BAB III MATCHING. Sebelum membahas lebih jauh mengenai optimal assignment problem dan

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III MATCHING. Sebelum membahas lebih jauh mengenai optimal assignment problem dan"

Transkripsi

1 BAB III MATCHING Sebelum membahas lebih jauh mengenai optimal assignment problem dan cara penyelesaiannya, pada bab ini akan dibahas mengenai definisi matching dan matching pada graf bipartit, karena penyelesaian optimal assignment problem akan menggunakan penerapan matching pada graf bipartit. 3.1 Definisi Matching Misalkan G=(V,E) adalah graf sederhana dan bukan graf kosong. Maka, matching M didefinisikan sebagai himpunan bagian yang tidak kosong dari rusuk E(G) sedemikian hingga tidak ada dua rusuk dari M yang saling ajasen di G. Selanjutnya simpul-simpul ujung dari matching M disebut matched di bawah M. Untuk lebih jelasnya, perhatikan Gambar 3.1. M ={e 1,e 6,e 7 } adalah salah satu contoh matching yang dapat dibuat pada graf G. Gambar

2 22 Jika M adalah suatu matching, maka suatu simpul v i dikatakan saturated oleh matching M atau matching M saturates terhadap simpul v i jika ada sebuah rusuk dari matching M menempel pada simpul v i tersebut. Sebaliknya jika tidak ada maka simpul v i disebut unsatured M. Pehatikan Gambar 3.1, v 1 dan v 2 disebut saturated oleh M, sebaliknya pada Gambar 3.2, v 1 disebut unsaturated karena tidak ada matching M yang menempel pada v 1. Gambar 3.2 Matching M disebut matching sempurna jika setiap simpul pada G saturated oleh matching M. Pada Gambar 3.1 semua simpul saturated oleh matching M, maka graf pada Gambar 3.1 merupakan contoh matching sempurna. Sedangkan pada Gambar 3.2 ada satu simpul yaitu v 1 yang tidak saturated oleh matching M, maka graf pada Gambar 3.2 bukan contoh matching sempurna.

3 23 Dari sebuah graf G, bisa saja diperoleh lebih dari satu matching M. Suatu matching M disebut matching maksimum jika untuk setiap matching pada graf G tidak terdapat matching M' dengan. Sehingga setiap matching sempurna adalah matching maksimum. Namun sebaliknya, jika M adalah matching maksimum belum tentu M merupakan matching sempurna. Gambar 3.1 merupakan matching sempurna sekaligus matching maksimum dan Gambar 3.2 merupakan contoh matching maksimum tetapi bukan matching sempurna. Misalkan M adalah matching dan P adalah lintasan pada graf G. lintasan P disebut M-alternating jika rusuk-rusuk pada P terbentang dalam M dan berada pada E(G)\M, dengan kata lain rusuknya bergantian antara M dan E(G)\M. Selanjutnya Lintasan P disebut M-augmenting jika lintasan ini M-alternating dan simpul awal serta simpul akhir dari lintasan P merupakan M-unsaturated. Untuk lebih jelasnya perhatikan Gambar 3.3.

4 24 Gambar 3.3 Pada Gambar 3.3, yang merupakan contoh lintasan M-alternating yaitu v 1 e 1 v 4 e 2 v 2 e 3 v 6 e 6 v 5 e 7 v 3. Sedangkan v 8 e 9 v 6 e 3 v 2 e 5 v 5 e 7 v 3 e 8 v 7 merupakan contoh lintasan M- augmenting karena simpul awalnya yaitu v 8 dan simpul akhirnya yaitu v 7 merupakan simpul yang berada pada E(G)\M dan unsaturated M. Misalkan M adalah matching pada graf G, dan terdapat matching lain, sebut saja dengan menunjukan perbedaan simetris M dan. Maka dapat diperoleh suatu graf H=G( ) yang merupakan graf yang direntang oleh rusuk dengan menghapus semua rusuk dan rusuk (G\M) (G\ ). Untuk lebih jelasnya perhatikan contoh 3.1. Contoh 3.1: Diberikan graf G yang memuat matching M dan matching seperti pada Gambar 3.4. Akan dicari H= G( ).

5 25 Gambar 3.4 Rusuk yang menghubungkan simpul v 5 dan simpul v 8 merupakan anggota anggota matching M sekaligus anggota matching ( ). Maka, rusuk tersebut dihapus. Rusuk yang menghubungkan simpul v 5 dan simpul v 11 serta rusuk yang menghubungkan simpul v 6 dan simpul v 8 bukan anggota matching M sekaligus bukan anggota matching ((G\M) (G\ )), oleh karena itu dihapus. Selanjutnya diperoleh H= G( ) seperti Gambar 3.5.

6 26 Gambar 3.5 H=G( ) Lemma 3.1: Misalkan M dan adalah dua matching yang berbeda pada G, H = G ( ), dengan menunjukkan beda simetris dari M dan. Setiap komponen dari H pasti berkaitan dengan salah satu dari ketiga bentuk di bawah ini: 1. Simpul terisolasi. 2. Siklus (M, M )-alternating dengan orde genap. 3. Lintasan (M, M )-alternating. (Junming Xu, 2003: ) Bukti:

7 27 Misalkan V adalah himpunan simpul dan E adalah himpunan rusuk pada graf G dengan M dan adalah dua matching yang berbeda, maka akan terdapat tiga kasus: 1. Simpul yang berinsiden dengan rusuk atau rusuk (G\M) (G\ ) tetapi tidak berinsiden dengan matching M maupun, maka pada graf H simpul tersebut merupakan simpul terisolasi. Gambar 3.6 Graf G dengan dua matching yaitu matching M (ditandai dengan garis tebal) dan matching (ditandai dengan garis putus-putus)

8 28 Gambar 3.7 H = G ( ) 2. Andaikan P adalah komponen dari H. Dalam hal ini. Jika semua simpul pada P mempunyai derajat dua, maka masing-masing simpulnya berinsiden dengan satu rusuk pada M dan satu rusuk pada. Maka dapat disimpulkan bahwa siklus (M, M )-alternating dengan orde genap. 3. Ada x V(P) sedemikian hingga deg H (x) = 1. Maka terdapat paling sedikit satu simpul misalkan saja simpul y, dengan derajat satu selain simpul x. Ketika (P) 2, P adalah lintasan yang menghubungkan x dan y. Simpulsimpul internalnya (jika ada) merupakan simpul berderajat dua, maka P adalah Lintasan (M, M )-alternating.

9 29 Contoh 3.2: 1. Perhatikan Gambar 3.6 dan Gambar 3.7. Simpul v 2,v 4,v 9 pada graf G menjadi simpul terisolasi pada graf H. 2. Pada Gambar 3.7, v 1 v 7 v 3 v 10 adalah lintasan (M, M )-alternating. 3. Pada Gambar 3.7, v 5 v 8 v 6 v 11 v 5 adalah siklus (M, M )-alternating dengan orde genap. Teorema 3.1 (Teorema Berge): Matching M pada graf G adalah matching maksimum jika dan hanya jika G tidak mengandung lintasan M-augmenting (Chartrand and Lesniak, 1996: 259). Bukti: ( ) Akan dibuktikan dengan kontradiksi. Misalkan M adalah matching maksimum pada graf G dan terdapat lintasan M-augmenting P. Dalam hal ini, P haruslah memiliki jumlah rusuk yang ganjil, karena agar suatu lintasan P merupakan lintasan M-augmenting, setiap satu rusuk yang merupakan matching M harus berajasen dengan dua rusuk lainnya yang bukan matching (E(G)\M). Untuk lebih jelasnya, misalkan lintasan M-augmenting P=v 0 v 1 v 2 v k- 1v k. Perhatikan bahwa k jumlah rusuk berjumlah ganjil, karena v 0 dan v k

10 30 unsarated M, artinya v 0 v 1 dan v k-1 v k harus bukan anggota matching M. Selanjutnya, definisikan himpunan rusuk (G) dengan = (M- {v 1 v 2, v 3 v 4,, v k-2 v k-1 }) { v 0 v 1, v 2 v 3,, v k-1 v k }, maka merupakan matching pada graf G dengan nilai. Hal ini kontradiksi dengan M adalah matching maksimum. Oleh karena itu, jika M adalah matching maksimum pada graf G, maka G tidak mungkin memiliki lintasan M-augmenting. ( ) Akan dibuktikan dengan kontradiksi. Misalkan M bukan matching maksimum dan adalah matching maksimum di G. Akibatnya. Definisikan, H=G( ) dengan menunjukkan beda simetri di M dan. Dari pembuktian lemma 3.1, diperoleh setiap simpul di H berderajat 1 atau 2, karena setiap simpul di H berinsiden dengan paling banyak satu rusuk di M dan satu rusuk di. Dengan demikian, komponen H adalah lintasan yang rusuknya bergantian di M dan atau siklus dengan banyak rusuknya adalah genap. Karena dimisalkan sebagai matching maksimum, dari penjelasan sebelumnya diperoleh. Akibatnya, H mempunyai lebih banyak rusuk dibandingkan rusuk M. Sehingga lintasan P di H yang rusuk awal dan rusuk akhirnya adalah anggota dari. Dengan kata lain simpul awal serta simpul akhir dari

11 31 lintasan P merupakan M-unsaturated. Maka lintasan P adalah lintasan M-augmenting. Kita peroleh pernyataan, jika M bukan matching maksimum di G maka G mengandung lintasan M-augmenting. Pernyataan ini ekivalen dengan jika G tidak mengandung lintasan M-augmenting, maka M adalah matching maksimum di G. Seperti yang telah dijelaskan sebelumnya, algoritma Kuhn-Munkres dapat direpresentasikan dengan graf bipartit. Representasi algoritma Kuhn-Munkres pada graf bipartit melibatkan penerapan matching, maka akan dibahas mengenai matching pada graf bipartit. 3.2 Matching Pada Graf Bipartit Sebelum membahas lebih jauh mengenai matching pada graf bipartit, akan dijelaskan dulu mengenai himpunan persekitaran. Misalkan terdapat graf sebarang G=(V,E), dengan V adalah himpunan simpul pada G dan S merupakan subset dari V(G), maka himpunan persekitaran dari S (neighbour set of S) adalah himpunan semua simpul yang berajasen dengan simpul-simpul di S. Himpunan persekitaran biasanya dinotasikan dengan N G (S). Teorema 3.2 (Teorema Hall):

12 32 Misalkan G adalah graf bipartit dengan bipartisi {X,Y}. Maka G mengandung sebuah matching yang saturates untuk setiap simpul di X jika dan hanya jika untuk setiap (Junming Xu, 2003: 212). Bukti: ( ) Misalkan G mengandung matching M yang saturates pada tiap simpul di X dan S adalah subset dari X. Karena tiap simpul pada S matched di bawah M dengan simpul berbeda di, maka diperoleh. ( ) Akan dibuktikan dengan kontradiksi. Misalkan G adalah graf bipartit yang memenuhi untuk setiap, tetapi G tidak mempunyai matching yang saturates pada setiap simpul dari X. Misalkan M* adalah matching maksimum pada G, maka akan terdapat simpul u di X yang merupakan unsaturated M*. Selanjutnya definisikan himpunan simpul di G dengan Z={v V(G): terdapat lintasan M*-alternating dari u ke v}, dengan kata lain Z adalah himpunan semua simpul yang terhubung ke u oleh lintasan M*- alternating. Karena M* adalah matching maksimum dan u unsaturated M*, dari teorema 3.1 (teorema Berge) diperoleh u adalah satu-satunya simpul yang unsaturated M* pada Z.

13 33 Misalkan S = Z X dan T = Z Y. Maka diperoleh simpul pada S\{u} matched di bawah M* dengan simpul pada T. Sehingga dan T subset dari. Lebih tepat lagi N G (S)=T karena setiap simpul di N G (S) terhubung ke u oleh suatu lintasan M*-alternating. Tetapi jadi diperoleh dan N G (S)=T, hal ini kontradiksi dengan pernyataan Maka haruslah G memiliki matching yang saturates terhadap setiap simpul di X. Akibat 1 (Teorema Marriage, Forbenius): Graf bipartit G dengan bipartisi {X,Y}, memiliki matching sempurna jika dan hanya jika dan untuk setiap atau Y (Junming Xu, 2003: 213). Akibat 2 (König): Jika G adalah graf bipartit k-regular dengan k > 0, maka G memiliki sebuah matching sempurna (Junming Xu, 2003: 213). Bukti: Misalkan G adalah graf bipartit k-regular dengan bipartisi {X,Y}. Karena G adalah k-regular, maka. Karena k>0, maka.

14 34 Misalkan S subset dari X, dengan E 1 adalah himpunan rusuk yang berinsiden dengan simpul di S dan E 2 adalah himpunan simpul yang berinsiden dengan simpul di N G (S). Maka berdasarkan definisi N G (S) diperoleh E 1 subset dari E 2 oleh karena itu diperoleh menunjukan. Selanjutnya hal ini, maka berdasarkan teorema Teorema 3.2 (teorema Hall) diperoleh pernyataan bahwa G memiliki matching M yang saturates terhadap setiap simpul di X, dan karena, maka M adalah matching sempurna.

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan himpunan dan beberapa definisi yang berkaitan dengan himpunan, serta konsep dasar dan teori graf yang akan digunakan pada bab selanjutnya. 2.1 Himpunan

Lebih terperinci

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID DUA. Oleh: Kartika Yulianti, S.Pd., M.Si.

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID DUA. Oleh: Kartika Yulianti, S.Pd., M.Si. HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID DUA Oleh: Kartika Yulianti, S.Pd., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf.

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. III BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk 00) Konsep ini merupakan pengembangan dari konsep dimensi partisi pewarnaan graf Pewarnaan titik pada

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat III. BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.00). Konsep ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. Pewarnaan

Lebih terperinci

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf

Lebih terperinci

Assignment Problem. kolom. Di dalam matriks A yang berukuran m baris dan n kolom (m x n), adalah elemen matriks pada baris ke- dan kolom ke-.

Assignment Problem. kolom. Di dalam matriks A yang berukuran m baris dan n kolom (m x n), adalah elemen matriks pada baris ke- dan kolom ke-. Penerapan Hungarian Method untuk Menyelesaikan Personnel Assignment Problem Dian Perdhana Putra - NIM : 13507096 Program Studi Teknik Informatika Insitut Teknologi Bandung Jalan Ganesha 10 Bandung, email:

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi II. TINJAUAN PUSTAKA Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi pada suatu graf sebagai landasan teori pada penelitian ini.. Konsep Dasar Graf Pada bagian ini akan

Lebih terperinci

AUTOMORFISME GRAF BINTANG DAN GRAF LINTASAN

AUTOMORFISME GRAF BINTANG DAN GRAF LINTASAN AUTOMORFISME GRAF BINTANG DAN GRAF LINTASAN Reni Tri Damayanti Mahasiswa Pascasarjana Jurusan Matematika Universitas Brawijaya Email: si_cerdazzz@rocketmail.com ABSTRAK Salah satu topik yang menarik untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini.

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini. BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori dari penelitian ini. 2.1 Konsep Dasar Graf Beberapa konsep dasar

Lebih terperinci

BAB V PENERAPAN 5.1 PERMASALAHAN PENUGASAN PEGAWAI. Dalam suatu perusahaan, n pekerja-pekerja X 1, X 2,... X 3 tersedia untuk

BAB V PENERAPAN 5.1 PERMASALAHAN PENUGASAN PEGAWAI. Dalam suatu perusahaan, n pekerja-pekerja X 1, X 2,... X 3 tersedia untuk BAB V PENERAPAN 5.1 PERMASALAHAN PENUGASAN PEGAWAI Dalam suatu perusahaan, n pekerja-pekerja X 1, X 2,... X 3 tersedia untuk mengerejakan n pekerjaan-pekerjaan Y 1, Y 2,... Y 3, masing-masing pekerja terkualifikasi

Lebih terperinci

v 3 e 2 e 4 e 6 e 3 v 4

v 3 e 2 e 4 e 6 e 3 v 4 5 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan dimensi partisi graf sebagai landasan teori dari penelitian ini... Konsep Dasar Graf Pada bagian ini akan diberikan

Lebih terperinci

ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin

ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin hasma_ba@yahoo.com Abstract Graf yang memuat semua siklus dari yang terkecil sampai

Lebih terperinci

II. TINJAUAN PUSTAKA. kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini

II. TINJAUAN PUSTAKA. kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini 5 II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf, graf pohon dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini 2.1 KONSEP DASAR GRAF Konsep

Lebih terperinci

Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda

Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda Vol. 9, No.2, 114-122, Januari 2013 Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda Hasmawati 1 Abstrak Graf yang memuat semua siklus dari yang terkecil sampai ke

Lebih terperinci

Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik

Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik BAB II DASAR TEORI 2.1 Teori Dasar Graf 2.1.1 Graf dan Graf Sederhana Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik yang tak kosong dan E adalah himpunan sisi. Untuk selanjutnya,

Lebih terperinci

BAB III PELABELAN KOMBINASI

BAB III PELABELAN KOMBINASI 1 BAB III PELABELAN KOMBINASI 3.1 Konsep Pelabelan Kombinasi Pelabelan kombinasi dari suatu graf dengan titik dan sisi,, graf G, disebut graf kombinasi jika terdapat fungsi bijektif dari ( himpunan titik

Lebih terperinci

II. KONSEP DASAR GRAF DAN GRAF POHON. Graf G adalah himpunan terurut ( V(G), E(G)), dengan V(G) menyatakan

II. KONSEP DASAR GRAF DAN GRAF POHON. Graf G adalah himpunan terurut ( V(G), E(G)), dengan V(G) menyatakan II. KONSEP DASAR GRAF DAN GRAF POHON 2.1 Konsep Dasar Graf Teori dasar mengenai graf yang akan digunakan dalam penelitian ini diambil dari Deo (1989). Graf G adalah himpunan terurut ( V(G), E(G)), dengan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Kompetisi Global yang kian hari kian meningkat memaksa perusahaan untuk menggunakan aset intelektual mereka dengan lebih baik. Berbagai metode digunakan demi meningkatkan

Lebih terperinci

MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun

MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun MA3051 Pengantar Teori Graf Semester 1 2013/2014 Pengajar: Hilda Assiyatun Bab 1: Graf dan subgraf Graf G : tripel terurut VG, E G, ψ G ) V G himpunan titik (vertex) E G himpunan sisi (edge) ψ G fungsi

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel BAB 2 LANDASAN TEORI 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel Teori Dasar Graf Graf G adalah pasangan himpunan (V,E) di mana V adalah himpunan dari vertex

Lebih terperinci

BAB II LANDASAN TEORI. Definisi 2.1.1: Graf (C. Vasudev, 2006:1) Sebuah graf G terdiri atas sebuah himpunan tak kosong V(G) = {v1, v2, }

BAB II LANDASAN TEORI. Definisi 2.1.1: Graf (C. Vasudev, 2006:1) Sebuah graf G terdiri atas sebuah himpunan tak kosong V(G) = {v1, v2, } BAB II LANDASAN TEORI 2.1. Teori Graf Definisi 2.1.1: Graf (C. Vasudev, 2006:1) Sebuah graf G terdiri atas sebuah himpunan tak kosong V(G) = {v1, v2, } dimana setiap elemen himpunan V disebut sebagai simpul

Lebih terperinci

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik 2. TINJAUAN PUSTAKA 2.1 Konsep Dasar Graf Pada bagian ini akan diberikan konsep dasar graf yang diambil dari buku Chartrand dan Zhang (2005) yaitu sebagai berikut: Suatu Graf G adalah suatu pasangan himpunan

Lebih terperinci

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang BAB III KONSEP DASAR TEORI GRAF Teori graf adalah salah satu cabang matematika yang terus berkembang dengan pesat. Teori ini sangat berguna untuk mengembangkan model-model terstruktur dalam berbagai keadaan.

Lebih terperinci

3.1 Beberapa Nilai Dimensi Partisi pada Suatu Graf. Dalam dimensi partisi suatu graf, terdapat kelas graf yang nilai dimensi partisinya

3.1 Beberapa Nilai Dimensi Partisi pada Suatu Graf. Dalam dimensi partisi suatu graf, terdapat kelas graf yang nilai dimensi partisinya BAB III DIMENSI PARTISI n 1 3.1 Beberapa Nilai Dimensi Partisi pada Suatu Graf Dalam dimensi partisi suatu graf, terdapat kelas graf yang nilai dimensi partisinya cukup mudah atau sederhana. Kelas graf

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini. 6 II. LANDASAN TEORI Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada sub bab ini akan diberikan

Lebih terperinci

Gambar 6. Graf lengkap K n

Gambar 6. Graf lengkap K n . Jenis-jenis Graf Tertentu Ada beberapa graf khusus yang sering dijumpai. Beberapa diantaranya adalah sebagai berikut. a. Graf Lengkap (Graf Komplit) Graf lengkap ialah graf sederhana yang setiap titiknya

Lebih terperinci

KONSEP DASAR GRAF DAN GRAF POHON. Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf

KONSEP DASAR GRAF DAN GRAF POHON. Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf II. KONSEP DASAR GRAF DAN GRAF POHON Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada bagian ini

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi graf,

Lebih terperinci

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si.

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si. HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU Oleh: Kartika Yulianti, S.Pd., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA

Lebih terperinci

BAB I PENDAHULUAN. Kompetisi Global yang kian hari kian meningkat memaksa perusahaan

BAB I PENDAHULUAN. Kompetisi Global yang kian hari kian meningkat memaksa perusahaan BAB I PENDAHULUAN 1.1 Latar Belakang Kompetisi Global yang kian hari kian meningkat memaksa perusahaan untuk menggunakan aset intelektual mereka dengan lebih baik. Berbagai metode digunakan demi meningkatkan

Lebih terperinci

Misalkan dipunyai graf G, H, dan K berikut.

Misalkan dipunyai graf G, H, dan K berikut. . Pewarnaan Graf a. Pewarnaan Titik (Vertex Colouring) Misalkan G graf tanpa loop. Suatu pewarnaan-k (k-colouring) untuk graf G adalah suatu penggunaan sebagian atau semua k warna untuk mewarnai semua

Lebih terperinci

Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah

Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah BAB II KAJIAN TEORI II.1 Teori-teori Dasar Graf II.1.1 Definisi Graf Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah himpunan tak kosong dari titik graf G, dan E, himpunan sisi

Lebih terperinci

MENJAWAB TEKA-TEKI LANGKAH KUDA PADA BEBERAPA UKURAN PAPAN CATUR DENGAN TEORI GRAPH. Oleh Abdussakir

MENJAWAB TEKA-TEKI LANGKAH KUDA PADA BEBERAPA UKURAN PAPAN CATUR DENGAN TEORI GRAPH. Oleh Abdussakir MENJAWAB TEKA-TEKI LANGKAH KUDA PADA BEBERAPA UKURAN PAPAN CATUR DENGAN TEORI GRAPH Oleh Abdussakir Abstrak Teka-teki langkah kuda yang dimaksud dalam tulisan ini adalah menentukan langkah kuda agar dapat

Lebih terperinci

ALTERNATIF PEMBUKTIAN PENGEMBANGAN TEOREMA DIRAC UNTUK GRAF BERORDE KURANG ATAU SAMA DENGAN SEPULUH

ALTERNATIF PEMBUKTIAN PENGEMBANGAN TEOREMA DIRAC UNTUK GRAF BERORDE KURANG ATAU SAMA DENGAN SEPULUH ALTERNATIF PEMBUKTIAN PENGEMBANGAN TEOREMA DIRAC UNTUK GRAF BERORDE KURANG ATAU SAMA DENGAN SEPULUH Hasmawati, Jusmawati Massalesse, Hendra, Muhamad Hasbi Jurusan Matematika FMIPA Universitas Hasanudin

Lebih terperinci

Matematik tika Di Disk i r t it 2

Matematik tika Di Disk i r t it 2 Matematika tik Diskrit it 2 Teori Graph Teori Graph 1 Kelahiran Teori Graph Masalah Jembatan Konigsberg g : Mulai dan berakhir pada tempat yang sama, bagaimana caranya untuk melalui setiap jembatan tepat

Lebih terperinci

BAB I PENDAHULUAN. Salah satu materi dalam graf adalah pohon (tree). Pohon didefinisikan

BAB I PENDAHULUAN. Salah satu materi dalam graf adalah pohon (tree). Pohon didefinisikan BAB I PENDAHULUAN A. Latar Belakang Masalah Salah satu materi dalam graf adalah pohon (tree). Pohon didefinisikan sebagai graf terhubung yang tidak memuat sikel (Chartrand dan Lesniak, 1996:57). Teori

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Suatu graf G adalah suatu himpunan berhingga tak kosong dari objek-objek yang disebut verteks (titik/simpul) dengan suatu himpunan yang anggotanya

Lebih terperinci

EDGE-MAGIC TOTAL LABELING PADA BEBERAPA JENIS GRAPH

EDGE-MAGIC TOTAL LABELING PADA BEBERAPA JENIS GRAPH LAPORAN PENELITIAN MANDIRI EDGE-MAGIC TOTAL LABELING PADA BEBERAPA JENIS GRAPH Oleh Abdussakir, M.Pd UNIVERSITAS ISLAM NEGERI MALANG FAKULTAS SAINS DAN TEKNOLOGI JURUSAN MATEMATIKA MEI 005 EDGE-MAGIC TOTAL

Lebih terperinci

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga TEORI GRAPH Graph Graph Graph digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar berikut ini sebuah graph yang menyatakan peta jaringan jalan raya yang

Lebih terperinci

Graf dan Operasi graf

Graf dan Operasi graf 6 Bab II Graf dan Operasi graf Dalam subbab ini akan diberikan konsep dasar, definisi dan notasi pada teori graf yang dipergunakan dalam penulisan disertasi ini. Konsep dasar tersebut ditulis sesuai dengan

Lebih terperinci

Konsep Dasar dan Tinjauan Pustaka

Konsep Dasar dan Tinjauan Pustaka Bab II Konsep Dasar dan Tinjauan Pustaka Pembahasan bilangan Ramsey pada bab-bab berikutnya menggunakan definisi, notasi, dan konsep dasar teori graf yang sesuai dengan rujukan Chartrand dan Lesniak (1996),

Lebih terperinci

`BAB II LANDASAN TEORI

`BAB II LANDASAN TEORI `BAB II LANDASAN TEORI Landasan teori yang digunakan sebagai materi pendukung untuk menyelesaikan permasalahan yang dibahas dalam Bab IV adalah teori graf, subgraf, subgraf komplit, graf terhubung, graf

Lebih terperinci

BAB 2. Konsep Dasar. 2.1 Definisi graf

BAB 2. Konsep Dasar. 2.1 Definisi graf BAB 2 Konsep Dasar 21 Definisi graf Suatu graf G = (V(G), E(G)) didefinisikan sebagai pasangan himpunan 2 titik V(G) dan himpunan sisi E(G) dengan V(G) dan E(G) [ VG ( )] Sebagai contoh, graf G 1 = (V(G

Lebih terperinci

BAB III PELABELAN TOTAL SISI-AJAIB SUPER. 3.1 Pelabelan Total Sisi-Ajaib Super Pada Graf Lintasan

BAB III PELABELAN TOTAL SISI-AJAIB SUPER. 3.1 Pelabelan Total Sisi-Ajaib Super Pada Graf Lintasan BAB III PELABELAN TOTAL SISI-AJAIB SUPER. Pelabelan Total Sisi-Ajaib Super Pada Graf Lintasan Sebuah graf lintasan P n dapat diperoleh dari sebuah graf lingkaran C n dengan cara menghilangkan satu buah

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 DEKOMPOSISI GRAF SIKEL, GRAF RODA, GRAF GIR DAN GRAF PERSAHABATAN Nur Rahmawati Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya, e-mail liebie0711@gmail.com

Lebih terperinci

BAB II Graf dan Pelabelan Total Sisi-Ajaib Super

BAB II Graf dan Pelabelan Total Sisi-Ajaib Super BAB II Graf dan Pelabelan Total Sisi-Ajaib Super 2.1 Graf dan Beberapa Definisi Dasar Graf G=(V,E) didefinisikan sebagai pasangan terurut himpunan berhingga dan tak hampa V dan himpunan E. Himpunan V dinamakan

Lebih terperinci

PELABELAN GRAF SIKLUS SEDERHANA UNTUK MENGKONSTRUKSI VERTEX-MAGIC GRAPH

PELABELAN GRAF SIKLUS SEDERHANA UNTUK MENGKONSTRUKSI VERTEX-MAGIC GRAPH PELABELAN GRAF SIKLUS SEDERHANA UNTUK MENGKONSTRUKSI VERTEX-MAGIC GRAPH MAKALAH Disusun untuk Melengkapi salah satu Tugas Mata Kuliah Seminar Pendidikan Matematika Semester Genap Tahun Akademik 006/007

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan beberapa konsep dasar yang berkaitan dengan permasalahan, seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. 2.1 Graf Graf

Lebih terperinci

Bab 2. Teori Dasar. 2.1 Definisi Graf

Bab 2. Teori Dasar. 2.1 Definisi Graf Bab 2 Teori Dasar Pada bagian ini diberikan definisi-definisi dasar dalam teori graf berikut penjabaran mengenai kompleksitas algoritma beserta contohnya yang akan digunakan dalam tugas akhir ini. Berikut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan konsep dasar dalam teori graf dan pelabelan graf yang akan digunakan pada bab selanjutnya. 2.1 Definisi dan Istilah Dalam Teori Graf

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Logika Fuzzy Logika fuzzy pertama kali dikembangkan oleh Prof. Lotfi A. Zadeh, seorang peneliti dari Universitas California, pada tahun 1960-an. Logika fuzzy dikembangkan dari

Lebih terperinci

REPRESENTASI ALGORITMA KUHN-MUNKRES PADA GRAF BIPARTIT UNTUK MENYELESAIKAN OPTIMAL ASSIGNMENT PROBLEM SKRIPSI DESNI RAHMALINA.

REPRESENTASI ALGORITMA KUHN-MUNKRES PADA GRAF BIPARTIT UNTUK MENYELESAIKAN OPTIMAL ASSIGNMENT PROBLEM SKRIPSI DESNI RAHMALINA. REPRESENTASI ALGORITMA KUHN-MUNKRES PADA GRAF BIPARTIT UNTUK MENYELESAIKAN OPTIMAL ASSIGNMENT PROBLEM SKRIPSI DESNI RAHMALINA. P 070823014 PROGRAM STUDI SARJANA MATEMATIKA DEPARTEMEN MATEMATIKA FAKULTAS

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan pertumbuhannya, setiap organisasi baik organisasi bisnis (perusahaan), industri, jasa dan sebagainya, menghadapi kenyataan bahwa sumber daya

Lebih terperinci

PENGETAHUAN DASAR TEORI GRAF

PENGETAHUAN DASAR TEORI GRAF PENGETAHUAN DASAR TEORI GRAF 1 Sejarah Singkat dan Beberapa Pengertian Dasar Teori Graf Teori graf lahir pada tahun 1736 melalui makalah tulisan Leonard Euler seorang ahli matematika dari Swiss. Euler

Lebih terperinci

KLASIFIKASI GRAF PETERSEN BERBILANGAN KROMATIK LOKASI EMPAT ATAU LIMA

KLASIFIKASI GRAF PETERSEN BERBILANGAN KROMATIK LOKASI EMPAT ATAU LIMA KLASIFIKASI GRAF PETERSEN BERBILANGAN KROMATIK LOKASI EMPAT ATAU LIMA (Tesis) Oleh : Devriyadi Saputra S NPM. 1427031001 MAGISTER MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG

Lebih terperinci

BILANGAN DOMINASI LOKASI PERSEKITARAN TERBUKA PADA GRAF TREE

BILANGAN DOMINASI LOKASI PERSEKITARAN TERBUKA PADA GRAF TREE BILANGAN DOMINASI LOKASI PERSEKITARAN TERBUKA PADA GRAF TREE Riko Andrian 1, Lucia Ratnasari 2, R. Heru Tjahjana 3 1,2,3 Program Studi Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, S.H.

Lebih terperinci

STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA

STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA Anis Kamilah Hayati NIM : 13505075 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada Bagian ini akan dijelaskan beberapa definisi dan teorema terkait graf, matriks adjency, terhubung, primitifitas, dan scrambling index sebagai landasan teori yang menjadi acuan

Lebih terperinci

Oleh : Rindi Eka Widyasari NRP Dosen pembimbing : Dr. Darmaji, S.Si., M.T.

Oleh : Rindi Eka Widyasari NRP Dosen pembimbing : Dr. Darmaji, S.Si., M.T. Study of Total Chromatic Number of -free and Windmill Graphs Oleh : Rindi Eka Widyasari NRP 1208100024 Dosen pembimbing : Dr. Darmaji, S.Si., M.T. JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE. Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema

BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE. Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema sebagai landasan berfikir dalam melakukan penelitian ini dan akan mempermudah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan

BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan 5 BAB II TINJAUAN PUSTAKA A. Teori Graf 1. Dasar-dasar Graf Graf G didefinisikan sebagai pasangan himpunan (V, E) ditulis dengan notasi G = (V, E), dimana V adalah himpunan titik yang tidak kosong (vertex)

Lebih terperinci

Edge-Magic Total Labeling pada Graph mp 2 (m bilangan asli ganjil) Oleh Abdussakir

Edge-Magic Total Labeling pada Graph mp 2 (m bilangan asli ganjil) Oleh Abdussakir Jurnal Saintika (ISSN 1693-640X) Edisis Khusus Dies Natalis UIN Malang, Juni 005. Halaman -7 Edge-Magic Total Labeling pada Graph mp (m bilangan asli ganjil) Oleh Abdussakir Abstrak Pelabelan total sisi

Lebih terperinci

I.1 Latar Belakang Masalah

I.1 Latar Belakang Masalah Bab I Pendahuluan I.1 Latar Belakang Masalah Teori Ramsey adalah suatu area penelitian dalam teori graf yang sedang berkembang pesat dan mempunyai banyak aplikasi. Dalam makalah Rosta (2004) disebutkan

Lebih terperinci

Pelabelan Product Cordial Graf Gabungan pada Beberapa Graf Sikel dan Shadow Graph Sikel

Pelabelan Product Cordial Graf Gabungan pada Beberapa Graf Sikel dan Shadow Graph Sikel Pelabelan Product Cordial Graf Gabungan pada Beberapa Graf Sikel dan Ana Mawati*), Robertus Heri Sulistyo Utomo S.Si, M.Si*), Siti Khabibah S.Si, M.Sc*) Matematika, Fakultas Sains dan Matematika, UNDIP,

Lebih terperinci

HUTAN DAN SIKEL PADA GRAF FUZZY

HUTAN DAN SIKEL PADA GRAF FUZZY HUTAN DAN SIKEL PADA GRAF FUZZY Aisyahtin Afidah Arifai 1, Dwi Juniati 2 1 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya, 60231 2 Jurusan Matematika, Fakultas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Konsep Dasar Graph Sebelum sampai pada pendefenisian masalah lintasan terpendek, terlebih dahulu pada bagian ini akan diuraikan mengenai konsep-konsep dasar dari model graph dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Untuk menjelaskan pelabelan analytic mean pada graf bayangan dari graf bintang K 1,n dan graf bayangan dari graf bistar B n,n perlu adanya beberapa teori dasar yang akan menunjang

Lebih terperinci

Bilangan Kromatik Graf Hasil Amalgamasi Dua Buah Graf

Bilangan Kromatik Graf Hasil Amalgamasi Dua Buah Graf JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Print) 1 Bilangan Kromatik Graf Hasil Amalgamasi Dua Buah Graf Ridwan Ardiyansah dan Darmaji Jurusan Matematika, Fakultas Matematika

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Konsep Dasar

Bab 2. Landasan Teori. 2.1 Konsep Dasar Bab 2 Landasan Teori Pada bab ini akan diuraikan konsep dasar dan teori graf yang berhubungan dengan topik penelitian ini, termasuk didalamnya mengenai pelabelan total tak teratur titik dan total vertex

Lebih terperinci

Bilangan Ramsey untuk Kombinasi Bintang dan Beberapa Graf Tertentu

Bilangan Ramsey untuk Kombinasi Bintang dan Beberapa Graf Tertentu Bab III Bilangan Ramsey untuk Kombinasi Bintang dan Beberapa Graf Tertentu Kajian penentuan bilangan Ramsey untuk bintang dan bintang telah tuntas, dilakukan Burr dkk. (1973). Penentuan bilangan Ramsey

Lebih terperinci

Bilangan Ramsey untuk Graf Bintang Genap Terhadap Roda Genap

Bilangan Ramsey untuk Graf Bintang Genap Terhadap Roda Genap Vol.4, No., 49-53, Januari 08 Bilangan Ramsey untuk Graf Bintang Genap erhadap Roda Genap Hasmawati Abstrak Untuk sebarang graf G dan H, bilangan Ramsey R(G,H) adalah bilangan asli terkecil n sedemikian

Lebih terperinci

PENGERTIAN GRAPH. G 1 adalah graph dengan V(G) = { 1, 2, 3, 4 } E(G) = { (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) } Graph 2

PENGERTIAN GRAPH. G 1 adalah graph dengan V(G) = { 1, 2, 3, 4 } E(G) = { (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) } Graph 2 PENGERTIAN GRAPH 1. DEFINISI GRAPH Graph G adalah pasangan terurut dua himpunan (V(G), E(G)), V(G) himpunan berhingga dan tak kosong dari obyek-obyek yang disebut himpunan titik (vertex) dan E(G) himpunan

Lebih terperinci

DIGRAF EKSENTRIK DARI GRAF STAR DAN GRAF WHEEL

DIGRAF EKSENTRIK DARI GRAF STAR DAN GRAF WHEEL DIGRAF EKSENTRIK DARI GRAF STAR DAN GRAF WHEEL skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Rido Oktosa 4150406504 JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan

II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan 5 II. TINJAUAN PUSTAKA Definisi 2.1 Graf (Deo,1989) Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan tak kosong dengan elemen-elemennya disebut vertex, sedangkan E(G)

Lebih terperinci

LOGIKA DAN ALGORITMA

LOGIKA DAN ALGORITMA LOGIKA DAN ALGORITMA DASAR DASAR TEORI GRAF Kelahiran Teori Graf Sejarah Graf : masalah jembatan Königsberg (tahun 736) C A D B Gbr. Masalah Jembatan Königsberg Graf yang merepresentasikan jembatan Königsberg

Lebih terperinci

BAB I PENDAHULUAN. dari suatu graf G disebut himpunan titik G, dinotasikan dengan V(G) dan

BAB I PENDAHULUAN. dari suatu graf G disebut himpunan titik G, dinotasikan dengan V(G) dan BAB I PENDAHULUAN 1.1 Latar Belakang Teori graf merupakan salah satu bidang bahasan matematika yang mempelajari tentang himpunan titik yang dihubungkan oleh himpunan sisi. Suatu Graf G terdiri atas himpunan

Lebih terperinci

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika Discrete Mathematics & Its Applications Chapter 10 : Graphs Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika 16/12/2015 2 Sub Topik A. Graf dan Model Graf B. Terminologi Dasar Graf dan Jenis

Lebih terperinci

INTRODUCTION TO GRAPH THEORY LECTURE 2

INTRODUCTION TO GRAPH THEORY LECTURE 2 INTRODUCTION TO GRAPH THEORY LECTURE Operasi-Operasi Pada Graph Union Misal G dan H adalah dua graph yang saling asing. Union G H adalah graph dengan V(G H)=V(G) V(H) dan E(G H)=E(G) E(H). Join Join dari

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Graf

Bab 2 TEORI DASAR. 2.1 Graf Bab 2 TEORI DASAR Pada bab ini akan dipaparkan beberapa definisi dasar dalam Teori Graf yang kemudian dilanjutkan dengan definisi bilangan kromatik lokasi, serta menyertakan beberapa hasil penelitian sebelumnya.

Lebih terperinci

KONSTRUKSI PELABELAN SISI AJAIB SUPER PADA GRAF ULAT

KONSTRUKSI PELABELAN SISI AJAIB SUPER PADA GRAF ULAT Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 227 234. KONSTRUKSI PELABELAN SISI AJAIB SUPER PADA GRAF ULAT Okki Darmawan, Nilamsari Kusumastuti, Yundari INTISARI Graf

Lebih terperinci

DIMENSI METRIK PADA GRAF LINTASAN, GRAF KOMPLIT, GRAF SIKEL, GRAF BINTANG DAN GRAF BIPARTIT KOMPLIT

DIMENSI METRIK PADA GRAF LINTASAN, GRAF KOMPLIT, GRAF SIKEL, GRAF BINTANG DAN GRAF BIPARTIT KOMPLIT DIMENSI METRIK PADA GRAF LINTASAN, GRAF KOMPLIT, GRAF SIKEL, GRAF BINTANG DAN GRAF BIPARTIT KOMPLIT Septiana Eka R. Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,Universitas Negeri

Lebih terperinci

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN 2301-9115 GRAF TOTAL SUATU MODUL BERDASARKAN SUBMODUL SINGULER Dian Ambarsari (S1 Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

DIMENSI METRIK, MULTIPLISITAS SIKEL, SERTA RADIUS DAN DIAMETER GRAF KOMUTING DAN NONKOMUTING GRUP DIHEDRAL

DIMENSI METRIK, MULTIPLISITAS SIKEL, SERTA RADIUS DAN DIAMETER GRAF KOMUTING DAN NONKOMUTING GRUP DIHEDRAL ALJABAR/PENELITIAN DASAR LAPORAN AKHIR PENELITIAN PENGUATAN PROGRAM STUDI DIMENSI METRIK, MULTIPLISITAS SIKEL, SERTA RADIUS DAN DIAMETER GRAF KOMUTING DAN NONKOMUTING GRUP DIHEDRAL Oleh: Dr. ABDUSSAKIR,

Lebih terperinci

BILANGAN KROMATIK LOKASI DARI GRAF ULAT

BILANGAN KROMATIK LOKASI DARI GRAF ULAT Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 1 6 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI DARI GRAF ULAT AIDILLA DARMAWAHYUNI, NARWEN Program Studi Matematika, Fakultas Matematika

Lebih terperinci

DIMENSI METRIK PADA HASIL OPERASI KORONA DUA BUAH GRAF

DIMENSI METRIK PADA HASIL OPERASI KORONA DUA BUAH GRAF JURNAL BUANA MATEMATIKA Vol 7, No 2, Tahun 2017 ISSN 2088-3021 (media cetak) ISSN 2598-8077 (media online) DIMENSI METRIK PADA HASIL OPERASI KORONA DUA BUAH GRAF Silviana Maya P 1, Syarifuddin N Kapita

Lebih terperinci

Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi

Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi Aplikasi Pewarnaan Graf pada Penjadwalan Pertandingan Olahraga Sistem Setengah Kompetisi Ryan Yonata (13513074) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Definisi Graf

Bab 2 LANDASAN TEORI. 2.1 Definisi Graf Bab 2 LANDASAN TEORI 2.1 Definisi Graf Suatu graf G terdiri dari himpunan tak kosong terbatas dari objek yang dinamakan titik dan himpunan pasangan (boleh kosong) dari titik G yang dinamakan sisi. Himpunan

Lebih terperinci

Graf. Bekerjasama dengan. Rinaldi Munir

Graf. Bekerjasama dengan. Rinaldi Munir Graf Bekerjasama dengan Rinaldi Munir Beberapa Aplikasi Graf Lintasan terpendek (shortest path) (akan dibahas pada kuliah IF3051) Persoalan pedagang keliling (travelling salesperson problem) Persoalan

Lebih terperinci

Digraph eksentris dari turnamen transitif dan regular (Eccentric digraph of transitive and regular tournaments)

Digraph eksentris dari turnamen transitif dan regular (Eccentric digraph of transitive and regular tournaments) Digraph eksentris dari turnamen transitif dan regular (Eccentric digraph of transitive and regular tournaments) Oleh : Hazrul Iswadi Departemen Matematika dan IPA (MIPA) Universitas Surabaya (UBAYA), Jalan

Lebih terperinci

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n. Oleh : Yogi Sindy Prakoso ( ) JURUSAN MATEMATIKA. Company

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n. Oleh : Yogi Sindy Prakoso ( ) JURUSAN MATEMATIKA. Company DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n Oleh : Yogi Sindy Prakoso (1206100015) JURUSAN MATEMATIKA Company FAKULTAS MATEMATIKA Click to DAN add ILMU subtitle PENGETAHUAN ALAM INSTITUT TEKNOLOGI

Lebih terperinci

Pewarnaan Graph. Modul 6 PENDAHULUAN

Pewarnaan Graph. Modul 6 PENDAHULUAN Modul 6 Pewarnaan Graph Dr. Nanang Priatna, M.Pd. M PENDAHULUAN odul 6 ini merupakan modul terakhir dari modul mata kuliah Teori Graph. Modul-modul sebelumnya membahas tentang Pengetahuan Dasar Teori Graph,

Lebih terperinci

KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3

KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3 Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 71 77 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3 FAIZAH, NARWEN Program Studi Matematika, Fakultas

Lebih terperinci

Graf Ajaib (Super) dengan Sisi Pendan

Graf Ajaib (Super) dengan Sisi Pendan 54 Bab IV Graf Ajaib (Super) dengan Sisi Pen Pada bab ini disajikan metode untuk membentuk graf ajaib (super) baru dari graf ajaib (super) yang sudah diketahui. Berdasarkan metode tersebut diperoleh graf

Lebih terperinci

Representasi Graph dan Beberapa Graph Khusus

Representasi Graph dan Beberapa Graph Khusus Modul 2 Representasi Graph dan Beberapa Graph Khusus Prof. Dr. Didi Suryadi, M.Ed. Dr. Nanang Priatna, M.Pd. W PENDAHULUAN alaupun representasi graph secara piktorial merupakan hal yang sangat menarik

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN Bab I merupakan pendahuluan dari kajian yang akan dilakukan. Pada bab ini akan dibahas mengenai latar belakang penulis dalam pemilihan judul kajian. Selain latar belakang, dijelaskan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN. Latar Belakang Masalah Seiring perkembangan zaman, maka perkembangan ilmu pengetahuan berkembang pesat, begitu pula dengan ilmu matematika. Salah satu cabang ilmu matematika yang memiliki

Lebih terperinci

MIDDLE PADA BEBERAPA GRAF KHUSUS

MIDDLE PADA BEBERAPA GRAF KHUSUS PELABELAN DAN PEMBENTUKAN GRAF MIDDLE PADA BEBERAPA GRAF KHUSUS skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Meliana Deta Anggraeni 4111409019

Lebih terperinci

Bilangan Terhubung-Total Pelangi untuk Beberapa Graf Amalgamasi

Bilangan Terhubung-Total Pelangi untuk Beberapa Graf Amalgamasi JURNAL SAINTIFIK VOL.4 NO. 1, JANUARI 2018 Bilangan Terhubung-Total Pelangi untuk Beberapa Graf Amalgamasi Arbain Universitas Sembilanbelas November Kolaka email: arbaindjingga@gmail.com Abstrak Semua

Lebih terperinci