nilai eigen λ k [a, b] : interval tertutup a dan b V : ruang vektor X : ruang vektor kompleks u ε : turunan parsial terhadap ε : dot product pada R 3 R d : ruang linear berdimensi d C 1 [a, b] : himpunan fungsi yang mempunyai turunan pertama kontinu pada [a, b] H : ruang Hilbert X : ruang vektor kompleks 0 : vektor 0 f, g : hasil kali dalam dari fungsi f dan g xi

12 L 2 : himpunan fungsi penyelesaian (ruang Hilbert) dari masalah Sturm-Liouville y P : pangkat ke-p i : 1 atau bilangan imajiner xii

13 Bab I PENDAHULUAN 1.1 Latar Belakang Masalah Pada proses penyelesaian induksi panas dengan teknik pemisahan variabel muncul masalah Sturm-Liouville. Masalah Sturm-Liouville berbentuk persamaan diferensial linear yang dilengkapi syarat batas d dx [p(x) d dx y(x)] + q(x)y(x) = λr(x)y(x), (1.1) α 1 y(a) + β 1 y (a) = 0, α 2 y(b) + β 2 y (b) = 0, (1.2) dengan p(x) > 0, r(x) > 0, fungsi p(x), p (x), q(x), r(x) merupakan fungsi kontinu dalam interval tertutup [a, b], r(x) adalah fungsi bobot dan α 1, α 2, β 1, β 2 adalah konstanta real. Parameter λ merupakan nilai eigen yaitu suatu nilai yang menyebabkan masalah Sturm-Liouville mempunyai penyelesaian nontrivial dan y(x) yang bersesuaian dengan λ disebut fungsi eigen dari persamaan (1.1). Ide pokok dari masalah (1.1)-(1.2) adalah menentukan λ dan fungsi y(x) yang bersesuaian dengan λ (Haberman, [7]). Pada perkembangannya, persamaan Sturm-Liouville (1.1) dapat dikembangkan untuk kasus nonlinear. Secara khusus, berdasarkan Altintan dan Uğur [1], masalah Sturm-Liouville nonlinear diberikan oleh persamaan diferensial nonlinear y (x) + y P (x) = λy(x), x I = (0, l), (1.3) yang dilengkapi dengan syarat batas y(0) = y(l) = 0, (1.4) 1

14 dengan l > 0, λ > 0, P merupakan pangkat dari y(x) dan P > 1. Pada beberapa masalah Sturm-Liouville tidak mudah atau bahkan tidak dapat ditentukan penyelesaian eksaknya, sehingga diperlukan penyelesaian hampiran sebagai alternatif. Penelitian terhadap metode penyelesaian masalah Sturm- Liouville masih terus dilakukan sampai dengan saat ini. Somali dan Gokmen [12] menggunakan metode dekomposisi adomian untuk menyelesaikan masalah Sturm-Liouville. Selain itu, Altintan dan Uǧur [1] juga telah menyelesaikan masalah Sturm-Liouville menggunakan metode iterasi variasional, namun pada kasus nonlinear penyelesaian yang diperoleh mendasarkan pada metode dekomposisi adomian yang dilakukan oleh Somali dan Gokmen [12]. Metode iterasi variasional adalah metode untuk menyelesaikan suatu persamaan diferensial. Metode ini memiliki karakteristik membentuk formula iterasi yang merupakan fungsi penyelesaian dari persamaan diferensial tersebut. Formula iterasi yang merupakan fungsi penyelesaian disebut fungsi koreksi dan memuat pengali Lagrange (µ). Fungsi koreksi yang optimum dapat diperoleh dengan teori variasional yang mendasarkan pada variasi Gâteaux. Berdasarkan He [9], konsep dasar dari metode iterasi variasional yaitu diawali dengan mengambil pemisalan persamaan T y(x) = g(x), x I (1.5) dengan T merupakan operator diferensial yang bekerja pada fungsi y(x) yang berada pada suatu interval I R. Fungsi y(x) dan g(x) merupakan fungsi kontinu untuk semua x I. Dalam metode iterasi variasional, operator T dapat dinyatakan sebagai jumlahan dari operator linear (L) dan nonlinear (N), sehingga persamaan (1.5) dapat dituliskan sebagai L[y(x)] + N[y(x)] = g(x). (1.6) Dari (1.6) dapat dibentuk fungsi koreksi x y n+1 (x) = y n (x) + µ(l[y n (s)] + N[ỹ n (s)] g(s))ds. (1.7) 0 Pada (1.7), y n adalah fungsi yang diperoleh melalui n iterasi, dan ỹ n merupakan variasi terbatas yang variasi Gâteauxnya bernilai nol (δỹ n (x, λ) = 0). 2

15 Pada penelitian sebelumnya, Ganji et al. [5] menggunakan metode iterasi variasional untuk menyelesaikan persamaan Hirota-Satsuma, penyelesaian hampiran yang dihasilkan lebih akurat jika dibandingkan dengan metode dekomposisi adomian. Biazar et al. [3] menggunakan metode iterasi variasional untuk menyelesai- kan pendekatan dari suatu sistem persamaan diferensial, pada penelitiannya disimpulkan bahwa proses penyelesaian menggunakan metode iterasi variasional sederhana atau mudah diaplikasikan dan akurat. Khaled dan Belal [10] menggunakan metode iterasi variasional untuk menyelesaikan persamaan oskilator nonlinear. Selain itu, Barari et al. [2] menggunakan metode iterasi variasional untuk menyelesaikan masalah syarat batas linear maupun nonlinear, sebagai hasilnya diperoleh bahwa pada masalah linear penyelesaian hampiran dapat diperoleh hanya dengan satu iterasi. Dari fakta-fakta di atas, maka metode iterasi variasional dapat digunakan untuk menyelesaikan berbagai jenis masalah persamaan diferensial. Masalah syarat batas Sturm-Liouville (1.1)-(1.2) dan (1.3)-(1.4) dapat dituliskan kembali ke bentuk persamaan (1.6)-(1.7). Oleh karena itu, pada pembahasan ini akan dikaji kembali mengenai penerapan metode iterasi variasional pada penyelesaian masalah Sturm-Liouville linear dan nonlinear dengan P = 2 berdasarkan Altintan dan Uğur [1]. 1.2 Perumusan Masalah Berdasarkan latar belakang yang telah diuraikan dapat diambil dua perumusan masalah yaitu 1. bagaimana menyelesaikan masalah Sturm-Liouville linear menggunakan metode iterasi variasional? 2. bagaimana menyelesaikan masalah Sturm-Liouville nonlinear menggunakan metode iterasi variasional? 3

16 1.3 Batasan Masalah Dalam penelitian ini, permasalahan dibatasi hanya pada masalah Sturm- Liouville linear dan nonlinear tipe regular dengan syarat batas tertentu, serta pada masalah nonlinear diberikan P = Tujuan Penelitian ini bertujuan untuk 1. menyelesaikan masalah Sturm-Liouville linear menggunakan metode iterasi variasional, 2. menyelesaikan masalah Sturm-Liouville nonlinear menggunakan metode iterasi variasional. 1.5 Manfaat Penelitian ini diharapkan dapat menerapkan metode iterasi variasional pada penyelesaian masalah Sturm-Liouville linear maupun nonlinear. 4

METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL

METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL oleh ASRI SEJATI M0110009 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

PERBANDINGAN PENYELESAIAN SISTEM OREGONATOR DENGAN METODE ITERASI VARIASIONAL DAN METODE ITERASI VARIASIONAL TERMODIFIKASI

PERBANDINGAN PENYELESAIAN SISTEM OREGONATOR DENGAN METODE ITERASI VARIASIONAL DAN METODE ITERASI VARIASIONAL TERMODIFIKASI PERBANDINGAN PENYELESAIAN SISTEM OREGONATOR DENGAN METODE ITERASI VARIASIONAL DAN METODE ITERASI VARIASIONAL TERMODIFIKASI oleh AMELIA FEBRIYANTI RESKA M0109008 SKRIPSI ditulis dan diajukan untuk memenuhi

Lebih terperinci

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA oleh FIQIH SOFIANA M0109030 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

SIFAT SPEKTRAL DARI MASALAH STURM-LIOUVILLE FRAKSIONAL DENGAN POTENSIAL COULOMB

SIFAT SPEKTRAL DARI MASALAH STURM-LIOUVILLE FRAKSIONAL DENGAN POTENSIAL COULOMB SIFAT SPEKTRAL DARI MASALAH STURM-LIOUVILLE FRAKSIONAL DENGAN POTENSIAL COULOMB oleh NURUL KOMIYATUN M0110063 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains

Lebih terperinci

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA Kristiani Panjaitan 1, Syamsudhuha 2, Leli Deswita 2 1 Mahasiswi Program

Lebih terperinci

APLIKASI ALJABAR MAKS-PLUS PADA SISTEM PENJADWALAN KERETA REL LISTRIK (KRL) JABODETABEK

APLIKASI ALJABAR MAKS-PLUS PADA SISTEM PENJADWALAN KERETA REL LISTRIK (KRL) JABODETABEK APLIKASI ALJABAR MAKS-PLUS PADA SISTEM PENJADWALAN KERETA REL LISTRIK (KRL) JABODETABEK oleh AHMAD DIMYATHI M0111003 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana

Lebih terperinci

MODEL REGRESI ROBUST MENGGUNAKAN ESTIMASI S DAN ESTIMASI GS

MODEL REGRESI ROBUST MENGGUNAKAN ESTIMASI S DAN ESTIMASI GS MODEL REGRESI ROBUST MENGGUNAKAN ESTIMASI S DAN ESTIMASI GS (Studi Kasus Produksi Jagung di Indonesia) Oleh VICTOR SATRIA SAPUTERA M0112089 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI Febrian Lisnan, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT

TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra 1, Supriadi Putra 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

MODEL PERSEDIAAN FUZZY DENGAN PENGURANGAN BIAYA PEMESANAN DAN KENDALA TINGKAT LAYANAN

MODEL PERSEDIAAN FUZZY DENGAN PENGURANGAN BIAYA PEMESANAN DAN KENDALA TINGKAT LAYANAN MODEL PERSEDIAAN FUZZY DENGAN PENGURANGAN BIAYA PEMESANAN DAN KENDALA TINGKAT LAYANAN oleh MARIA VEANY ALVITARIA PRASETYAWATI NIM. M0109046 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR ABSTRACT ABSTRAK

METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR ABSTRACT ABSTRAK METODE ITERASI VARIASIONAL HE UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR Istawi Arwannur 1, Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas

Lebih terperinci

MASALAH NILAI EIGEN DAN VEKTOR EIGEN YANG DIPERUMUM MATRIKS ATAS ALJABAR MAKS-PLUS

MASALAH NILAI EIGEN DAN VEKTOR EIGEN YANG DIPERUMUM MATRIKS ATAS ALJABAR MAKS-PLUS MASALAH NILAI EIGEN DAN VEKTOR EIGEN YANG DIPERUMUM MATRIKS ATAS ALJABAR MAKS-PLUS oleh DIAN RIZKI NURAINI M0111021 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana

Lebih terperinci

PENDUGA RASIO PADA PENGAMBILAN SAMPEL ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KURTOSIS, DAN KORELASI

PENDUGA RASIO PADA PENGAMBILAN SAMPEL ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KURTOSIS, DAN KORELASI PENDUGA RASIO PADA PENGAMBILAN SAMPEL ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KURTOSIS, DAN KORELASI oleh EKO BUDI SUSILO M0110022 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

MODEL EPIDEMI STOKASTIK SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS)

MODEL EPIDEMI STOKASTIK SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) MODEL EPIDEMI STOKASTIK SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) oleh SILVIA KRISTANTI M0109060 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Lebih terperinci

ESTIMASI PARAMETER MODEL REGRESI M-KUANTIL MENGGUNAKAN METODE ITERATIVE REWEIGHTED LEAST SQUARE (IRLS)

ESTIMASI PARAMETER MODEL REGRESI M-KUANTIL MENGGUNAKAN METODE ITERATIVE REWEIGHTED LEAST SQUARE (IRLS) ESTIMASI PARAMETER MODEL REGRESI M-KUANTIL MENGGUNAKAN METODE ITERATIVE REWEIGHTED LEAST SQUARE (IRLS) oleh Lisa Apriana Dewi M0108055 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratanmemperoleh

Lebih terperinci

PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA BERDASARKAN INDIKATOR RASIO CADANGAN INTERNASIONAL TERHADAP M2 (UANG BEREDAR)

PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA BERDASARKAN INDIKATOR RASIO CADANGAN INTERNASIONAL TERHADAP M2 (UANG BEREDAR) PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA BERDASARKAN INDIKATOR RASIO CADANGAN INTERNASIONAL TERHADAP M2 (UANG BEREDAR) oleh DIAH PUTRI UTAMI NIM. M0110018 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian

Lebih terperinci

PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA BERDASARKAN INDIKATOR PERTUMBUHAN KREDIT DOMESTIK

PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA BERDASARKAN INDIKATOR PERTUMBUHAN KREDIT DOMESTIK PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA BERDASARKAN INDIKATOR PERTUMBUHAN KREDIT DOMESTIK oleh PITANINGSIH NIM. M0110064 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada

Lebih terperinci

SISTEM LINEAR DALAM ALJABAR MAKS-PLUS

SISTEM LINEAR DALAM ALJABAR MAKS-PLUS SISTEM LINEAR DALAM ALJABAR MAKS-PLUS oleh ANITA NUR MUSLIMAH M01009009 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA

PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA oleh FEBRIANI ASTUTI M0111036 SKRIPSI ditulis dan diajukan untuk memenuhi

Lebih terperinci

PENERAPAN LOGIKA FUZZY MENGGUNAKAN SISTEM INFERENSI METODE TSUKAMOTO PADA PENGATURAN LAMPU LALU LINTAS DI PEREMPATAN MANDAN KABUPATEN SUKOHARJO

PENERAPAN LOGIKA FUZZY MENGGUNAKAN SISTEM INFERENSI METODE TSUKAMOTO PADA PENGATURAN LAMPU LALU LINTAS DI PEREMPATAN MANDAN KABUPATEN SUKOHARJO PENERAPAN LOGIKA FUZZY MENGGUNAKAN SISTEM INFERENSI METODE TSUKAMOTO PADA PENGATURAN LAMPU LALU LINTAS DI PEREMPATAN MANDAN KABUPATEN SUKOHARJO oleh KARTIKA DEWAYANI M0112048 SKRIPSI ditulis dan diajukan

Lebih terperinci

POLINOMIAL KARAKTERISTIK MATRIKS DALAM ALJABAR MAKS-PLUS

POLINOMIAL KARAKTERISTIK MATRIKS DALAM ALJABAR MAKS-PLUS POLINOMIAL KARAKTERISTIK MATRIKS DALAM ALJABAR MAKS-PLUS oleh MARYATUN M0112053 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika FAKULTAS MATEMATIKA

Lebih terperinci

MODEL EPIDEMI ROUTING

MODEL EPIDEMI ROUTING MODEL EPIDEMI ROUTING oleh MAFTUHAH QURROTUL AINI M0109044 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

PENERAPAN SISTEM PERSAMAAN LINEAR ITERATIF MAKS-PLUS PADA MASALAH LINTASAN TERPANJANG

PENERAPAN SISTEM PERSAMAAN LINEAR ITERATIF MAKS-PLUS PADA MASALAH LINTASAN TERPANJANG PENERAPAN SISTEM PERSAMAAN LINEAR ITERATIF MAKS-PLUS PADA MASALAH LINTASAN TERPANJANG oleh MIRA AMALIA M0113030 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana

Lebih terperinci

BASIS RUANG VEKTOR EIGEN SUATU MATRIKS ATAS ALJABAR MAX-PLUS

BASIS RUANG VEKTOR EIGEN SUATU MATRIKS ATAS ALJABAR MAX-PLUS BASIS RUANG VEKTOR EIGEN SUATU MATRIKS ATAS ALJABAR MAX-PLUS oleh PUNDRA ANDRIYANTO M0109057 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika FAKULTAS

Lebih terperinci

PENJADWALAN PEMANDU WISATA DI KERATON KASUNANAN SURAKARTA DENGAN MENGGUNAKAN ALJABAR MAX-PLUS

PENJADWALAN PEMANDU WISATA DI KERATON KASUNANAN SURAKARTA DENGAN MENGGUNAKAN ALJABAR MAX-PLUS PENJADWALAN PEMANDU WISATA DI KERATON KASUNANAN SURAKARTA DENGAN MENGGUNAKAN ALJABAR MAX-PLUS oleh ADITYA WENDHA WIJAYA M0109003 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

PENENTUAN JADWAL PRODUKSI PADA SISTEM PRODUKSI TIPE ASSEMBLY DI PERUSAHAAN ROTI GANEP SOLO MENGGUNAKAN ALJABAR MAKS-PLUS

PENENTUAN JADWAL PRODUKSI PADA SISTEM PRODUKSI TIPE ASSEMBLY DI PERUSAHAAN ROTI GANEP SOLO MENGGUNAKAN ALJABAR MAKS-PLUS PENENTUAN JADWAL PRODUKSI PADA SISTEM PRODUKSI TIPE ASSEMBLY DI PERUSAHAAN ROTI GANEP SOLO MENGGUNAKAN ALJABAR MAKS-PLUS oleh GALIH GUSTI SURYANING AKBAR M0111039 SKRIPSI ditulis dan diajukan untuk memenuhi

Lebih terperinci

ANALISIS FUNGSI PRODUKSI COBB-DOUGLAS SECARA GEOMETRI DIFERENSIAL PADA PERTUMBUHAN EKONOMI DI INDONESIA

ANALISIS FUNGSI PRODUKSI COBB-DOUGLAS SECARA GEOMETRI DIFERENSIAL PADA PERTUMBUHAN EKONOMI DI INDONESIA ANALISIS FUNGSI PRODUKSI COBB-DOUGLAS SECARA GEOMETRI DIFERENSIAL PADA PERTUMBUHAN EKONOMI DI INDONESIA oleh SEPTIVA ALIA RAHMANI NIM M0112080 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

oleh AULIA NUGRAHANI PUTRI M

oleh AULIA NUGRAHANI PUTRI M ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG) DENGAN METODE FISHER SCORING oleh AULIA NUGRAHANI PUTRI M0112014 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

KONSEP METODE ITERASI VARIASIONAL ABSTRACT

KONSEP METODE ITERASI VARIASIONAL ABSTRACT KONSEP METODE ITERASI VARIASIONAL Yuliani 1, Leli Deswita 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus

Lebih terperinci

MODEL PREDIKSI GREY UNTUK GM(1,1) DAN GREY VERHULST

MODEL PREDIKSI GREY UNTUK GM(1,1) DAN GREY VERHULST MODEL PREDIKSI GREY UNTUK GM(1,1) DAN GREY VERHULST oleh RACHMA PUTRI YULIARTI M0107080 SKRIPSI Ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika FAKULTAS

Lebih terperinci

RATA-RATA KUADRAT SESATAN PENDUGA REGRESI DENGAN KOMBINASI LINIER DUA VARIABEL BANTU PADA SAMPEL ACAK SEDERHANA

RATA-RATA KUADRAT SESATAN PENDUGA REGRESI DENGAN KOMBINASI LINIER DUA VARIABEL BANTU PADA SAMPEL ACAK SEDERHANA RATA-RATA KUADRAT SESATAN PENDUGA REGRESI DENGAN KOMBINASI LINIER DUA VARIABEL BANTU PADA SAMPEL ACAK SEDERHANA oleh INTAN LISDIANA NUR PRATIWI NIM. M0110040 SKRIPSI ditulis dan diajukan untuk memenuhi

Lebih terperinci

PENENTUAN WAKTU KEDATANGAN PESAWAT DI BANDAR UDARA HUSEIN SASTRANEGARA BANDUNG DENGAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR MAKS-PLUS

PENENTUAN WAKTU KEDATANGAN PESAWAT DI BANDAR UDARA HUSEIN SASTRANEGARA BANDUNG DENGAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR MAKS-PLUS PENENTUAN WAKTU KEDATANGAN PESAWAT DI BANDAR UDARA HUSEIN SASTRANEGARA BANDUNG DENGAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR MAKS-PLUS oleh CASILDA REVA KARTIKA M0112021 SKRIPSI ditulis dan diajukan untuk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar ang akan digunakan sebagai landasan berpikir seperti beberapa teorema dan definisi ang berkaitan dengan penelitian ini. Dengan begitu

Lebih terperinci

PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH

PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH PERBANDINGAN RAMALAN MODEL TARCH DAN EGARCH PADA NILAI TUKAR KURS EURO TERHADAP RUPIAH Oleh RETNO HESTININGTYAS M0106061 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

PENENTUAN WAKTU PRODUKSI TERCEPAT PADA SISTEM MESIN PRODUKSI JAMU DI PT. PUTRO KINASIH DENGAN ALJABAR MAX-PLUS

PENENTUAN WAKTU PRODUKSI TERCEPAT PADA SISTEM MESIN PRODUKSI JAMU DI PT. PUTRO KINASIH DENGAN ALJABAR MAX-PLUS PENENTUAN WAKTU PRODUKSI TERCEPAT PADA SISTEM MESIN PRODUKSI JAMU DI PT. PUTRO KINASIH DENGAN ALJABAR MAX-PLUS oleh CAESAR ADHEK KHARISMA M0109017 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT

NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL ABSTRACT NOISE TERMS PADA SOLUSI DERET DEKOMPOSISI ADOMIAN DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL PARSIAL Heni Kusnani 1, Leli Deswita, Zulkarnain 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika

Lebih terperinci

ANALISIS SPEKTRUM ENERGI DAN FUNGSI GELOMBANG

ANALISIS SPEKTRUM ENERGI DAN FUNGSI GELOMBANG ANALISIS SPEKTRUM ENERGI DAN FUNGSI GELOMBANG KOMBINASI POTENSIAL MANNING-ROSEN HIPERBOLIK DAN ROSEN-MORSE TRIGONOMETRI DENGAN MENGGUNAKAN METODE HIPERGEOMETRI Disusun oleh : DWI YUNIATI M0209017 SKRIPSI

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu bentuk model matematika adalah berupa persamaan diferensial. Persamaan diferensial sering digunakan dalam memodelkan suatu permasalahan untuk menggambarkan

Lebih terperinci

PENERAPAN METODE DERET PANGKAT UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL LINEAR ORDEDUA KHUSUS SKRIPSI

PENERAPAN METODE DERET PANGKAT UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL LINEAR ORDEDUA KHUSUS SKRIPSI PENERAPAN METODE DERET PANGKAT UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL LINEAR ORDEDUA KHUSUS SKRIPSI Oleh: SAMSIATI NUR HASANAH NIM: 11321432 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN

Lebih terperinci

PEMERINGKATAN PENERIMA BEASISWA BANTUAN BELAJAR MAHASISWA DI FAKULTAS MIPA UNS MENGGUNAKAN FUZZY SIMPLE ADDITIVE WEIGHTING

PEMERINGKATAN PENERIMA BEASISWA BANTUAN BELAJAR MAHASISWA DI FAKULTAS MIPA UNS MENGGUNAKAN FUZZY SIMPLE ADDITIVE WEIGHTING PEMERINGKATAN PENERIMA BEASISWA BANTUAN BELAJAR MAHASISWA DI FAKULTAS MIPA UNS MENGGUNAKAN FUZZY SIMPLE ADDITIVE WEIGHTING Oleh NUR INDAH NIM. M0109055 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian

Lebih terperinci

KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS

KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS oleh ANNISA RAHMAWATI M0112010 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Lebih terperinci

FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE

FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE Jurnal Matematika UNAND Vol. 4 No. Hal. 23 3 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE HILDA FAHLENA,

Lebih terperinci

MODEL BLACK-SCHOLES HARGA OPSI BELI TIPE EROPA DENGAN PEMBAGIAN DIVIDEN

MODEL BLACK-SCHOLES HARGA OPSI BELI TIPE EROPA DENGAN PEMBAGIAN DIVIDEN MODEL BLACK-SCHOLES HARGA OPSI BELI TIPE EROPA DENGAN PEMBAGIAN DIVIDEN oleh RETNO TRI VULANDARI M0106062 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains

Lebih terperinci

PERAMALAN INDEKS HARGA SAHAM GABUNGAN DENGAN MODEL RUNTUN WAKTU FUZZY TIGA FAKTOR

PERAMALAN INDEKS HARGA SAHAM GABUNGAN DENGAN MODEL RUNTUN WAKTU FUZZY TIGA FAKTOR PERAMALAN INDEKS HARGA SAHAM GABUNGAN DENGAN MODEL RUNTUN WAKTU FUZZY TIGA FAKTOR oleh MAULIDA DWI RAHMITANINGRUM M0111054 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

PERAMALAN JUMLAH WISATAWAN GROJOGAN SEWU MENGGUNAKAN MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE EXOGENOUS (ARIMAX) DENGAN VARIASI KALENDER

PERAMALAN JUMLAH WISATAWAN GROJOGAN SEWU MENGGUNAKAN MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE EXOGENOUS (ARIMAX) DENGAN VARIASI KALENDER PERAMALAN JUMLAH WISATAWAN GROJOGAN SEWU MENGGUNAKAN MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE EXOGENOUS (ARIMAX) DENGAN VARIASI KALENDER Oleh SAHETI ULLY FATWA M0109058 SKRIPSI ditulis dan diajukan

Lebih terperinci

oleh WAHYUNI PUTRANTO NIM. M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

oleh WAHYUNI PUTRANTO NIM. M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika PERBANDINGAN METODE GRADIENT DESCENT DAN GRADIENT DESCENT DENGAN MOMENTUM PADA JARINGAN SYARAF TIRUAN BACKPROPAGATION DALAM PERAMALAN KURS TENGAH RUPIAH TERHADAP DOLAR AMERIKA oleh WAHYUNI PUTRANTO NIM.

Lebih terperinci

ESTIMASI-MM PADA REGRESI ROBUST (Studi Kasus Produksi Kedelai di Indonesia Tahun 2010)

ESTIMASI-MM PADA REGRESI ROBUST (Studi Kasus Produksi Kedelai di Indonesia Tahun 2010) ESTIMASI-MM PADA REGRESI ROBUST (Studi Kasus Produksi Kedelai di Indonesia Tahun 2010) oleh ENDAH KRISNA MURTI M0106039 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

ESTIMASI RASIO MENGGUNAKAN KOEFISIEN REGRESI DAN KORELASI PADA PRODUKSI KACANG TANAH DI PROVINSI JAWA TENGAH

ESTIMASI RASIO MENGGUNAKAN KOEFISIEN REGRESI DAN KORELASI PADA PRODUKSI KACANG TANAH DI PROVINSI JAWA TENGAH ESTIMASI RASIO MENGGUNAKAN KOEFISIEN REGRESI DAN KORELASI PADA PRODUKSI KACANG TANAH DI PROVINSI JAWA TENGAH oleh RAMADHANI KUSUMA PUTRA M0110069 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM)

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) oleh MIKA ASRINI M0108094 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

PERAMALAN NILAI TUKAR RUPIAH TERHADAP DOLAR AMERIKA MENGGUNAKAN MODEL RUNTUN WAKTU FUZZY -RANTAI MARKOV

PERAMALAN NILAI TUKAR RUPIAH TERHADAP DOLAR AMERIKA MENGGUNAKAN MODEL RUNTUN WAKTU FUZZY -RANTAI MARKOV PERAMALAN NILAI TUKAR RUPIAH TERHADAP DOLAR AMERIKA MENGGUNAKAN MODEL RUNTUN WAKTU FUZZY -RANTAI MARKOV oleh ERIKHA AJENG CHISWARI NIM. M0111028 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

PENERAPAN ALJABAR MAKS-PLUS PADA PENJADWALAN SISTEM PRODUKSI HARIAN UMUM SOLOPOS DI PT. SOLO GRAFIKA UTAMA

PENERAPAN ALJABAR MAKS-PLUS PADA PENJADWALAN SISTEM PRODUKSI HARIAN UMUM SOLOPOS DI PT. SOLO GRAFIKA UTAMA PENERAPAN ALJABAR MAKS-PLUS PADA PENJADWALAN SISTEM PRODUKSI HARIAN UMUM SOLOPOS DI PT. SOLO GRAFIKA UTAMA oleh ARIF MUNTOHAR M0111012 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN

PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN Okmi Zerlan 1*, M. Natsir 2, Eng Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

ABSTRACT. Keywords : rainfall, forecasting, fuzzy time series seasonal method

ABSTRACT. Keywords : rainfall, forecasting, fuzzy time series seasonal method ABSTRAK Risqa Fitrianti Khoiriyah. 2016. PERAMALAN CURAH HUJAN DI STASIUN PABELAN SUKOHARJO DENGAN METODE RUNTUN WAKTU FUZZY MUSIMAN. Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Sebelas

Lebih terperinci

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace M. Nizam Muhaijir 1, Wartono 2 Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim

Lebih terperinci

PENDUGA RASIO MENGGUNAKAN KOEFISIEN REGRESI, VARIASI VARIABEL BANTU, DAN KORELASI PADA PRODUKSI KEDELAI DI PULAU JAWA TAHUN 2013

PENDUGA RASIO MENGGUNAKAN KOEFISIEN REGRESI, VARIASI VARIABEL BANTU, DAN KORELASI PADA PRODUKSI KEDELAI DI PULAU JAWA TAHUN 2013 PENDUGA RASIO MENGGUNAKAN KOEFISIEN REGRESI, VARIASI VARIABEL BANTU, DAN KORELASI PADA PRODUKSI KEDELAI DI PULAU JAWA TAHUN 2013 oleh TONI IRAWAN M0110078 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian

Lebih terperinci

BAB 1 PENDAHULUAN. Kalkulus merupakan salah satu prestasi tertinggi dari kecerdasan manusia.

BAB 1 PENDAHULUAN. Kalkulus merupakan salah satu prestasi tertinggi dari kecerdasan manusia. BAB 1 PENDAHULUAN 1.1 Latar Belakang Kalkulus merupakan salah satu prestasi tertinggi dari kecerdasan manusia. Disiplin ilmu Matematika ini secara umum berasal dari penyelidikan oleh Isaac Newton (1642-1727)

Lebih terperinci

KAJIAN ESTIMASI PARAMETER MODEL AUTOREGRESIF TUGAS AKHIR SM 1330 NUR SHOFIANAH NRP

KAJIAN ESTIMASI PARAMETER MODEL AUTOREGRESIF TUGAS AKHIR SM 1330 NUR SHOFIANAH NRP TUGAS AKHIR SM 1330 KAJIAN ESTIMASI PARAMETER MODEL AUTOREGRESIF NUR SHOFIANAH NRP 1203 100 009 Dosen Pembimbing Dra. Laksmi Prita W, MSi Dra. Nuri Wahyuningsih, MKes JURUSAN MATEMATIKA Fakultas Matematika

Lebih terperinci

PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA BERDASARKAN INDIKATOR HARGA SAHAM MENGGUNAKAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING TIGA STATE

PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA BERDASARKAN INDIKATOR HARGA SAHAM MENGGUNAKAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING TIGA STATE PENDETEKSIAN KRISIS KEUANGAN DI INDONESIA BERDASARKAN INDIKATOR HARGA SAHAM MENGGUNAKAN GABUNGAN MODEL VOLATILITAS DAN MARKOV SWITCHING TIGA STATE SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

oleh ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika SURAKARTA

oleh ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika SURAKARTA PEMILIHAN JENIS KARTU TELEPON SELULER DI SURAKARTA MENGGUNAKAN ANALISIS FAKTOR oleh ASTIKA RATNAWATI M 0105025 S K R I P S I ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana

Lebih terperinci

KEKONVERGENAN SOLUSI PERSAMAAN DIFERENSIAL BIASA ORDE SATU MENGGUNAKAN METODE ITERASI VARIASIONAL

KEKONVERGENAN SOLUSI PERSAMAAN DIFERENSIAL BIASA ORDE SATU MENGGUNAKAN METODE ITERASI VARIASIONAL KEKONVERGENAN SOLUSI PERSAMAAN DIFERENSIAL BIASA ORDE SATU MENGGUNAKAN METODE ITERASI VARIASIONAL Dita Apriliani, Akhmad Yusuf, M. Mahfuzh Shiddiq Program Studi Matematika Fakultas MIPA Universitas Lambung

Lebih terperinci

SOLUSI PERSAMAAN SCHRÖDINGER UNTUK KOMBINASI POTENSIAL HULTHEN DAN NON-SENTRAL POSCHL- TELLER DENGAN METODE NIKIFOROV-UVAROV

SOLUSI PERSAMAAN SCHRÖDINGER UNTUK KOMBINASI POTENSIAL HULTHEN DAN NON-SENTRAL POSCHL- TELLER DENGAN METODE NIKIFOROV-UVAROV SOLUSI PERSAMAAN SCHRÖDINGER UNTUK KOMBINASI POTENSIAL HULTHEN DAN NON-SENTRAL POSCHL- TELLER DENGAN METODE NIKIFOROV-UVAROV Disusun oleh : NANI SUNARMI M0209036 SKRIPSI Diajukan untuk memenuhi sebagian

Lebih terperinci

PELABELAN SELIMUT (a, d) CY CLE TOTAL ANTI AJAIB SUPER PADA GRAF BUNGA MATAHARI, GRAF BROKEN FAN, DAN GRAF GENERALIZED FAN

PELABELAN SELIMUT (a, d) CY CLE TOTAL ANTI AJAIB SUPER PADA GRAF BUNGA MATAHARI, GRAF BROKEN FAN, DAN GRAF GENERALIZED FAN PELABELAN SELIMUT (a, d) CY CLE TOTAL ANTI AJAIB SUPER PADA GRAF BUNGA MATAHARI, GRAF BROKEN FAN, DAN GRAF GENERALIZED FAN oleh KHUNTI QONAAH M0111048 SKRIPSI ditulis dan diajukan untuk memenuhi sebagai

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI DALAM ALJABAR MAKS-PLUS BESERTA APLIKASINYA

NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI DALAM ALJABAR MAKS-PLUS BESERTA APLIKASINYA NILAI EIGEN DAN VEKTOR EIGEN MATRIKS TERREDUKSI DALAM ALJABAR MAKS-PLUS BESERTA APLIKASINYA oleh BUDI AGUNG PRASOJO M0105001 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

KEAKURATAN PENDUGA RASIO MENGGUNAKAN KOEFISIEN VARIASI SELURUH STRATA VARIABEL BANTU PADA SAMPEL ACAK STRATIFIKASI

KEAKURATAN PENDUGA RASIO MENGGUNAKAN KOEFISIEN VARIASI SELURUH STRATA VARIABEL BANTU PADA SAMPEL ACAK STRATIFIKASI KEAKURATAN PENDUGA RASIO MENGGUNAKAN KOEFISIEN VARIASI SELURUH STRATA VARIABEL BANTU PADA SAMPEL ACAK STRATIFIKASI oleh ATIKA OKTAFIANA M0110010 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN

PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 1 (2015), hal 9 16. PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN

Lebih terperinci

PERAMALAN JUMLAH WISATAWAN GROJOGAN SEWU MENGGUNAKAN MODEL REGRESI RUNTUN WAKTU DENGAN EFEK VARIASI KALENDER

PERAMALAN JUMLAH WISATAWAN GROJOGAN SEWU MENGGUNAKAN MODEL REGRESI RUNTUN WAKTU DENGAN EFEK VARIASI KALENDER PERAMALAN JUMLAH WISATAWAN GROJOGAN SEWU MENGGUNAKAN MODEL REGRESI RUNTUN WAKTU DENGAN EFEK VARIASI KALENDER oleh APRILLIA COSASI M0109014 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

PENGGUNAAN METODE ITERASI VARIASI UNTUK MENYELESAIKAN MASALAH OSILASI BERPASANGAN SANTI SUSILAWATI

PENGGUNAAN METODE ITERASI VARIASI UNTUK MENYELESAIKAN MASALAH OSILASI BERPASANGAN SANTI SUSILAWATI PENGGUNAAN METODE ITERASI VARIASI UNTUK MENYELESAIKAN MASALAH OSILASI BERPASANGAN SANTI SUSILAWATI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2012

Lebih terperinci

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memperoleh gelar

Lebih terperinci

REGRESI LOG-LOGISTIK UNTUK DATA TAHAN HIDUP TERSENSOR TIPE I. oleh NANDA HIDAYATI M

REGRESI LOG-LOGISTIK UNTUK DATA TAHAN HIDUP TERSENSOR TIPE I. oleh NANDA HIDAYATI M REGRESI LOG-LOGISTIK UNTUK DATA TAHAN HIDUP TERSENSOR TIPE I oleh NANDA HIDAYATI M0108098 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika JURUSAN

Lebih terperinci

PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK

PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK Disusun oleh : Muhammad Nur Farizky M0212053 SKRIPSI PROGRAM STUDI

Lebih terperinci

oleh BANGKIT JOKO WIDODO M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

oleh BANGKIT JOKO WIDODO M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika DIMENSI METRIK PADA GRAF SUN, GRAF HELM DAN GRAF DOUBLE CONES oleh BANGKIT JOKO WIDODO M0109015 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Lebih terperinci

ABSTRAK. Kata Kunci: SEIS, masa inkubasi, titik kesetimbangan, pertussis, simulasi. iii

ABSTRAK. Kata Kunci: SEIS, masa inkubasi, titik kesetimbangan, pertussis, simulasi. iii ABSTRAK Wahyu Setyawan. 2015. MODEL SUSCEPTIBLE EXPOSED INFECTED SUSCEPTIBLE (SEIS). Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Sebelas Maret. Model matematika yang menggambarkan pola penyebaran

Lebih terperinci

MODEL KRISIS PASAR MODAL DI INDONESIA MENGGUNAKAN MARKOV SWITCHING TGARCH (MS-TGARCH) DUA STATE BERDASARKAN INDIKATOR IHSG

MODEL KRISIS PASAR MODAL DI INDONESIA MENGGUNAKAN MARKOV SWITCHING TGARCH (MS-TGARCH) DUA STATE BERDASARKAN INDIKATOR IHSG MODEL KRISIS PASAR MODAL DI INDONESIA MENGGUNAKAN MARKOV SWITCHING TGARCH (MS-TGARCH) DUA STATE BERDASARKAN INDIKATOR IHSG Oleh ALFI NUR DINA NIM M0110002 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK

SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR ABSTRACT ABSTRAK SOLUSI NUMERIK PERSAMAAN INTEGRO-DIFERENSIAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI TRIANGULAR Suci Dini Anggraini 1, Khozin Mu tamar 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika

Lebih terperinci

BAB 5 KESIMPULAN DAN SARAN

BAB 5 KESIMPULAN DAN SARAN BAB 5 KESIMPULAN DAN SARAN 5.1 Kesimpulan Sistem Sturm-Liouville merupakan salah satu metode optimasi fungsional dalam kalkulus variasi yang sangat bermanfaat dalam mencari fungsi optimal dari suatu dari

Lebih terperinci

INTERAKSI ANTARA PENGURANGAN WAKTU TUNGGU DAN BIAYA PEMESANAN PADA MODEL PERSEDIAAN DENGAN BACKORDER PRICE DISCOUNT DAN PENGENDALIAN FAKTOR PENGAMAN

INTERAKSI ANTARA PENGURANGAN WAKTU TUNGGU DAN BIAYA PEMESANAN PADA MODEL PERSEDIAAN DENGAN BACKORDER PRICE DISCOUNT DAN PENGENDALIAN FAKTOR PENGAMAN INTERAKSI ANTARA PENGURANGAN WAKTU TUNGGU DAN BIAYA PEMESANAN PADA MODEL PERSEDIAAN DENGAN BACKORDER PRICE DISCOUNT DAN PENGENDALIAN FAKTOR PENGAMAN oleh NOVIAH EKA PUTRI NIM. M0109054 SKRIPSI ditulis

Lebih terperinci

PERBANDINGAN TINGKAT EFISIENSI ANTARA METODE KUADRAT TERKECIL DENGAN METODE MINIMUM COVARIANCE DETERMINANT

PERBANDINGAN TINGKAT EFISIENSI ANTARA METODE KUADRAT TERKECIL DENGAN METODE MINIMUM COVARIANCE DETERMINANT PERBANDINGAN TINGKAT EFISIENSI ANTARA METODE KUADRAT TERKECIL DENGAN METODE MINIMUM COVARIANCE DETERMINANT PADA ESTIMASI PARAMETER MODEL REGRESI PRODUKSI JAGUNG DI JAWA TENGAH oleh KARINA PUTRIANI M0110047

Lebih terperinci

METODE RUNGE-KUTTA DAN BLOK RASIONAL UNTUK MENYELESAIKAN MASALAH NILAI AWAL

METODE RUNGE-KUTTA DAN BLOK RASIONAL UNTUK MENYELESAIKAN MASALAH NILAI AWAL METODE RUNGE-KUTTA DAN BLOK RASIONAL UNTUK MENYELESAIKAN MASALAH NILAI AWAL Tugas Akhir Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Oleh : Agung Christian

Lebih terperinci

REKOMENDASI PEMILIHAN LAPTOP MENGGUNAKAN SISTEM INFERENSI FUZZY TSUKAMOTO

REKOMENDASI PEMILIHAN LAPTOP MENGGUNAKAN SISTEM INFERENSI FUZZY TSUKAMOTO REKOMENDASI PEMILIHAN LAPTOP MENGGUNAKAN SISTEM INFERENSI FUZZY TSUKAMOTO oleh ENDRA PRATAMA M0112030 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Lebih terperinci

MASALAH NILAI EIGEN DAN VEKTOR EIGEN YANG DIPERUMUM MATRIKS ATAS ALJABAR MAKS-PLUS

MASALAH NILAI EIGEN DAN VEKTOR EIGEN YANG DIPERUMUM MATRIKS ATAS ALJABAR MAKS-PLUS MASALAH NILAI EIGEN DAN VEKTOR EIGEN YANG DIPERUMUM MATRIKS ATAS ALJABAR MAKS-PLUS oleh DIAN RIZKI NURAINI M0111021 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana

Lebih terperinci

NILAI MAKSIMUM DAN MINIMUM PELABELAN γ PADA GRAF FLOWER, GRAF BIPARTIT LENGKAP DAN GRAF C n K m

NILAI MAKSIMUM DAN MINIMUM PELABELAN γ PADA GRAF FLOWER, GRAF BIPARTIT LENGKAP DAN GRAF C n K m NILAI MAKSIMUM DAN MINIMUM PELABELAN γ PADA GRAF FLOWER, GRAF BIPARTIT LENGKAP DAN GRAF C n K m oleh TRI ENDAH PUSPITOSARI M0109070 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M.

BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA. Zulkarnain 1, M. BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA BEBERAPA METODE ITERASI DENGAN TURUNAN KETIGA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR BESERTA DINAMIKNYA

Lebih terperinci

oleh ANADIORA EKA PUTRI M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

oleh ANADIORA EKA PUTRI M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika MODEL PERSEDIAAN TERINTEGRASI PRODUSEN DAN DISTRIBUTOR DENGAN INVESTASI UNTUK MENGURANGI BIAYA PERSIAPAN, PENINGKATAN KUALITAS PROSES PRODUKSI, DAN POTONGAN HARGA UNTUK BACKORDER oleh ANADIORA EKA PUTRI

Lebih terperinci

oleh AYUNITA CAHYANINGRUM M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

oleh AYUNITA CAHYANINGRUM M SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika PENGGUNAAN STRUCTURAL EQUATION MODELLING (SEM) UNTUK MENGETAHUI FAKTOR-FAKTOR YANG BERPENGARUH TERHADAP HASIL UJIAN NASIONAL PADA SEKOLAH MENENGAH PERTAMA NEGERI 9 SURAKARTA TAHUN AJARAN 2013/2014 oleh

Lebih terperinci

PERAMALAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN RUNTUN WAKTU FUZZY DENGAN PARTISI INTERVAL BERDASARKAN FREKUENSI DENSITAS

PERAMALAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN RUNTUN WAKTU FUZZY DENGAN PARTISI INTERVAL BERDASARKAN FREKUENSI DENSITAS PERAMALAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN RUNTUN WAKTU FUZZY DENGAN PARTISI INTERVAL BERDASARKAN FREKUENSI DENSITAS Oleh SYLVIA SWIDANING PUTRI M0111079 SKRIPSI ditulis dan diajukan untuk memenuhi

Lebih terperinci

PEMBERIAN NOMOR VERTEX PADA TOPOLOGI JARINGAN GRAF WHEEL, GRAF HELM DAN GRAF LOLLIPOP

PEMBERIAN NOMOR VERTEX PADA TOPOLOGI JARINGAN GRAF WHEEL, GRAF HELM DAN GRAF LOLLIPOP PEMBERIAN NOMOR VERTEX PADA TOPOLOGI JARINGAN GRAF WHEEL, GRAF HELM DAN GRAF LOLLIPOP Oleh : MUHAMAD SIDIQ NIM. M0108095 SKRIPSI Ditulis dan diajukan untuk memenuhi sebagian persyaratan memeperoleh gelar

Lebih terperinci

DIMENSI METRIK KUAT PADA BEBERAPA KELAS GRAF

DIMENSI METRIK KUAT PADA BEBERAPA KELAS GRAF DIMENSI METRIK KUAT PADA BEBERAPA KELAS GRAF oleh FITHRI ANNISATUN LATHIFAH M0111038 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika FAKULTAS

Lebih terperinci

PENERAPANALMOST STOCHASTIC DOMINANCE DAN NEW ALMOST STOCHASTIC DOMINANCE PADA PRODUKSI PERIKANAN TANGKAP DI INDONESIA

PENERAPANALMOST STOCHASTIC DOMINANCE DAN NEW ALMOST STOCHASTIC DOMINANCE PADA PRODUKSI PERIKANAN TANGKAP DI INDONESIA PENERAPANALMOST STOCHASTIC DOMINANCE DAN NEW ALMOST STOCHASTIC DOMINANCE PADA PRODUKSI PERIKANAN TANGKAP DI INDONESIA oleh MUTIA HANNY PRATIWI M0110057 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian

Lebih terperinci

DIMENSI PARTISI PADA TIGA HASIL OPERASI GRAF CYCLE DENGAN GRAF PATH

DIMENSI PARTISI PADA TIGA HASIL OPERASI GRAF CYCLE DENGAN GRAF PATH DIMENSI PARTISI PADA TIGA HASIL OPERASI GRAF CYCLE DENGAN GRAF PATH oleh HIDRA VERTANA M0112042 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Lebih terperinci

PENYEBARAN PENYAKIT CAMPAK DI INDONESIA DENGAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR)

PENYEBARAN PENYAKIT CAMPAK DI INDONESIA DENGAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PENYEBARAN PENYAKIT CAMPAK DI INDONESIA DENGAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) oleh SEPTIAWAN ADI SAPUTRO M0112079 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT

MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN ABSTRACT MODIFIKASI METODE HOMOTOPY PERTURBASI UNTUK PERSAMAAN NONLINEAR DAN MEMBANDINGKAN DENGAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN Handico Z Desri 1, Syamsudhuha 2, Zulkarnain 2 1 Mahasiswa Program Studi S1

Lebih terperinci

ANALISIS ANTRIAN PADA SISTEM PELAYANAN TELLER DI BANK TABUNGAN NEGARA (BTN) KANTOR CABANG SURAKARTA

ANALISIS ANTRIAN PADA SISTEM PELAYANAN TELLER DI BANK TABUNGAN NEGARA (BTN) KANTOR CABANG SURAKARTA ANALISIS ANTRIAN PADA SISTEM PELAYANAN TELLER DI BANK TABUNGAN NEGARA (BTN) KANTOR CABANG SURAKARTA oleh FAISAL ANGGORO M0111031 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

oleh PRITA DEWI HUTRIANA SARI NIM. M

oleh PRITA DEWI HUTRIANA SARI NIM. M ESTIMASI RATA-RATA PRODUKSI JAGUNG DI PROVINSI JAWA BARAT MENGGUNAKAN PENDUGA RASIO PADA PENGAMBILAN SAMPEL ACAK SEDERHANA DENGAN KOEFISIEN KURTOSIS VARIABEL BANTU DAN REGRESI ROBUST oleh PRITA DEWI HUTRIANA

Lebih terperinci

PENERAPAN DATA MINING MENGGUNAKAN ALGORITME C4.5 DALAM PENENTUAN JURUSAN SISWA SMA NEGERI 2 SURAKARTA

PENERAPAN DATA MINING MENGGUNAKAN ALGORITME C4.5 DALAM PENENTUAN JURUSAN SISWA SMA NEGERI 2 SURAKARTA PENERAPAN DATA MINING MENGGUNAKAN ALGORITME C4.5 DALAM PENENTUAN JURUSAN SISWA SMA NEGERI 2 SURAKARTA oleh NADYA AL FITRIANI M0111060 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci