ANALISIS STABILITAS DAN OPTIMAL KONTROL PADA MODEL EPIDEMI TIPE SIR DENGAN VAKSINASI

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISIS STABILITAS DAN OPTIMAL KONTROL PADA MODEL EPIDEMI TIPE SIR DENGAN VAKSINASI"

Transkripsi

1 ANALISIS STABILITAS DAN OPTIMAL KONTROL PADA MODEL EPIDEMI TIPE SIR DENGAN VAKSINASI Oleh Ikhtisholiyah Dosen Pembimbing Dr. Subiono, M.Sc ABSTRAK Pemodelan matematika dan teori banyak digunakan dalam kehidupan sehari-hari, salah satunya teori kontrol optimal diterapkan pada pengendalian berbagai jenis penyakit. Pada tugas akhir ini pengendalian optimal tidak diterapkan pada penyakit yang khusus, akan tetapi digunakan untuk pola penyebaran penyakit yang mempunyai model epidemi tipe SIR (Susceptible-Infected-Recovery). Untuk menegendalikan pola penyebaran penyakit ini, diperlukan suatu vaksin. Vaksin adalah bahan antigenik yang digunakan untuk menghasilkan kekebalan aktif terhadap suatu penyakit sehingga dapat mencegah atau mengurangi pengaruh infeksi. Pada tugas akhir ini pengendalian penyakit yang mempunyai model epidemi tipe SIR dilakukan dengan vaksinasi untuk meminimalkan individu rentan (S) dan terinfeksi (I) serta memaksimalkan individu yang sembuh (R) secara bersamaan. Kontrol optimal diperoleh dengan menerapkan Prinsip Minimum Pontryagin. Kata Kunci : Model SIR, vaksinasi, kendali optimal, Prinsip Minimum Pontryagin I. PENDAHULUAN Penyakit measles (campak), mumps (gondong), rubella (campak jerman) dan poliomyelitis (polio) merupakan penyakit infeksi yang sangat berbahaya. Penyakit tersebut disebabkan oleh virus yang dapat menyebar melalui kontak langsung dengan penderita, udara, batuk atau bersin dan kotoran mausia [5]. The United Nations Children s Fund (UNICEF) [6] menyebutkan bahwa penyakit tersebut dinilai berbahaya karena dapat menyebabkan komplikasi, kerusakan otak dan organ tubuh lain., cacat seumur hidup, kelumpuhan dan kematian. Menurut UNICEF [6], sekitar 3. anak di Indonesia meninggal dunia setiap tahun karena penyakit measles. Sedangkan menurut World Health Organization (WHO) [8], sekitar 242. anak diseluruh dunia meninggal dunia pada tahun 6 karena penyakit measles. Sementara itu, menurut UNICEF [7], sekitar 32 anak di Indonesia mengalami kelumpuhan karena penyakit poliomyelis. Besarnya jumlah kematian dan kelumpuhan karena penyakit poliomyelis dan measles menunjukkan bahwa penyakit tersebut memang sangat berbahaya dan harus dicegah penyebarannya. Perkembangan ilmu pengetahuan di bidang matematika juga turut memberikan peranan dalam mencegah meluasnya penye-baran penyakit. Peranan tersebut berupa model matematika yang mempelajari penyebaran penyakit yang bersifat endemi dengan memperhatikan faktor kelahiran dan kematian. Model yang dimaksud adalah model epidemi tipe SIR (Susceptible-Infected-Recovery) klasik. Model epidemi tipe SIR klasik telah dikenalkan oleh Kermack dan McKendrick pada tahun Pada model epidemi SIR klasik, populasi dibagi menjadi tiga kelompok yaitu populasi yang rentan terhadap penyakit (susceptible), populasi yang terinfeksi dan dapat sembuh dari penyakit (infected), populasi yang telah sembuh dari penyakit (recovery). Secara garis besar, model epidemi tipe SIR klasik menggambarkan alur penyebaran penyakit dari populasi susceptible menjadi infected melalui kontak langsung maupun perantara lain. Selanjutnya, populasi infected yang mampu bertahan terhadap penyakit akan sembuh dan memasuki populasi recovery. Pada sebagian kasus, terdapat penyakit yang dapat memasuki kondisi endemi yakni kondisi dimana penyakit menyebar pada suatu wilayah dalam kurun waktu yang sangat lama. Kondisi endemi tersebut dapat terjadi pada penyakit measles, mumps, rubella, dan poliomyelistis. Berdasarkan data WHO [8], penyebaran penyakit dapat ditekan dengan program vaksinasi. Sampai saat ini, program vaksinasi masih dipercaya sebagai cara yang efektif dalam menekan penyebaran penyakit. Menurut WHO [8], pemberian vaksin Measles Mumps Rubella (MMR) terbukti mampu menekan jumlah kematian yang disebabkan oleh penyakit measles, mumps, rubella sekitar 68% pada tahun -6. Penurunan yang signikan juga ditunjukkan pada penyakit poliomyelitis yang dapat ditekan penyebarannya 1

2 dengan pemberian vaksin Oral poliomyelitis Vaccine (OPV). Dengan menganalisis suatu penyakit, maka akan didapatkan titik kesetimbangan dan kestabilan dari model epidemi suatu penyakit, sehingga dapat diketahui arah pertumbuhan penyakit ini. Dan dengan diketahui pola penyebaran penyakit, pemerintah dapat memprediksi perkembangan suatu penyakit sehingga dapat segera mengambil kebijakan untuk mencegah terjadinya wabah penyakit menular pada suatu daerah. Hal ini nantinya berkaitan erat dengan pengendalian sistem epidemi tersebut. Pada penelitian sebelumnya, Anggraeni Eka [1] telah mendapatkan penyelesaian numerik dan menganalisis perilaku model epidemi tipe SIR dengan vaksinasi tetapi tidak membahas kontrol atau vaksinasi yang optimal dalam mengatasi pencegahan penularan penyakit tersebut. Pada tugas akhir ini akan dibahas tentang analisis stabilitas pada penyakit yang mempunyai model epidemi tipe SIR dan akan didapatkan kontrol / vaksinasi yang optimal untuk meminimalkan individu rentan (S) dan terinfeksi (I) serta memaksimalkan individu yang sembuh (R) secara bersamaan dengan menggunakan Prinsip Minimum Pontryagin. II. TINJAUAN PUSTAKA 2.1. Model Epidemi Tipe SIR Model epidemi klasik adalah model SIR dengan dinamika penting (kelahiran dan kematian) yang diberikan oleh : Untuk mendapatkan strategi vaksinasi yang optimal, dalam tugas akhir ini digunakan teori kontrol optimal serta digunakan model yang disajikan dalam [9] untuk mengurangi jumlah individu yang rentan dan terinfeksi serta meningkatkan jumlah individu yang sembuh. Dalam sistem persamaan diferensial pada (2.1)-(2.3), digunakan tiga variabel state S (t), I (t) dan R (t). Untuk masalah kontrol optimal, digunakan variabel kontrol u(t) U ad yang mempresentasikan proporsi jumlah individu rentan yang diberikan vaksin pada saat t., disini. Dengan adanya pengontrol u(t), maka konstrain sistem dinamik dari persamaan diferensial pada (2.1)-(2.3) menjadi : Tujuan akhir dari masalah kontrol optimal dari model epidemi tipe SIR adalah untuk mendapatkan bentuk yang optimal sehingga meminimalkan fungsi objektif dengan kontrol : dengan (2.7) populasi susceptible (yang rentan terhadap penyakit) pada saat t populasi infectious (yang terjangkit penyakit dan dapat menularkan penyakit pada saat t. populasi recovery (yang telah sembuh / bebas penyakit) pada saat t. konstanta positif untuk menjaga keseimbangan ukuran S(t) dan I(t). bobot parameter positif prosentase jumlah individu rentan yang diberikan vaksin pada saat t. jumlah populasi keseluruhan laju kelahiran dan kematian yang dianggap sama tiap satuan waktu koefisien transmisi laju kesembuhan dari individu terinfeksi 2.2. Titik Setimbang dan Kestabilan Lokal Suatu sistem persamaan diferensial berbentuk Sebuah titik merupakan titik kesetimbangan dari sistem persamaan (2.8) jika memenuhi,,. Kestabilan asimtotis lokal merupakan kestabilan dari sistem linier atau kestabilan dari linierisasi sistem tak linier. Kestabilan lokal pada titik kesetimbangan ditentukan oleh tanda bagian real dari akar-akar karakteristik sistem dari matriks Jacobian yang dihitung di sekitar titik kesetimbangan. Untuk sistem tak linear harus dilinearkan sehingga didapatkan bentuk sistem linear Linearisasi Linearisasi adalah proses hampiran persamaan diferensial non linear dengan bentuk linear. Tinjau kembali persamaan (2.8) dimana X, Y dan Z adalah persamaaan nonlinear dan adalah titik kesetimbangan dari persamaan (2.8). Selanjutnya akan dicari pendekatan linear disekitar dengan 2

3 melakukan ekspansi menurut deret Taylor disekitar titik sebagai berikut : dalam hal ini matriks disebut matriks Jacobian disekitar titik kesetimbangan Karena adalah titik kesetimbangan, maka berlaku sehingga persamaan (2.9) menjadi Bila dilakukan subtitusi maka Akar- akar Persamaan Karakteristik Definisi 2.1[2] Jika J adalah matriks berukuran n x n maka vektor taknol dinamakan vektor karakteristik dari J yang memenuhi : Jx = x (2.12) untuk suatu skalar. Skalar dinamakan nilai karakteristik dari J dan x dikatakan vektor karakteristik yang bersesuaian dengan. Untuk mencari nilai karakteristik matriks J yang berukuran n x n, maka dapat dituliskan kembali Persamaan (2.12) sebagai Jx = Ix atau secara ekivalen ( J - I ) x = (2.13) Supaya menjadi nilai karakteristik harus ada penyelesaian taknol dari Persamaan (2.13), sehingga persamaan tersebut akan mempunyai penyelesaian taknol jika dan hanya jika det ( J - I ) x = (2.14) atau dapat ditulis J - I = Misalkan jika matriks dengan sehingga diperoleh : diperoleh,,, dan maka dapat Atau Dengan akar-akar karakteristik Persamaan (2.1) ini merupakan hasil linearisasi dari persamaan (2.8) disekitar. Persamaan tersebut dalam bentuk matriks dapat ditulis : Kestabilan Routh Hurwitz Pada permasalahan tertentu kestabilan titik setimbang tidak bisa diamati karena tanda bagian real nilai eigen tidak mudah ditentukan, oleh karena

4 itu perlu digunakan metode lain untuk menentukan tanda bagian real nilai eigen. Sebagai contoh untuk matrik yang berukuran dengan tanda bagian real nilai eigen dapat ditentukan dengan menggunakan kriteria kestabilan Routh- Hurwitz (Routh-Hurwitz Stability Criterion). Kriteria kestabilan Routh Hurwitz adalah suatu metode untuk menunjukkan kestabilan sistem dengan memperhatikan koefisien dari persamaan karakteristik tanpa menghitung akar-akar karakteristik secara langsung. Jika diketahui suatu persamaan karakteristik dengan orde ke-n sebagai berikut :. Kemudian susun koefisien persamaan karakteristik menjadi : Tabel 2.1 Tabel Routh Hurwitz menyatakan kondisi optimal yang akan mendorong dan mengatur plant C dari keadaan awal sampai keadaan akhir dengan beberapa konstrain. Kontrol dengan keadaan dan waktu yang sama dapat ditentukan ekstrim berdasarkan performance index yang diberikan. Secara umum, formulasi yang dapat diberikan pada permasalahan kontrol optimal adalah: 1. Mendiskripsikan secara matematik artinya diperoleh metode matematika dari proses terjadinya pengendalian (secara umum dalam bentuk variabel keadaan). 2. Spesifikasi dari performance index. 3. Menentukan kondisi batas dan konstrain fisik pada keadaan (state) dan atau kontrol. Pada umumnya, masalah kontrol optimal dalam bentuk matematik dapat diformulasikan sebagai berikut. Dengan tujuan mencari kontrol yang mengoptimalkan (memaksimumkan atau meminimumkan) performance index: (2.15) Dengan kendala (2.16) dengan Dengan menggunakan akar karakteristik (nilai eigen ), sistem dikatakan stabil atau mempunyai bagian real negatif jika dan hanya jika elemen elemen pada kolom pertama memiliki tanda yang sama Masalah Kontrol Optimal Pada prinsipnya, tujuan dari kontrol optimal adalah menentukan signal yang akan diproses dalam plant dan memenuhi konstrain fisik. Kemudian, pada waktu yang sama dapat ditentukan ekstrim (maksimum/minimum) yang sesuai dengan kriteria performance index. Performance index merupakan ukuran kuantitas dari performance suatu sistem. Performance index (2.15) dikatakan dalam bentuk Lagrange ketika, dalam bentuk Mayer ketika Kontrol merupakan kontrol optimal, jika disubtitusikan ke dalam sistem dinamik (2.16) akan memperoleh state yang optimal dan pada saat yang sama juga mengoptimalkan performance index (2.15) Prinsip Minimum Pontryagin Prinsip Minimum Pontryagin merupakan suatu kondisi sehingga dapat diperoleh penyelesaian kontrol optimal yang sesuai dengan tujuan. (memaksimalkan performance index). Berikut ini, akan dibahas contoh kasus yang menjadi ide dasar untuk membantu mendapatkan penyelesaian optimal control pada suatu model. Diberikan permasalahan dengan suatu kontrol yang terbatas sebagai berikut: Gambar 2.1 Skema Kontrol Pada gambar tersebut optimal control adalah mendapatkan optimal control (u* ), tanda * 4 untuk dapat ditulis sedemikian hingga dengan menggabungkan

5 persamaan (2.17) dan (2.18) dengan pengali lagrange dapat diperoleh misalkan adalah integral dari sampai untuk L padahal untuk dengan mengasumsikan bahwa, sehingga dapat ditulis kembali sehingga diperoleh dengan memilih yang memenuhi (2.24) sehingga persamaan (2.23) dapat direduksi menjadi berarti untuk bernilai minimum dapat ditulis seperti berikut sedemikian hingga untuk yang optimal maka merupakan solusi maka dengan mengurangkan kedua persamaan diatas akan diperoleh karena mempunyai nilai awal maka kemudian dilakukan ekspansi deret Taylor terhadap persamaan (2.22) sedemikian hingga menjadi 5 untuk itu, dibutuhkan suatu kemungkinan untuk memodifikasi yang memenuhi persamaan (2.25). Jika kontrol optimal adalah pada batas bawah untuk maka modifikasi control, jadi dibutuhkan, sehingga. Dengan cara yang sama, jika kontrol optimal pada batas atas maka bentuk modifikasi kontrol, jadi dibutuhkan, sehingga. Kesimpulannya jika jika jika supaya persamaan (2.24) konsisten untuk semua, karena itu dipilih Jika Jika Jika.(2.26) atau ekuivalen dengan berakibat berakibat berakibat berarti jika penyelesaian persamaan (2.17)- (2.19) maka harus terdapat fungsi sedemikian hingga memenuhi persamaan (2.18), (2.19), (2.24) dan (2.26). 2.6 Simulasi Simulasi pada model epidemi tipe SIR, akan diselesaikan dengan menggunakan DOTcvpSB versi R21_E3 (Dynamic Optimization Toolbox Control Vector Parameterizations in System Biology) merupakan salah satu toolbox matlab

6 untuk optimisasi dinamik dalam bidang biologi, yang dibuat oleh Thomas Hirmajer, dkk, dari Instituto de Investigaciones Marinas-CSIC. DOTcvpSB menggunakan pendekatan parameter vektor kontrol (Control Vektor Parameterization) untuk menyelesaikan masalah dinamik optimisasi integer campuran dan kontinu. DOTcvpSB sudah berhasil diterapkan untuk menyelesaikan beberapa masalah dalam bidang sistem biologi dan teknik bioproses. DOTcvpSB diimplementasikan dalam software Matlab yang juga didesain untuk sistem operasi komputer yang berbasis windows dan linux [3]. III. METODE PENELITIAN Metode yang digunakan untuk memecahkan permasalahan dalam tugas akhir ini adalah sebagai berikut: 1. Mencari Titik Setimbang 2. Analisis Stabilitas Model Epidemi tipe SIR. 3. Penyelesaian Optimal Kontrol 4. Simulasi 5. Analisis Hasil Penyelesaian dan Simulasi. IV. ANALISIS DAN PEMBAHASAN 4.1 Deskripsi Model dan Asumsi Model epidemi tipe SIR yang akan dibahas mempunyai asumsi-asumsi sebagai berikut: a. Populasi dibagi menjadi 3 kelompok yaitu : S(t) adalah populasi susceptible (individuindividu yang rentan terhadap penyakit) pada saat t. I(t) adalah populasi infectious (individuindividu yang terjangkit penyakit dan dapat menularkan penyakit, tetapi belum menunjukkan adanya gejala penyakit awal) pada saat t. R(t) adalah populasi recovery (individuindividu yang telah sembuh/bebas penyakit) pada saat t. b. Diasumsikan adalah laju kelahiran yang sama dengan laju kematian. Sedangkan N adalah jumlah populasi keseluruhan dari populasi susceptible, infectious, dan recovery, jumlah poupulasi yang lahir dalam populasi tiap satuan waktu selalu konstan. Jumlah populai yang lahir proposional dengan total populasi N. oleh karena itu, jumlah populasi yang lahir dalam populasi adalah. Jumlah populasi yang lahir tersebut akan memasuki kelompok S(t). c. Berdasarkan asumsi laju kelahiran sama dengan laju kematian, maka jumlah populasi yang mati pada setiap kelompok proposional dengan jumlah populasi pada masing-masing kelompok. Oleh karena itu, jumlah kematian 6 pada kelompok masing masing sebesar. d. adalah laju besarnya populasi yang terinfeksi dimana adalah koefisien transmisi yang merupakan konstanta yang menunjukkan tingkat kontak sehingga terjadi penularan penyakit, individu rentan memperoleh infeksi pada per kapita dan laju kejadian/timbulnya penyakit standar pada populasi yang terinfeksi. e. adalah laju kesembuhan dari individu yang telah terinfeksi. f. u(t) yang mempresentasikan prosentase populasi rentan yang divaksinasi per unit waktu. Sehingga persamaan untuk : Populasi Susceptible yakni, besarnya laju populasi yang rentan dipengaruhi oleh jumlah populasi yang lahir dalam populasi dan akan menurun dengan adanya laju kematian alami serta laju populasi yang terinfeksi. Populasi Infected yakni, besarnya laju populasi yang terinfeksi dipengaruhi oleh laju populasi yang terinfeksi dan akan menurun dengan adanya populasi yang sembuh serta laju kematian alami. Populasi Recovery yakni, besarnya laju populasi yang sembuh dipengaruhi oleh laju kesembuhan dari populasi yang terinfeksi dan akan menurun dengan adanya laju kematian alami. 4.2 Titik Setimbang Model Titik Setimbang Bebas Penyakit Titik kesetimbangan bebas penyakit ( disease-free equilibrium) adalah suatu keadaan dimana tidak terjadi penyebaran penyakit menular dalam populasi. Titik tersebut didapatkan pada saat I(t)= yakni suatu keadaan dimana tidak terjadi infeksi/penularan pada populasi. Sehingga didapatkan titik setimbang bebas penyakit yaitu Titik Setimbang Endemi Titik setimbang endemi (endemic equilibrium) yaitu suatu kondisi dimana

7 terjadi penyebaran penyakit menular di dalam populasi tersebut. Didapatkan dari. Sehingga didapatkan titik setimbang endemi yaitu : 1, Kestabilan Lokal Kestabilan Lokal Titik Setimbang Bebas Penyakit Pada titik setimbang matrik jacobiannya adalah Nilai eigen diperoleh dari : = maka Dari nilai maka akan didapatkan nilai sebagai berikut : a. Jika atau Akan didapatkan bahwa nilai eigen dari dan, maka berdasarkan sifat stabilitas titik setimbang dilihat dari akar akar karakteristiknya (nilai eigen ) maka titik setimbang tidak stabil. b. Jika atau Akan didapatkan bahwa nilai eigen dari, maka berdasarkan sifat stabilitas titik setimbang dilihat dari akar akar karakteristiknya (nilai eigen ) maka titik setimbang stabil asimtotis Kestabilan Lokal Titik Setimbang Endemi Pada titik setimbang dengan : Nilai eigen diperoleh dari : maka sehingga didapatkan nilai eigen Karena laju kematian alami untuk nilai maka, sedangkan untuk belum dapat ditentukan tandanya (dapat bernilai positif atau negatif). Oleh karena itu, akan dicari bilangan Reproduksi Dasar terlebih dahulu. Dari persamaan (2.1) - (2.3) dapat dicari Basic Reproductive ( ), dimana bertujuan untuk mengetahui dinamik penyebaran penyakit, artinya apakah penyakit tersebut terjadi endemi (wabah penyakit) atau tidak. Berdasarkan nilai eigen dapat dianalisa sebagai berikut : persamaan karakteristiknya adalah : dengan, Sedangkan akan bernilai positif jika bernilai negatif jika. dan Oleh karena itu, Basic Reproductive ( ) adalah : 7 misalkan :

8 dengan mensubtitusikan nilai-nilai persamaan (4.1) sehingga diperoleh : pada Hal pertama yang harus dilakukan adalah menentukan fungsi Hamiltonian ) apabila persamaan diatas ditulis dalam bentuk umum polynomial orde 3 menjadi : Selanjutnya untuk mendapatkan akar-akar karakteristik (nilai eigen ) dari polynomial derajat 3 digunakan kriteria kestabilan Routh-Hurwitz untuk menentukan kestabilannya Berdasarkan Prinsip Minimum Pontryagin, maka harus memenuhi persamaan state, co-state dan kondisi stationer. 1. Persamaan State polynomial orde 3 mempunyai akar negatif pada bagian realnya jika dan hanya jika elemem-elemen dari kolom pertama pada tabel Routh-Hurwitz mempunyai tanda yang sama. Sehingga didapatkan ketika berakibat. maka titik setimbang endemi yaitu : Dengan kondisi batas sebagai berikut : 2. Persamaan co-state adalah stabil asimptotik. 4.4 Penyelesaian Kontrol Optimal Pada penyelesaian kontrol optimal ini akan dibahas tentang penyelesaian menggunakan kontrol optimal untuk mendapatkan vaksinasi yang optimal dengan fungsi tujuan sebagai berikut : Model tersebut dapat diselesaikan dengan menggunakan optimal kontrol dimana variabel kontrolnya adalah u dan variabel keadaannya Dengan kondisi batas sebagai berikut 3. Kondisi Stationer Sedangkan konstrainnya adalah : Karena, sehingga diperoleh Dengan kondisi batas 8 Dengan mensubstitusikan persamaan (4.11 ) maka didapatkan sistem yang optimal

9 Suscetible Individuals Infected Individuals Susceptible Individuals Recovered Indiiduals Infected Individuals Simulasi Tabel 4.1 Parameter dan Nilainya [9] Parameter Nilai Tabel 4.2 Parameter Komputasi [9] Parameter Komputasi Simbol Nilai Waktu akhir hari Batas bawah kontrol Batas atas kontrol.9 Initial condition populasi susceptible Initial condition 175 populasi infected Initial condition 1 populasi recovery Pemberian vaksinasi HASIL SIMULASI Gambar 4.2 Populasi Infected ( yang terinfeksi ) Tanpa Kontrol Gambar 4.3 Populasi Recovered ( sembuh ) Tanpa Kontrol 1 1 Gambar 4.4 Populasi Susceptible ( rentan ) Dengan Kontrol 1 Gambar 4.1 Populasi Susceptible ( rentan ) Tanpa Kontrol Gambar 4.5 Populasi Infected (yang terinfeksi) Dengan Kontrol 9

10 Control Variables Recverd Individuals 1 populasi yang terinfeksi memberikan suatu hasil yang optimal dengan fungsi objektif yang minimum. Gambar 4.6 Populasi Recovered (sembuh) Dengan Kontrol Dari hasil analisis pada Gambar 4.1 Gambar 4.6 menunjukkan bahwa populasi yang rentan (susceptible) terjadi penurunan pada awal periode dengan kontrol yang optimal berupa pemberian vaksin dan nilai cost function dan pada saat populasi yang terinfeksi (infected) berkurang mengakibatkan populasi yang sembuh (recovered) meningkat pada awal pengendalian sampai akhir periode pengendalian. Dengan kondisi seperti ini dapat diketahui bahwa selama hari / 2 bulan populasi yang terinfeksi menurun karena pemberian kontrol. Dan ini berarti bahwa penyebaran penyakit yang mempunyai model epidemi tipe SIR dapat ditekan dengan kontrol yang optimal sebagai berikut : u 1 V. PENUTUP 5.1 Kesimpulan Dari analisis yang dilakukan pada model epidemi tipe SIR, maka akan diperoleh kesimpulan sebagai berikut : 1. Pada analisis stabilitas dapat diketahui bahwa Kestabilan lokal titik setimbang bebas penyakit bersifat stabil asimtotis untuk sedangkan untuk titik setimbang endemik stabil asimtotis untuk. bersifat 2. Pada optimal kontrol dapat diketahui bahwa Pada model pengendalian epidemi tipe SIR dengan kontrol vaksinasi diselesaikan dengan menerapkan Prinsip Minimum Pontryagin dan dapat diketahui bahwa nilai kontrol yang optimal didapat : dengan prosentase populasi rentan yang diberikan vaksin pada saat t. 3. Hasil simulasi dengan DOTcvpSB menunjukkan keefektifan pengendalian dengan kontrol vaksinasi dapat mengurangi populasi yang terinfeksi sehingga penyebaran penyakit dapat ditekan dan meminimumkan biaya dalam pemberian vaksin Gambar 4.7 Kontrol Untuk kontrol yaitu prosentase jumlah populasi rentan yang diberikan vaksin pada saat t pada awal periode pengendalian adalah maksimal yakni sebesar.9, kemudian bergerak menurun dan konstan pada saat kurang lebih 6 hari / 2 bulan sampai pada akhir periode pengendalian sehingga setelah itu hanya.3 dari populasi rentan yang harus diberikan vaksin. Hal ini mengakibatkan pemberian vaksin pada individu yang rentan semakin berkurang karena populasi ini mulai mengalami kesembuhan. Hasil dari penerapan kontrol / pemberian vaksin yang dilakukan dalam mengendalikan Saran Pada penelitian ini tidak dibahas mengenai analisis kestabilan global dari model epidemi tipe SIR, dan diasumsikan laju kelahiran sama dengan laju kematian serta tidak diperhatikan masa inkubasi, oleh karena itu penulis menyarankan pada pembaca yang tertarik masalah ini agar pada penelitian selanjut-nya menyertakan analisis global dari model epidemi tipe SIR dan memperhatikan masa inkubasi serta laju kelahiran yang tidak sama dengan laju kematian. DAFTAR PUSTAKA [1] Anggraeni, E. (21), Penyelesaian Numerik dan Analisis Perilaku Model Epidemi Tipe SIR dengan Vaksinasi Untuk Pencegahan Penularan Penyakit. Tugas Akhir S1 Jurusan Matematika ITS Surabaya.

11 [2] Finizio, N. dan Landas, G Ordinary Differential Equations with Modern Applications. California: Wadsworth Publishing Company. [3] Hirmajer, T., Canto, E.B., dan Banga, J.R., (9), DOTcvpSB: a Matlab Toolbox for Dynamic Optimization in Systems Biology, User s Guide Technical Report, Instituto De Investigaciones Marinas [IIM-CSIC], Spanyol. [4] Kamien, M.I. dan Schwarz, N.L Dynamics Optimization: The Calculus Of Variations and Optimal Control In Economics And Management. Norh Holland. Amsterdam. [5] Nugroho, Susilo. (9). Pengaruh Vaksinasi Terhadap Penyebaran Penyakit Dengan Model Endemi SIR. Tugas Akhir S1 Jurusan Matematika Universitas Sebelas Maret. [6] UNICEF, Going the extra mile: UNICEF Indonesia immunization drive reaches remote areas ml. Diakses pada tanggal 21 juni 211, pukul 22. WIB. [7] UNICEF, Polio: stories from West Java, unicef.org/indonesia/reallives_2956.html. Diakses pada tanggal 21 juni 211, pukul 22. WIB. [8] WHO,Measles, factsheets/fs286/en/. Diakses pada tanggal 21 juni 211, pukul 22. WIB. [9] Zaman. Gul, Hyo Jung. Il, Yang. H.K, 21 Stability Analysis And Optimal Vaccination Of An SIR Epidemic Model, Biosystem. 93 (8)

OLEH : IKHTISHOLIYAH DOSEN PEMBIMBING : Dr. subiono,m.sc

OLEH : IKHTISHOLIYAH DOSEN PEMBIMBING : Dr. subiono,m.sc OLEH : IKHTISHOLIYAH 1207 100 702 DOSEN PEMBIMBING : Dr. subiono,m.sc JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2011 Pemodelan matematika

Lebih terperinci

Oleh Nara Riatul Kasanah Dosen Pembimbing Drs. Sri Suprapti H., M.Si

Oleh Nara Riatul Kasanah Dosen Pembimbing Drs. Sri Suprapti H., M.Si Oleh Nara Riatul Kasanah 1209100079 Dosen Pembimbing Drs. Sri Suprapti H., M.Si JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 PENDAHULUAN

Lebih terperinci

TUGAS AKHIR. Oleh Erdina Sri Febriyanti NRP Dosen Pembimbing Dr. Erna Apriliani, M.Si Drs. Setijo Winarko, M.Si

TUGAS AKHIR. Oleh Erdina Sri Febriyanti NRP Dosen Pembimbing Dr. Erna Apriliani, M.Si Drs. Setijo Winarko, M.Si TUGAS AKHIR ANALISIS STABILITAS DAN OPTIMAL KONTROL PADA NYAMUK AEDES AEGYPTI DENGAN TEKNIK STERILISASI SERANGGA DAN INSEKTISIDA Oleh Erdina Sri Febriyanti NRP. 1207100028 Dosen Pembimbing Dr. Erna Apriliani,

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan

BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dijelaskan mengenai model matematika penyakit campak dengan pengaruh vaksinasi, diantaranya formulasi model penyakit campak, titik ekuilibrium bebas penyakit

Lebih terperinci

Analisa Kualitatif pada Model Penyakit Parasitosis

Analisa Kualitatif pada Model Penyakit Parasitosis Analisa Kualitatif pada Model Penyakit Parasitosis Nara Riatul Kasanah dan Sri Suprapti H Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh Nopember (ITS) Jl.

Lebih terperinci

BAB I PENDAHULUAN. Model matematika merupakan sekumpulan persamaan atau pertidaksamaan yang

BAB I PENDAHULUAN. Model matematika merupakan sekumpulan persamaan atau pertidaksamaan yang BAB I PENDAHULUAN A. Latar Belakang Model matematika merupakan sekumpulan persamaan atau pertidaksamaan yang mengungkap perilaku suatu permasalahan yang nyata. Model matematika dibuat berdasarkan asumsi-asumsi.

Lebih terperinci

Oleh : Dinita Rahmalia NRP Dosen Pembimbing : Drs. M. Setijo Winarko, M.Si.

Oleh : Dinita Rahmalia NRP Dosen Pembimbing : Drs. M. Setijo Winarko, M.Si. PERMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG (MATHEMATICAL MODEL AND STABILITY ANALYSIS THE SPREAD OF AVIAN INFLUENZA) Oleh : Dinita Rahmalia NRP 1206100011 Dosen Pembimbing

Lebih terperinci

PENGARUH STRATEGI PULSE VACCINATION TERHADAP PENCEGAHAN PENYEBARAN PENYAKIT CAMPAK

PENGARUH STRATEGI PULSE VACCINATION TERHADAP PENCEGAHAN PENYEBARAN PENYAKIT CAMPAK PENGARUH STRATEGI PULSE VACCINATION TERHADAP PENCEGAHAN PENYEBARAN PENYAKIT CAMPAK Dewi Putrie Lestari 1 dan Hengki Tasman 2 1 Pusat Studi Komputasi Matematika Universitas Gunadarma dewi_putrie@staffgunadarmaacid

Lebih terperinci

BAB I PENDAHULUAN. Dalam perkembangan zaman saat ini yang terus maju, diperlukan suatu

BAB I PENDAHULUAN. Dalam perkembangan zaman saat ini yang terus maju, diperlukan suatu BAB I PENDAHULUAN 1.1 Latar Belakang Dalam perkembangan zaman saat ini yang terus maju, diperlukan suatu analisis yang dapat diterima secara ilmiah terhadap setiap peristiwa yang terjadi dalam kehidupan

Lebih terperinci

PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG

PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG Dinita Rahmalia Universitas Islam Darul Ulum Lamongan, Abstrak. Di Indonesia terdapat banyak peternak unggas sebagai matapencaharian

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR TUGAS AKHIR ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR ( S TA B I L I T Y A N A LY S I S O F A P R E D AT O R - P R E Y M O D E L W I T H I N F E C T

Lebih terperinci

TUGAS AKHIR KAJIAN SKEMA BEDA HINGGA TAK-STANDAR DARI TIPE PREDICTOR-CORRECTOR UNTUK MODEL EPIDEMIK SIR

TUGAS AKHIR KAJIAN SKEMA BEDA HINGGA TAK-STANDAR DARI TIPE PREDICTOR-CORRECTOR UNTUK MODEL EPIDEMIK SIR TUGAS AKHIR KAJIAN SKEMA BEDA HINGGA TAK-STANDAR DARI TIPE PREDICTOR-CORRECTOR UNTUK MODEL EPIDEMIK SIR STUDY OF A NONSTANDARD SCHEME OF PREDICTORCORRECTOR TYPE FOR EPIDEMIC MODELS SIR Oleh:Anisa Febriana

Lebih terperinci

ANALISIS STABILITAS MODEL MATEMATIKA DARI PENYEBARAN PENYAKIT MENULAR MELALUI TRANSPORTASI ANTAR DUA KOTA

ANALISIS STABILITAS MODEL MATEMATIKA DARI PENYEBARAN PENYAKIT MENULAR MELALUI TRANSPORTASI ANTAR DUA KOTA ANALISIS STABILITAS MODEL MATEMATIKA DARI PENYEBARAN PENYAKIT MENULAR MELALUI TRANSPORTASI ANTAR DUA KOTA ANALYSIS OF STABILITY OF SPREADING DISEASE MATHEMATICAL MODEL WITH TRANSPORT-RELATED INFECTION

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR Oleh: Drs. M. Setijo Winarko, M.Si Drs. I Gusti Ngurah Rai Usadha, M.Si Subchan, Ph.D Drs. Kamiran, M.Si Noveria

Lebih terperinci

BAB I PENDAHULUAN. penyebabnya adalah gaya hidup dan lingkungan yang tidak sehat. Murwanti dkk,

BAB I PENDAHULUAN. penyebabnya adalah gaya hidup dan lingkungan yang tidak sehat. Murwanti dkk, BAB I PENDAHULUAN A. Latar Belakang Berbagai jenis penyakit semakin banyak yang muncul salah satu penyebabnya adalah gaya hidup dan lingkungan yang tidak sehat. Murwanti dkk, (2013: 64) menyebutkan bahwa

Lebih terperinci

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan BAB II KAJIAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

Lebih terperinci

MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI TUGAS AKHIR. Oleh : SITI RAHMA

MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI TUGAS AKHIR. Oleh : SITI RAHMA MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika Oleh : SITI RAHMA 18544452 FAKULTAS SAINS

Lebih terperinci

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 JURUSAN MATEMATIKA Nurlita Wulansari (1210100045) Dosen Pembimbing: Drs. M. Setijo Winarko, M.Si Drs. Lukman Hanafi, M.Sc FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Lebih terperinci

DINAMIKA PERKEMBANGAN HIV/AIDS DI SULAWESI UTARA MENGGUNAKAN MODEL PERSAMAAN DIFERENSIAL NONLINEAR SIR (SUSCEPTIBLE, INFECTIOUS AND RECOVERED)

DINAMIKA PERKEMBANGAN HIV/AIDS DI SULAWESI UTARA MENGGUNAKAN MODEL PERSAMAAN DIFERENSIAL NONLINEAR SIR (SUSCEPTIBLE, INFECTIOUS AND RECOVERED) DINAMIKA PERKEMBANGAN HIV/AIDS DI SULAWESI UTARA MENGGUNAKAN MODEL PERSAMAAN DIFERENSIAL NONLINEAR SIR (SUSCEPTIBLE, INFECTIOUS AND RECOVERED) Amir Tjolleng 1), Hanny A. H. Komalig 1), Jantje D. Prang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan

Lebih terperinci

MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI

MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI Mohammmad Soleh 1, Siti Rahma 2 Universitas Islam Negeri Sultan Syarif Kasim Riau Jl HR Soebrantas No 155 KM 15 Simpang Baru Panam Pekanbaru muhammadsoleh@uin-suskaacid

Lebih terperinci

BAB I PENDAHULUAN. Feces (kotoran manusia) yang terinfeksi oleh bakteri Vibrio cholerae

BAB I PENDAHULUAN. Feces (kotoran manusia) yang terinfeksi oleh bakteri Vibrio cholerae BAB I PENDAHULUAN A. Latar Belakang Masalah Feces (kotoran manusia) yang terinfeksi oleh bakteri Vibrio cholerae banyak ditemui di permukaan air. Melalui makanan, seperti sayuran yang telah dipupuk dengan

Lebih terperinci

Arisma Yuni Hardiningsih. Dra. Laksmi Prita Wardhani, M.Si. Jurusan Matematika. Surabaya

Arisma Yuni Hardiningsih. Dra. Laksmi Prita Wardhani, M.Si. Jurusan Matematika. Surabaya ANALISIS KESTABILAN DAN MEAN DISTRIBUSI MODEL EPIDEMIK SIR PADA WAKTU DISKRIT Arisma Yuni Hardiningsih 1206 100 050 Dosen Pembimbing : Dra. Laksmi Prita Wardhani, M.Si Jurusan Matematika Institut Teknologi

Lebih terperinci

Analisis Kestabilan Pada Model Transmisi Virus Hepatitis B yang Dipengaruhi Oleh Migrasi

Analisis Kestabilan Pada Model Transmisi Virus Hepatitis B yang Dipengaruhi Oleh Migrasi Analisis Kestabilan Pada Model Transmisi Virus Hepatitis B yang Dipengaruhi Oleh Migrasi 1 Firdha Dwishafarina Zainal, Setijo Winarko, dan Lukman Hanafi Jurusan Matematika, Fakultas MIPA, Institut Teknologi

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada bab III nanti, di antaranya model matematika penyebaran penyakit,

Lebih terperinci

KESTABILAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PADA PENYEBARAN PENYAKIT CAMPAK (MEASLES) (Studi Kasus di Kota Semarang)

KESTABILAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PADA PENYEBARAN PENYAKIT CAMPAK (MEASLES) (Studi Kasus di Kota Semarang) KESTABILAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PADA PENYEBARAN PENYAKIT CAMPAK (MEASLES) (Studi Kasus di Kota Semarang) Melita Haryati 1, Kartono 2, Sunarsih 3 1,2,3 Jurusan Matematika

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

Oleh: Shelvi Sheptianti Dosen Pembimbing : Dr. Erna Apriliani, M.Si Drs. M. Setijo Winarko, M.Si

Oleh: Shelvi Sheptianti Dosen Pembimbing : Dr. Erna Apriliani, M.Si Drs. M. Setijo Winarko, M.Si Oleh: Shelvi Sheptianti 1206 100 065 Dosen Pembimbing : Dr. Erna Apriliani, M.Si Drs. M. Setijo Winarko, M.Si Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh

Lebih terperinci

BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada

BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada BAB III PEMBAHASAN Pada bab ini akan dibentuk model matematika dari penyebaran penyakit virus Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada parameter laju transmisi. A.

Lebih terperinci

Abstrak: Makalah ini bertujuan untuk mengkaji model SIR dari penyebaran

Abstrak: Makalah ini bertujuan untuk mengkaji model SIR dari penyebaran ANALISIS KESTABILAN PENYEBARAN PENYAKIT CAMPAK (MEASLES) DENGAN VAKSINASI MENGGUNAKAN MODEL ENDEMI SIR Marhendra Ali Kurniawan Fitriana Yuli S, M.Si Jurdik Matematika FMIPA UNY Abstrak: Makalah ini bertujuan

Lebih terperinci

ANALISIS TITIK EKUILIBRIUM MODEL EPIDEMI SIR DENGAN EFEK DEMOGRAFI

ANALISIS TITIK EKUILIBRIUM MODEL EPIDEMI SIR DENGAN EFEK DEMOGRAFI βeta p-issn: 2085-5893 e-issn: 2541-0458 Vol. 4 No. 1 (Mei) 2011, Hal. 61-67 βeta 2011 ANALISIS TITIK EKUILIBRIUM MODEL EPIDEMI SIR DENGAN EFEK DEMOGRAFI Nurul Hikmah 1 Abstract: In this paper, we consider

Lebih terperinci

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN MODEL PADA PENYEBARAN HIV-AIDS

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN MODEL PADA PENYEBARAN HIV-AIDS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 2 (2015), hal 101 110 PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN MODEL PADA PENYEBARAN HIV-AIDS Dwi Haryanto, Nilamsari Kusumastuti,

Lebih terperinci

II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al.,

II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., II. TINJAUAN PUSTAKA 2.1 Sistem Dinamik Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., 2002). Salah satu tujuan utama dari sistem dinamik adalah mempelajari perilaku dari

Lebih terperinci

PENYELESAIAN NUMERIK DAN ANALISA KESTABILAN PADA MODEL EPIDEMIK SEIR DENGAN PENULARAN PADA PERIODE LATEN

PENYELESAIAN NUMERIK DAN ANALISA KESTABILAN PADA MODEL EPIDEMIK SEIR DENGAN PENULARAN PADA PERIODE LATEN PENYELESAIAN NUMERIK DAN ANALISA KESTABILAN PADA MODEL EPIDEMIK SEIR DENGAN PENULARAN PADA PERIODE LATEN Oleh: Labibah Rochmatika (12 09 100 088) Dosen Pembimbing: Drs. M. Setijo Winarko M.Si Drs. Lukman

Lebih terperinci

KENDALI OPTIMAL PADA PENCEGAHAN WABAH FLU BURUNG DENGAN ELIMINASI, KARANTINA DAN PENGOBATAN

KENDALI OPTIMAL PADA PENCEGAHAN WABAH FLU BURUNG DENGAN ELIMINASI, KARANTINA DAN PENGOBATAN KENDALI OPTIMAL PADA PENCEGAHAN WABAH FLU BURUNG DENGAN ELIMINASI, KARANTINA DAN PENGOBATAN OLEH : TASLIMA NRP : 1209201728 DOSEN PEMBIMBING 1. SUBCHAN, M.Sc, Ph.d 2. Dr. ERNA APRILIANI, M.Sc ABSTRAK Salah

Lebih terperinci

KATA PENGANTAR. Puji syukur penulis panjatkan kehadirat Allah SWT yang telah memberikan rahmat dan

KATA PENGANTAR. Puji syukur penulis panjatkan kehadirat Allah SWT yang telah memberikan rahmat dan KATA PENGANTAR Puji syukur penulis panjatkan kehadirat Allah SWT yang telah memberikan rahmat dan karunia-nya sehingga Tugas Akhir ini dapat terselesaikan. Tugas Akhir yang berjudul Analisis Kestabilan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN Bab ini memuat tentang latar belakang yang mendasari penelitian. Berdasarkan pada latar belakang tersebut, ditentukan tujuan penelitian yang ingin dicapai. Pada bab ini juga dijelaskan

Lebih terperinci

T 7 Model Sir (Suspectible Infected Recovered) Dengan Imigrasi Dan Pengaruh Sanitasi Serta Perbaikan Tingkat Sanitasi

T 7 Model Sir (Suspectible Infected Recovered) Dengan Imigrasi Dan Pengaruh Sanitasi Serta Perbaikan Tingkat Sanitasi T 7 Model Sir (Suspectible Infected Recovered) Dengan Imigrasi Dan Pengaruh Sanitasi Serta Perbaikan Tingkat Sanitasi Evy Dwi Astuti dan Sri Kuntari Jurusan Matematika FMIPA Universitas Sebelas Maret math_evy@yahoo.com

Lebih terperinci

MODEL EPIDEMIK SIR UNTUK PENYAKIT YANG MENULAR SECARA HORIZONTAL DAN VERTIKAL

MODEL EPIDEMIK SIR UNTUK PENYAKIT YANG MENULAR SECARA HORIZONTAL DAN VERTIKAL MODEL EPIDEMIK SIR UNTUK PENYAKIT YANG MENULAR SECARA HORIZONTAL DAN VERTIKAL ILMIYATI SARI 1, HENGKI TASMAN 2 1 Pusat Studi Komputasi Matematika, Universitas Gunadarma, ilmiyati@staff.gunadarma.ac.id

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas tinjauan pustaka yang akan digunakan untuk tesis ini, yang selanjutnya akan di perlukan pada Bab 3. Tinjauan pustaka yang dibahas adalah mengenai yang mendukung

Lebih terperinci

ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA BAB IV PEMBAHASAN. optimal dari model untuk mengurangi penyebaran polio pada dengan

ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA BAB IV PEMBAHASAN. optimal dari model untuk mengurangi penyebaran polio pada dengan BAB IV PEMBAHASAN Pada bab ini akan dilakukan analisis model dan kontrol optimal penyebaran polio dengan vaksinasi. Dari model matematika penyebaran polio tersebut akan ditentukan titik setimbang dan kemudian

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN IV HASIL DAN PEMBAHASAN 4.1 Penentuan Titik Tetap Analisis titik tetap pada sistem persamaan diferensial sering digunakan untuk menentukan suatu solusi yang tidak berubah menurut waktu, yaitu pada saat

Lebih terperinci

ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER)

ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER) Jurnal Euclid, Vol.4, No.1, pp.646 ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER) Herri Sulaiman Program Studi Pendidikan Matematika

Lebih terperinci

ANALISIS KESTABILAN DARI SISTEM DINAMIK MODEL SEIR PADA PENYEBARAN PENYAKIT CACAR AIR (VARICELLA) DENGAN PENGARUH VAKSINASI SKRIPSI

ANALISIS KESTABILAN DARI SISTEM DINAMIK MODEL SEIR PADA PENYEBARAN PENYAKIT CACAR AIR (VARICELLA) DENGAN PENGARUH VAKSINASI SKRIPSI ANALISIS KESTABILAN DARI SISTEM DINAMIK MODEL SEIR PADA PENYEBARAN PENYAKIT CACAR AIR (VARICELLA) DENGAN PENGARUH VAKSINASI SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

III PEMODELAN. (Giesecke 1994)

III PEMODELAN. (Giesecke 1994) 4 2.2 Bilangan Reproduksi Dasar Bilangan reproduksi dasar adalah potensi penularan penyakit pada populasi rentan, merupakan rata-rata jumlah individu yang terinfeksi secara langsung oleh seorang penderita

Lebih terperinci

Penyelesaian Numerik dan Analisa Kestabilan pada Model Epidemik SEIR dengan Memperhatikan Adanya Penularan pada Periode Laten

Penyelesaian Numerik dan Analisa Kestabilan pada Model Epidemik SEIR dengan Memperhatikan Adanya Penularan pada Periode Laten Penyelesaian Numerik dan Analisa Kestabilan pada Model Epidemik SEIR dengan Memperhatikan Adanya Penularan pada Periode Laten Labibah Rochmatika,Drs. M. Setijo Winarko, M.Si dan Drs. Lukman Hanafi, M.Sc

Lebih terperinci

III PEMBAHASAN. μ v. r 3. μ h μ h r 4 r 5

III PEMBAHASAN. μ v. r 3. μ h μ h r 4 r 5 III PEMBAHASAN 3.1 Perumusan Model Model yang akan dibahas dalam karya ilmiah ini adalah model SIDRS (Susceptible Infected Dormant Removed Susceptible) dari penularan penyakit malaria dalam suatu populasi.

Lebih terperinci

T 4 Simulasi Level Sanitasi Pada Model Sir Dengan Imigrasi Dan Vaksinasi

T 4 Simulasi Level Sanitasi Pada Model Sir Dengan Imigrasi Dan Vaksinasi T 4 Simulasi Level Sanitasi Pada Model Sir Dengan Imigrasi Dan Vaksinasi Anita Kesuma Arum dan Sri Kuntari Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta

Lebih terperinci

KESTABILAN DAN BIFURKASI MODEL EPIDEMIK SEIR DENGAN LAJU KESEMBUHAN TIPE JENUH. Oleh: Khoiril Hidayati ( )

KESTABILAN DAN BIFURKASI MODEL EPIDEMIK SEIR DENGAN LAJU KESEMBUHAN TIPE JENUH. Oleh: Khoiril Hidayati ( ) KESTABILAN DAN BIFURKASI MODEL EPIDEMIK SEIR DENGAN LAJU KESEMBUHAN TIPE JENUH Oleh: Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2013 Latar

Lebih terperinci

KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSPECTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI

KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSPECTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSPECTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI Mohammad soleh 1, Leni Darlina 2 1,2 Jurusan Matematika Fakultas Sains Teknologi Universitas Islam

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Influenza atau lebih dikenal dengan flu, merupakan salah satu penyakit yang menyerang pernafasan manusia. Penyakit ini disebabkan oleh virus influenza yang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Semakin berkembangnya ilmu pengetahuan dan ilmu pengobatan tidak menjamin manusia akan bebas dari penyakit. Hal ini disebabkan karena penyakit dan virus juga

Lebih terperinci

KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih

KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT Oleh: Arisma Yuni Hardiningsih 126 1 5 Dosen Pembimbing: Dra. Laksmi Prita Wardhani, M.Si Jurusan Matematika Fakultas Matematika

Lebih terperinci

Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi

Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi Seminar Matematika dan Pendidikan Matematika UNY 2017 Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi Sischa Wahyuning Tyas 1, Dwi Lestari 2 Universitas Negeri Yogyakarta 1 Universitas

Lebih terperinci

ANALISIS DINAMIK MODEL EPIDEMI SIRS DENGAN MODIFIKASI TINGKAT KEJADIAN INFEKSI NONMONOTON DAN PENGOBATAN

ANALISIS DINAMIK MODEL EPIDEMI SIRS DENGAN MODIFIKASI TINGKAT KEJADIAN INFEKSI NONMONOTON DAN PENGOBATAN ANALISIS DINAMIK MODEL EPIDEMI SIRS DENGAN MODIFIKASI TINGKAT KEJADIAN INFEKSI NONMONOTON DAN PENGOBATAN Suryani, Agus Suryanto, Ratno Bagus E.W Pelaksana Akademik Mata Kuliah Universitas, Universitas

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya.

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya. BAB IV PEMBAHASAN Pada bab ini dilakukan analisis model penyebaran penyakit AIDS dengan adanya transmisi vertikal pada AIDS. Dari model matematika tersebut ditentukan titik setimbang dan kemudian dianalisis

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

PENGARUH PARAMETER PENGONTROL DALAM MENEKAN PENYEBARAN PENYAKIT FLU BURUNG. Rina Reorita, Niken Larasati, dan Renny

PENGARUH PARAMETER PENGONTROL DALAM MENEKAN PENYEBARAN PENYAKIT FLU BURUNG. Rina Reorita, Niken Larasati, dan Renny JMP : Volume 3 Nomor 1, Juni 11 PENGARUH PARAMETER PENGONTROL DALAM MENEKAN PENYEBARAN PENYAKIT FLU BURUNG Rina Reorita, Niken Larasati, dan Renny Program Studi Matematika, Jurusan MIPA, Fakultas Sains

Lebih terperinci

ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA

ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 163-172 ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA Auliah Arfani, Nilamsari Kusumastuti, Shantika

Lebih terperinci

ANALISIS KESTABILAN PADA MODEL TRANSMISI VIRUS HEPATITIS B YANG DIPENGARUHI OLEH MIGRASI

ANALISIS KESTABILAN PADA MODEL TRANSMISI VIRUS HEPATITIS B YANG DIPENGARUHI OLEH MIGRASI ANALISIS KESTABILAN PADA MODEL TRANSMISI VIRUS HEPATITIS B YANG DIPENGARUHI OLEH MIGRASI STABILITY ANALYSIS OF THE HEPATITIS B VIRUS TRANSMISSION MODELS ARE AFFECTED BY MIGRATION Oleh : Firdha Dwishafarina

Lebih terperinci

ANALISIS STABILITAS PENYEBARAN VIRUS EBOLA PADA MANUSIA

ANALISIS STABILITAS PENYEBARAN VIRUS EBOLA PADA MANUSIA ANALISIS STABILITAS PENYEBARAN VIRUS EBOLA PADA MANUSIA Mutholafatul Alim 1), Ari Kusumastuti 2) 1) Mahasiswa Jurusan Matematika, Universitas Islam Negeri Maulana Malik Ibrahim Malang 1) mutholafatul@rocketmail.com

Lebih terperinci

KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSCEPTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI TUGAS AKHIR

KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSCEPTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI TUGAS AKHIR KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSCEPTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI TUGAS AKHIR Disusun sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika

Lebih terperinci

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear)

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear) 3 II. LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Biasa Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Misalkan suatu sistem persamaan diferensial biasa dinyatakan sebagai = + ; =, R (1) dengan

Lebih terperinci

KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL

KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL Jurnal Matematika UNAND Vol. 2 No. 3 Hal. 58 65 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KESTABILAN TITIK TETAP MODEL PENULARAN PENYAKIT TIDAK FATAL AKHIRUDDIN Program Studi Matematika, Fakultas

Lebih terperinci

BAB I PENDAHULUAN. ibu kepada anaknya melalui plasenta pada saat usia kandungan 1 2 bulan di

BAB I PENDAHULUAN. ibu kepada anaknya melalui plasenta pada saat usia kandungan 1 2 bulan di BAB I PENDAHULUAN A. Latar Belakang Masalah Maternal antibody merupakan kekebalan tubuh pasif yang ditransfer oleh ibu kepada anaknya melalui plasenta pada saat usia kandungan 1 2 bulan di akhir masa kehamilan.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sekilas Mengenai Tuberkulosis 2.1.1 Pengertian dan Sejarah Tuberkulosis Tuberkulosis TB adalah penyakit menular yang disebabkan oleh bakteri Mycobacterium Tuberculosis. Bakteri

Lebih terperinci

T - 11 MODEL STOKASTIK SUSCEPTIBLE INFECTED RECOVERED (SIR)

T - 11 MODEL STOKASTIK SUSCEPTIBLE INFECTED RECOVERED (SIR) T - 11 MODEL STOKASTIK SUSCEPTIBLE INFECTED RECOVERED (SIR) Felin Yunita 1, Purnami Widyaningsih 2, Respatiwulan 3 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan makhluk hidup ini banyak permasalahan yang muncul seperti diantaranya banyak penyakit menular yang mengancam kehidupan. Sangat diperlukan sistem untuk

Lebih terperinci

FOURIER April 2013, Vol. 2, No. 1, MODEL PENYEBARAN PENYAKIT POLIO DENGAN PENGARUH VAKSINASI. RR Laila Ma rifatun 1, Sugiyanto 2

FOURIER April 2013, Vol. 2, No. 1, MODEL PENYEBARAN PENYAKIT POLIO DENGAN PENGARUH VAKSINASI. RR Laila Ma rifatun 1, Sugiyanto 2 FOURIER April 2013, Vol. 2, No. 1, 13 23 MODEL PENYEBARAN PENYAKIT POLIO DENGAN PENGARUH VAKSINASI RR Laila Ma rifatun 1, Sugiyanto 2 1, 2 Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan

Lebih terperinci

Analisis Kestabilan Model Veisv Penyebaran Virus Komputer Dengan Pertumbuhan Logistik

Analisis Kestabilan Model Veisv Penyebaran Virus Komputer Dengan Pertumbuhan Logistik Analisis Kestabilan Model Veisv Penyebaran Virus Komputer Dengan Pertumbuhan Logistik Mohammad soleh 1, Seri Rodia Pakpahan 2 Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah yang telah

Lebih terperinci

BAB 1 PENDAHULUAN. Malaria adalah penyakit infeksi yang disebabkan oleh protozoa parasit

BAB 1 PENDAHULUAN. Malaria adalah penyakit infeksi yang disebabkan oleh protozoa parasit BAB 1 PENDAHULUAN 1.1 Latar Belakang Malaria adalah penyakit infeksi yang disebabkan oleh protozoa parasit yang merupakan golongan plasmodium yang hidup dan berkembang biak dalam sel darah merah manusia.

Lebih terperinci

BAB I PENDAHULUAN. adalah penyakit menular karena masyarakat harus waspada terhadap penyakit

BAB I PENDAHULUAN. adalah penyakit menular karena masyarakat harus waspada terhadap penyakit BAB I PENDAHULUAN A. Latar Belakang Kesehatan adalah suatu hal yang sangat penting dalam kehidupan karena jika seseorang mengalami masalah kesehatan maka aktivitas seseorang tersebut akan terganggu. Masalah

Lebih terperinci

Model Matematika Penyebaran Penyakit HIV/AIDS dengan Terapi pada Populasi Terbuka

Model Matematika Penyebaran Penyakit HIV/AIDS dengan Terapi pada Populasi Terbuka Model Matematika Penyebaran Penyakit HIV/AIDS dengan Terapi pada Populasi Terbuka M Soleh 1, D Fatmasari 2, M N Muhaijir 3 1, 2, 3 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim

Lebih terperinci

Analisis Kestabilan Model MSEIR Penyebaran Penyakit Difteri Dengan Saturated Incidence Rate

Analisis Kestabilan Model MSEIR Penyebaran Penyakit Difteri Dengan Saturated Incidence Rate Analisis Kestabilan Model MSEIR Penyebaran Penyakit Difteri Dengan Saturated Incidence Rate I Suryani 1 Mela_YuenitaE 2 12 Jurusan Matematika Fakultas Sains dan Teknologi UIN Sultan Syarif Kasim Riau Jl

Lebih terperinci

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR 9 IV PEMBAHASAN 4.1 Model SIR 4.1.1 Titik Tetap Untuk mendapatkan titik tetap diperoleh dari dua persamaan singular an ) sehingga dari persamaan 2) diperoleh : - si + s = 0 9) si + )i = 0 didapat titik

Lebih terperinci

Prosiding Seminar Hasil-Hasil PPM IPB 2015 Vol. I : ISBN :

Prosiding Seminar Hasil-Hasil PPM IPB 2015 Vol. I : ISBN : Vol. I : 214 228 ISBN : 978-602-8853-27-9 MODEL EPIDEMIK STOKASTIK PENYEBARAN PENYAKIT DEMAM BERDARAH DENGUE DI JAWA BARAT (Stochastic Epidemic Model of Dengue Fever Spread in West Java Province) Paian

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 1 (2) (2012) UNNES Journal of Mathematics http://journalunnesacid/sju/indexphp/ujm MODEL EPIDEMI SEIR PADA PENYEBARAN PENYAKIT CAMPAK DENGAN PENGARUH VAKSINASI Siti Kholisoh, St Budi Waluya, Muhammad

Lebih terperinci

ANALISIS MODEL SEIR (SUSCEPTIBLE, EXPOSED, INFECTIOUS, RECOVERED) UNTUK PENYEBARAN PENYAKIT TUBERKULOSIS DI KABUPATEN BOGOR

ANALISIS MODEL SEIR (SUSCEPTIBLE, EXPOSED, INFECTIOUS, RECOVERED) UNTUK PENYEBARAN PENYAKIT TUBERKULOSIS DI KABUPATEN BOGOR ANALII MODEL EIR (UCEPTIBLE, EXPOED, INFECTIOU, RECOVERED) UNTUK PENYEBARAN PENYAKIT TUBERKULOI DI KABUPATEN BOGOR, Rahayu Cipta Lestari Embay Rohaeti Ani Andriyati Program tudi Matematika Fakultas Matematika

Lebih terperinci

ANALISIS KESTABILAN MODEL DINAMIK PENYEBARAN VIRUS INFLUENZA

ANALISIS KESTABILAN MODEL DINAMIK PENYEBARAN VIRUS INFLUENZA ANALISIS KESTABILAN MODEL DINAMIK PENYEBARAN VIRUS INFLUENZA SKRIPSI Oleh Elok Faiqotul Himmah J2A413 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 28

Lebih terperinci

Kestabilan Titik Ekuilibrium Model SIS dengan Pertumbuhan Logistik dan Migrasi

Kestabilan Titik Ekuilibrium Model SIS dengan Pertumbuhan Logistik dan Migrasi Kestabilan Titik Ekuilibrium Model SIS dengan Pertumbuhan Logistik Migrasi Mohammad soleh 1, Parubahan Siregar 2 1,2 Jurusan Matematika Fakultas Sains Teknologi Universitas Islam Negeri Sultan Syarif Kasim

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Infeksi virus dengue adalah suatu insiden penyakit yang serius dalam kematian di kebanyakan negara yang beriklim tropis dan sub tropis di dunia. Virus dengue

Lebih terperinci

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan BAB II LANDASAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan matematika, teorema Taylor, nilai eigen,

Lebih terperinci

Analisis Kestabilan Model Seiqr pada Penyebaran Penyakit Sars

Analisis Kestabilan Model Seiqr pada Penyebaran Penyakit Sars Seminar Nasional Teknologi Informasi, Komunikasi dan Industri SNTIKI) 8 ISSN : 2085-9902 Analisis Kestabilan Model Seiqr pada Penyebaran Penyakit Sars Hafifah Istihapsari 1, I.Suryani 2 Jurusan Matematika

Lebih terperinci

Oleh : HASNAN NASRUN SUBCHAN, MAHMUD YUNUS

Oleh : HASNAN NASRUN SUBCHAN, MAHMUD YUNUS Oleh : HASNAN NASRUN SUBCHAN, MAHMUD YUNUS ABSTRAK Penyakit Tuberkulosis (TB) merupakan salah satu penyakit menular tertua yang menyerang manusia. Badan kesehatan dunia (WHO) menyatakan bahwa sepertiga

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini banyak sekali penyakit menular yang cukup membahayakan, penyakit menular biasanya disebabkan oleh faktor lingkungan yang cukup baik untuk perkembangbiakan

Lebih terperinci

Pengembangan Model Matematika SIRD (Susceptibles- Infected-Recovery-Deaths) Pada Penyebaran Virus Ebola

Pengembangan Model Matematika SIRD (Susceptibles- Infected-Recovery-Deaths) Pada Penyebaran Virus Ebola JURNAL FOURIER April 2016, Vol. 5, No. 1, 23-34 ISSN 2252-763X Pengembangan Model Matematika SIRD (Susceptibles- Infected-Recovery-Deaths) Pada Penyebaran Virus Ebola Endah Purwati dan Sugiyanto Program

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN Pada Bab I Pendahuluan ini dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan

Lebih terperinci

BAB I PENDAHULUAN. Gejala awal campak berupa demam, konjungtivis, pilek batuk dan bintik-bintik

BAB I PENDAHULUAN. Gejala awal campak berupa demam, konjungtivis, pilek batuk dan bintik-bintik BAB I PENDAHULUAN A. Latar Belakang Campak merupakan penyakit menular yang banyak ditemukan didunia dan dianggap sebagai persoalan kesehatan masyarakat yang harus diselesaikan. Gejala awal campak berupa

Lebih terperinci

SIMULASI MODEL EPIDEMIK TIPE SIR DENGAN STRATEGI VAKSINASI DAN TANPA VAKSINASI

SIMULASI MODEL EPIDEMIK TIPE SIR DENGAN STRATEGI VAKSINASI DAN TANPA VAKSINASI SIMULASI MODEL EPIDEMIK TIPE SIR DENGAN STRATEGI VAKSINASI DAN TANPA VAKSINASI Siti Komsiyah Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

ANALISIS KESTABILAN MODEL SEIR DENGAN VAKSINASI PADA PENYEBARAN PENYAKIT CAMPAK DI KABUPATEN SLEMAN PROVINSI DIY TUGAS AKHIR SKRIPSI

ANALISIS KESTABILAN MODEL SEIR DENGAN VAKSINASI PADA PENYEBARAN PENYAKIT CAMPAK DI KABUPATEN SLEMAN PROVINSI DIY TUGAS AKHIR SKRIPSI ANALISIS KESTABILAN MODEL SEIR DENGAN VAKSINASI PADA PENYEBARAN PENYAKIT CAMPAK DI KABUPATEN SLEMAN PROVINSI DIY TUGAS AKHIR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

MODEL SIR UNTUK PENYEBARAN PENYAKIT FLU BURUNG

MODEL SIR UNTUK PENYEBARAN PENYAKIT FLU BURUNG MODEL SIR UNTUK PENYEBARAN PENYAKIT FLU BURUNG MANSYUR A. R.1 TOAHA S.2 KHAERUDDIN3 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin Jln. Perintis Kemerdekaan Km.

Lebih terperinci

ANALISIS KESTABILAN MODEL PENIPISAN SUMBER DAYA HUTAN OLEH PERKEMBANGAN INDUSTRIALISASI

ANALISIS KESTABILAN MODEL PENIPISAN SUMBER DAYA HUTAN OLEH PERKEMBANGAN INDUSTRIALISASI ANALISIS KESTABILAN MODEL PENIPISAN SUMBER DAYA HUTAN OLEH PERKEMBANGAN INDUSTRIALISASI Oleh: Khairina Aryaputri 1206 100 041 Pembimbing: Drs. Kamiran, M.Si Drs. M. Setijo Winarko, M.Si Jurusan Matematika

Lebih terperinci

PENYEBARAN PENYAKIT CAMPAK DI INDONESIA DENGAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR)

PENYEBARAN PENYAKIT CAMPAK DI INDONESIA DENGAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PEYEBARA PEYAKIT CAMPAK DI IDOESIA DEGA MODEL SUSCEPTIBLE VACCIATED IFECTED RECOVERED (SVIR) Septiawan Adi Saputro, Purnami Widyaningsih, Dewi Retno Sari Saputro Program Studi Matematika FMIPA US Abstrak.

Lebih terperinci

ANALISA KESTABILAN DAN KENDALI OPTIMAL PADA MODEL PEMANENAN FITOPLANKTON-ZOOPLANKTON

ANALISA KESTABILAN DAN KENDALI OPTIMAL PADA MODEL PEMANENAN FITOPLANKTON-ZOOPLANKTON ANALISA KESTABILAN DAN KENDALI OPTIMAL PADA MODEL PEMANENAN FITOPLANKTON-ZOOPLANKTON Dosen Pembimbing: 1. Drs. Mohammad Setijo Winarko M. Si 2. Drs. Kamiran M. Si Arum Fitri Anisya 1209100054 JURUSAN MATEMATIKA

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

MODEL EPIDEMI SEIV PENYEBARAN PENYAKIT POLIO PADA POPULASI TAK KONSTAN

MODEL EPIDEMI SEIV PENYEBARAN PENYAKIT POLIO PADA POPULASI TAK KONSTAN UJM 5 (2) (2016) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm MODEL EPIDEMI SEIV PENYEBARAN PENYAKIT POLIO PADA POPULASI TAK KONSTAN Yanuar Chaerul Umam, Muhammad Kharis, Supriyono

Lebih terperinci

Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam

Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam Jurnal Matematika Integratif ISSN 1412-6184 Volume 10 No 1, April 2014, hal 1-7 Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam Ni matur Rohmah, Wuryansari Muharini Kusumawinahyu Jurusan Matematika,

Lebih terperinci

BAB III PEMBAHASAN. tenggorokan, batuk, dan kesulitan bernafas. Pada kasus Avian Influenza, gejala

BAB III PEMBAHASAN. tenggorokan, batuk, dan kesulitan bernafas. Pada kasus Avian Influenza, gejala BAB III PEMBAHASAN A. Permasalahan Nyata Flu Burung (Avian Influenza) Avian Influenza atau yang lebih dikenal dengan flu burung adalah suatu penyakit menular yang disebabkan oleh virus influenza tipe A.

Lebih terperinci