(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I..

dokumen-dokumen yang mirip
TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM

BAB IV. PENGGUNAAN TURUNAN. Departemen Teknik Kimia Universitas Indonesia

KED PENGGUNAAN TURUNAN

Hendra Gunawan. 2 Oktober 2013

5. Aplikasi Turunan MA1114 KALKULUS I 1

PENGGUNAAN TURUNAN. Maksimum dan Minimum. Definisi. Andaikan S, daerah asal f, memuat titik c. Kita katakan bahwa:

10. TEOREMA NILAI RATA-RATA

G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel.

TKS 4003 Matematika II. Nilai Ekstrim. (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB III. TURUNAN

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

BAB 5 PENGGUNAAN TURUNAN

DASAR-DASAR ANALISIS MATEMATIKA

5.1 Menggambar grafik fungsi

Matematika Dasar NILAI EKSTRIM

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

TEOREMA UJI TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

TERAPAN TURUNAN. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 61

Turunan Fungsi. h asalkan limit ini ada.

MA3231 Analisis Real

PENGGUNAAN TURUNAN. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4

MA3231 Analisis Real

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

Nilai Ekstrim. (Extreme Values)

UJIAN TENGAH SEMESTER KALKULUS I

Definisi. Fungsi f(x) dikatakan monoton naik pada interval I jika untuk ( ) ( ) x < x f x > f x, x, x I. monoton turun pada interval I jika untuk

Bahan Diskusi/Tugas Kelompok Topik: Turunan Fungsi

BAB II LANDASAN TEORI

TKS 4003 Matematika II. Nilai Ekstrim. (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

5. Aplikasi Turunan 1

Gambar 1. Gradien garis singgung grafik f

BAB II TEOREMA NILAI RATA-RATA (TNR)

MATEMATIKA II. Turunan dan Aplikasinya. Rudi Prihandoko. March 9, 2017 ver 0.6

Bagian 4 Terapan Differensial

PENERAPAN TURUNAN MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. MATERI78.

King s Learning Be Smart Without Limits. (4) Grafik Fungsi kuadrat: (3) Titik lain (jika diperlukan) X Y. (4) Grafik Fungsi kuadrat:

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co.

BEBERAPA FUNGSI KHUSUS

Hendra Gunawan. 13 September 2013

Analisis Riil II: Diferensiasi

UJIAN PERTAMA KALKULUS/KALKULUS I SEMESTER PENDEK 2004 SABTU, 17 JULI (2 JAM)

TURUNAN FUNGSI TRIGONOMETRI

MA3231 Analisis Real

LIMIT KED. Perhatikan fungsi di bawah ini:

Rencana Pembelajaran

Hendra Gunawan. 4 Oktober 2013

UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam

AFTAR ISI KATA PENGANTAR... i DAFTAR ISI... iii SOAL - SOAL... 2 PEMBAHASAN... 19

asimtot.wordpress.com BAB I PENDAHULUAN

BAHAN AJAR PERSAMAAN GARIS SINGGUNG PADA KURVA

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

LIMIT DAN KEKONTINUAN

BAB I SISTEM BILANGAN REAL

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

BAB V PENERAPAN DIFFERENSIASI

BAB III TURUNAN DALAM RUANG DIMENSI-n

Pertemuan Minggu ke Bidang Singgung, Hampiran 2. Maksimum dan Minimum 3. Metode Lagrange

KALKULUS I TEOREMA NILAI RATAAN (Mean Value Theorem) SUTRIANI HIDRI Matematika B

SATUAN ACARA PERKULIAHAN MATA KULIAH: KALKULUS 1 ; 3 SKS OLEH: FIRDAUS-0716 TUJUAN INSTRUKSIONAL KHUSUS Sistem Bilangan Real

Catatan Kuliah MA1123 Kalkulus Elementer I

UJIAN TENGAH SEMESTER KALKULUS/KALKULUS1

DERIVATIVE Arum Handini primandari

JAWABAN PERSIAPAN UKD-5 APLIKASI TURUNAN. 1. Tentukan pers garis singgung (PGS) pada kurva. 2. Tentukan pers garis normal (PGN) pada kurva

TUJUAN INSTRUKSIONAL KHUSUS

Silabus. Sekolah : : 2. Menentukan Komposisi Dua Fungsi Dan Invers Suatu Fungsi. Kegiatan Pembelajaran. Kompetensi Dasar.

Pertemuan 6 APLIKASI TURUNAN

MAKALAH PENGGUNAAN TURUNAN DALAM BIDANG KESEHATAN DAN FARMASI. Dibuat untuk memenuhi tugas Matematika Dosen: Andes Safarandes, S,Pd. M.

Model Optimisasi dan Pemrograman Linear

METODE NUMERIK TKM4104. Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1

Turunan Fungsi dan Aplikasinya

Open Source. Not For Commercial Use

BAB 2 LANDASAN TEORI

SATUAN ACARA PERKULIAHAN PROGRAM KOMPETENSI GANDA DEPAG S1 KEDUA PROGRAM STUDI PENDIDIKAN MATEMATIKA

AB = c, AC = b dan BC = a, maka PQ =. 1

Kelompok Mata Kuliah : MKU Program Studi/Program : Teknik Tenaga Elektrik/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kalkulus Multivariabel I

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 10, Dosen FMIPA - ITB

Kuliah 3: TURUNAN. Indah Yanti

MATEMATIKA TURUNAN FUNGSI

MA3231 Analisis Real

4 DIFERENSIAL. 4.1 Pengertian derivatif

LEMBAR KERJA SISWA (LKS) Pertemuan I

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

PENGGUNAAN TURUNAN IKA ARFIANI, S.T.

MATERI KALKULUS. y' = F'(x) = f(x), y'' = F''(x) = f'(x), y'''=f'''(x) = f''(x)= g'(x)= h(x) y1= f(x) y2 = g(x) y3 = h(x)

DIFERENSIAL FUNGSI SEDERHANA

Turunan Fungsi dan Aplikasinya

Hendra Gunawan. 11 Oktober 2013

BAB V. PENGGUNAAN TURUNAN

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

DASAR-DASAR ANALISIS MATEMATIKA

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

f (a) = laju perubahan y = f(x) pada x = a = turunan pertama y=f(x) pada x = a

Transkripsi:

3. Aplikasi Turunan a. Nilai ekstrim Bagian ini dimulai dengan pengertian nilai ekstrim suatu fungsi yang mencakup nilai ekstrim maksimum dan nilai ekstrim minimum. Definisi 3. Diberikan fungsi f: I R, I R, dan M = f(c) untuk suatu c I. (a) M merupakan nilai maksimum (mutlak) f apabila M f(x) x I. (b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I.. (c) Nilai maksimum dan minimum suatu fungsi disebut nilai ekstrim (mutlak) fungsi tersebut. Contoh 9. Dipunyai fungsi f: R R, f(x) = (x 1) 2. Sketsa grafik f dapat dilihat pada gambar berikut. Y f O (1,0) Gambar 3. Grafik f(x) = (x 1) 2. Intuisi: f(1) = 0 merupakan nilai minimum f(x). Bukti: Ambil sembarang x R. Jelas (x 1) 2 0 f(x) f(1). Jadi f(1) f(x) x R. Jadi f(1) = 0 merupakan nilai minimum f. Contoh 10. Dipunyai fungsi f: R R, f(x) = (x 2) 2 + 1. Sketsa grafik f dapat dilihat pada gambar berikut.

Y (2,1) O (1,0) (3,0) (0, 3) f Gambar 4. Grafik f(x) = (x 2) 2 + 1. Intuisi: f(2) = 1 merupakan nilai maksimum f. Bukti: Ambil sembarang x R. Jelas (x 2) 2 0 (x 2) 2 + 1 1 f(x) f(2). Jadi f(2) f(x) x R. Jadi f(2) = 1 merupakan nilai maksimum f. Sekarang perhatikan fungsi f: R R, f(x) = { x2, x 1 2 x, x > 1. Sketsa grafik f dapat dilihat pada gambar berikut. Y 1 O 1 2 Gambar 5. Grafik f dengan f(x) = { x2, x 1 2 x, x > 1. Pada Gambar 5 terlihat bahwa terdapat suatu selang sehingga f(0) = 0 merupakan nilai minimum f akan tetapi masih ada nilai f(x) yang kurang dari 0. Demikian juga terdapat suatu selang sehingga nilai f(1) = 1 merupakan nilai maksimum f akan tetapi masih ada nilai f(x) yang lebih dari 1. Nilai f(0) = 0 disebut nilai minimum relatif f dan nilai f(1) = 1 disebut nilai maksimum relatif f. Berdasarkan f 2

kenyataan ini dapat didefinisikan konsep tentang nilai ekstrim relatif suatu fungsi sebagai berikut. Definisi 4. Dipunyai fungsi f: I R, I R. (a) Jika terdapat suatu selang buka D I yang memuat c sehingga berlaku f(c) f(x) x D, maka f(c) disebut nilai maksimum relatif f. (b) Jika terdapat suatu selang buka D I yang memuat c sehingga berlaku f(c) f(x) x D, maka f(c) disebut nilai minimum relatif f. Contoh 11. Dari fungsi f pada Gambar 5, tunjukkan bahwa (a) f(0) = 0 merupakan nilai minimum relatif f dan (b) f(1) = 1 merupakan nilai maksimum relatif f. Bukti: Dipunyai f: R R, f(x) = { x2, x 1 2 x, x > 1. (a) Pilih δ = 1 4. Bangun D = (0 1 4, 0 + 1 4 ) = ( 1 4, 1 4 ). Ambil sembarang x D. Jelas 1 4 < x < 1 4. Kasus 1 < x < 0: 4 Jelas 0 < x 2 < 1 16 f(0) < f(x) < 1 16. Kasus 0 x < 1 4 : Jelas 0 x 2 < 1 16 f(0) f(x) < 1 16. Jadi terdapat selang buka D R sehingga f(0) f(x) x D. Jadi f(0) = 0 merupakan nilai minimum relatif f. (b) Pilih δ = 1 4. Bangun D = (1 1 4, 1 + 1 4 ) = (3 4, 5 4 ). Ambil sembarang x D. Jelas 3 4 < x < 5 4. 3

Kasus 3 < x 1: 4 Jelas 9 < 16 x2 1 9 < f(x) f(1). 16 Kasus 1 < x < 5 4 : Jelas 1 > x > 5 4 1 > 2 x > 3 4 f(1) > f(x) > 3 4. Jadi terdapat selang buka D R sehingga f(1) f(x) x D. Jadi f(1) = 1 merupakan nilai maksimum relatif f. Catatan: Nilai ekstrim mutlak suatu fungsi juga merupakan nilai ekstrim relatif. Berikut ini disajikan suatu bilangan yang penting untuk menentukan nilai ekstrim relatif. Bilangan tersebut disebut bilangan kritis yang merupakan calon kuat nilai ekstrim. Definisi 5. Dipunyai fungsi f: I R, I R, dan c I. Jika f (c) = 0 atau f (c) tidak ada maka c disebut bilangan kritis f. Contoh 12. Dipunyai f: R R, f(x) = x 2 4x + 8. Periksa apakah f mempunyai nilai ekstrim. Penyelesaian: Jelas f (x) = 0 d(x2 4x + 8) = 0 2x 4 = 0 x = 2. Jelas x = 2 merupakan bilangan kritis f dan Jelas f(2) = Ambil sembarang x R. Jelas f(2) f(x) = 4 x 2 + 4x 8 = (x 2) 2 0. Jadi f(2) f(x) x R. Jadi f(2) = 4 suatu nilai minimum mutlak f. Berikut ini disajikan suatu teorema eksistensi nilai ekstrim suatu fungsi. Teorema 12. Jika fungsi f kontinu pada selang tutup [a, b] maka fungsi f memiliki nilai minimum dan maksimum mutlak. 4

Dari Definisi 5 dan Teorema 12 dapat dirumuskan Teorema terkait dengan bilangan kritis sebagai berikut. Teorema 13. Jika f terdefinisi pada suatu selang I yang memuat titik c. Jika f(c) adalah suatu nilai ekstrim maka c haruslah merupakan bilangan kritis fungsi f dan c memenuhi salah satu dari berikut ini. (a) c merupakan titik ujung I, (b) c merupakan titik stationer f (f (c) = 0), (c) c merupakan titik singular f (f (c) tidak ada). Teorema Rolle merupakan teorema tentang eksistensi suatu titik di domain suatu fungsi yang turunan fungsi di titik itu sama dengan nol. Berikut disajikan Teorema Rolle. Teorema 14. (Teorema Rolle) Dipunyai fungsi f: [a, b] R. Jika (1) f kontinu pada [a, b], (2) f mempunyai turunan pada (a, b), dan (3) f(a) = f(b) maka terdapat titik c (a, b) sehingga f (c) = 0. Berikut ini disajikan teorema yang lebih umum dari Teorema Rolle yang disebut dengan teorema nilai rata-rata (TNR). Teorema 15. (Teorema Nilai Rata-rata) Dipunyai fungsi f: [a, b] R. Jika f kontinu pada [a, b] dan f mempunyai turunan pada (a, b) maka terdapat titik c (a, b) sehingga f (c) = f(b) f(a). b a (a) Nilai f(b) f(a) b a B(b, f(b)) merupakan talibusur AB dengan A(a, f(a)) dan 5

(b) Jika f memenuhi kondisi teorema ini maka terdapat suatu garis singgung yang memiliki gradien sama dengan gradien talibusur AB. Interpretasi geometri tersebut dapat dilihat pada gambar berikut ini. Y s B f(b) f f(a) A O a b Gambar 6. Interpretasi teorema nilai rata-rata b. Kemonotonan grafik fungsi Pada bagian ini akan disajikan konsep tentang naik atau turunnya fungsi kaitannya dengan turunan fungsi itu dan uji turunan pertama untuk eksrim relatif suatu fungsi. Berikut diberikan definisi naik turunnya grafik fungsi. Definisi 6. Dipunyai fungsi f: I R, I R. (a) Grafik fungsi f dikatakan naik pada I apabila x 1, x 2 I, x 1 < x 2 f(x 1 ) < f(x 2 ). (b) Grafik fungsi f dikatakan turun pada I apabila x 1, x 2 I, x 1 < x 2 f(x 1 ) > f(x 2 ). Kaitan antara naik-turunnya fungsi dengan turunan fungsi diberikan pada Teorema berikut. Teorema 16. Dipunyai f: I R, I R, dan f (x) ada untuk setiap x I kecuali mungkin di titik-titik ujungnya. (i) Jika f (x) > 0 untuk setiap x I yang bukan di titik ujung maka grafik f naik pada I. (ii) Jika f (x) < 0 untuk setiap x I yang bukan di titik ujung maka grafik f turun pada I. 6

Berikut ini disajikan langkah-langkah untuk menentukan selang terbesar di mana grafik f naik atau turun: (1) tentukan bilangan kritis untuk f, (2) tentukan selang-selang dalam domain f berdasarkan bilanganbilangan kritis dan nilai-nilai x sehingga f tak terdefinisi, dan (3) manfaatkan Teorema 16. Contoh 13. Dipunyai fungsi f: R {1} R dengan f(x) = x2. Tentukan di mana grafik f naik dan turun. Penyelesaian: Jelas f tak terdefinisi di x = 1 dan f (x) = d( x2 x 1 ) x 1 = x(x 2) (x 1) 2. Jelas f (1) tidak ada dan f (x) = 0 x(x 2) (x 1) 2 = 0 x = 0 x = 2. Karena f tak terdefinisi di x = 1, maka bilangan kritis f hanya 0 dan 2. Bangun selang-selang (, 0), (0,1), (1,2), dan (2, + ). Kasus x (, 0): Jelas x < 0, (x 2) < 0, dan (x 2) 2 > 0. Jadi f (x) = x(x 2) (x 1) 2 > 0. Jadi grafik f naik pada (, 0). Kasus x (0, 1): Jelas 0 < x < 1 2 < x 2 < 1 dan (x 1) 2 > 0. f (x) < 0. Jadi grafik f turun pada (0, 1). Kasus x (1, 2): Jelas 1 < x < 2 1 < x 2 < 0 dan (x 1) 2 > 0. f (x) < 0. Jadi grafik f turun pada (1, 2). Kasus x (2, + ): Jadi Jadi 7

Jelas x > 2. Jadi (x 2) > 0 dan (x 1) 2 > 0. Jadi f (x) > 0. Jadi grafik f naik pada (2, + ). Berikut ini disajikan suatu teorema untuk menguji nilai ekstrim relatif suatu fungsi yang dikenal dengan Uji Turunan Pertama. Teorema 17. (Uji Turunan Pertama) Dipunyai fungsi f: I R, I R, dan c I suatu bilangan kritis untuk f. Jika f (x) ada pada selang (c h, c + h) untuk suatu h > 0 kecuali mungkin di titik c sendiri maka f(c) ekstrim relatif jika dan hanya jika tanda f (x) berganti tanda di x = c. Secara khusus dinyatakan sebagai berikut: (1) Jika f (x) > 0 untuk x < c dan f (x) < 0 untuk x > c maka f(c) suatu maksimum relatif. (2) Jika f (x) < 0 untuk x < c dan f (x) > 0 untuk x > c maka f(c) suatu minimum relatif. (3) Jika f (x) tidak berganti tanda di x = c maka f(c) bukan suatu Contoh 14. maksimum ataupun minimum relatif. Dipunyai fungsi f: R R yang diberikan oleh f(x) = 4x 2 4x 4. Tentukan nilai ekstrim fungsi f. Penyelesaian: Jelas f (x) = d[f(x)] = d(4x2 4x 4 ) Jelas f (x) = 0 8x(x 2x 2 ) x = 0 x = 2 2 Jadi bilangan kritis f adalah 2 2, 0, dan. 2 2 Uji turunan pertama di x = 2 2 : x ( 2 2 ) 2 2 ( 2 2 ) + f (x) + 0 f(x) Maks. Rel. f = 8x 16x 3 = 8x(x 2x 2 ). x = 2 2. 8

Jadi f ( 2 ) = 1 suatu maksimum relatif f. 2 Uji turunan pertama di x = 0: x (0) 0 (0) + f (x) 0 + f(x) Min. Rel. f Jadi f(0) = 0 suatu minimum relatif f. Uji turunan pertama di x = 2 2 : x ( 2 2 ) 2 2 ( 2 2 ) + f (x) + 0 f(x) Maks. Rel. f Jadi f ( 2 ) = 1 suatu maksimum relatif f. 2 Skestas grafik f: 1 f O Gambar 7. Sketsa grafik f dengan f(x) = 4x 2 4x 4. c. Kecekungan grafik fungsi Setelah mempelajari naik turunnya grafik fungsi, selanjutnya akan disajikan materi terkait kecekungan grafik fungsi. Gambar-gambar berikut memberikan beberapa gambaran kecekungan pada beberapa nilai ekstrim. 9

Y B f A C Gambar 8. Fungsi f mempunyai maksimum di B dan minimum di A dan C. Akan tetapi cekung ke atas di kiri A dan di kanan C. Y B g A C Gambar 9. Fungsi g mempunyai maksimum di B dan minimum di A dan C. Akan tetapi cekung ke atas di antara A dan B dan di antara B dan C. Definisi kecekungan grafik fungsi diberikan berikut ini. Definisi 7. Dipunyai fungsi f: I R, I R, f kontinu pada I, dan f (x) ada pada I kecuali mungkin di titik-titik ujungnya. (a) Grafik fungsi f dikatakan cekung ke atas pada I apabila f merupakan fungsi naik pada I. (b) Grafik fungsi f dikatakan cekung ke bawah pada I apabila f merupakan fungsi turun pada I. Berikut ini disajikan teorema yang mengaitkan kecekungan grafik suatu fungsi dengan nilai turunan kedua fungsi tersebut. 10

Teorema 18. Dipunyai fungsi f: I R, I R, f kontinu pada I, dan f (x) ada pada I kecuali mungkin di titik-titik ujungnya. (a) Grafik f cekung ke atas pada I apabila f (x) > 0 untuk setiap x I yang bukan titik ujung I. (b) Grafik f cekung ke bawah pada I apabila f (x) < 0 untuk setiap x I yang bukan titik ujung I. Apabila fungsi f mempunyai turunan dan f kontinu, Teorema 17 mengisyaratkan langkah-langkah untuk menentukan selang di mana grafik fungsi f cekung ke atas atau ke bawah. Langkah-langkah tersebut yaitu: (1) Tentukan bilangan c sehingga f (c) = 0 atau f (c) tidak ada. (2) Bangun selang berdasarkan temuan titik c pada butir (1). (3) Periksa tanda f (x) pada selang-selang itu. Seperti dalam mencari selang-selang di mana f naik atau turun, juga diperhatikan bilangan c dengan f (c) = 0 atau f (c) tidak ada. Titiktitik pada grafik f yang memisahkan kurva dengan kecekungan berbeda disebut titik infleksi. Berikut teorema yang mengaitkan turunan kedua suatu fungsi dengan nilai ekstrim relatif fungsi tersebut. Teorema 19. (Uji Turunan Kedua) Dipunyai fungsi f: I R, I R, dan a I. Jika f (x) dan f (x) ada pada I maka: (a) f (a) < 0 f(a) suatu maksimum relatif f, (b) f (a) > 0 f(a) suatu minimum relatif f, dan (c) f (a) = 0 tidak ada kesimpulan 11

Contoh 15. Dipunyai fungsi f: R R yang diberikan oleh f(x) = 4x 2 4x 4. Pada Contoh 13 telah ditunjukkan bahwa f ( 2 ) = 1 = f ( 2 ) merupakan 2 2 maksimum relatif f, dan f(0) = 0 merupakan suatu minimum relatif f. Pada contoh kali ini akan digunakan uji turunan kedua. Jelas f (x) = d[f(x)] f (x) = d[f (x)] = d(4x2 4x 4 ) = d(8x 16x3 ) = 8x 16x 3 dan = 8 48x 2. Jelas f ( 2 ) < 0 dan 2 f ( 2 2 ) < 0, berakibat f ( ) = 1 = f ( 2 2 2 merupakan maksimum relatif f. Jelas f (0) > 0 berakibat f(0) = 0 merupakan minimum relatif f. 2 ) d. Masalah maksimum minimum Berdasarkan teori-teori yang telah dipelajari sebelumnya, diberikan langkah-langkah dalam menyelesaikan masalah-masalah yang berkaitan dengan turunan terutama masalah maksimum dan minimum. Langkahlangkah ini dapat dikembangkan sesuai dengan karakteristik permasalah yang hendak diselesaikan. Adapun langkah-langkah yang dimaksud adalah sebagai berikut: Langkah 1. Buatlah gambaran umum dari persoalan dan identifikasi variabel-variabel penting beserta satuan/besarannya. Langkah 2. Tuliskan rumus dari fungsi tujuannya apakah meminimumkan atau memaksimumkan. Langkah 3. Gunakan kondisi dalam masalah untuk mengeliminasi variabel sehingga fungsi tujuan menjadi fungsi dengan satu variabel. Langkah 4. Tentukan bilangan kritis (titik ujung selang, titik stationer, titik singular). 12

Langkah 5. Substitusikan bilangan kritis ke fungsi tujuan atau gunakan uji turunan pertama atau uji turunan kedua untuk menentukan maksimum dan minimum dari fungsi tujuan tersebut. Contoh 16. Temukan suatu persegipanjang yang ukuran luas daerahnya 64cm 2 dan ukuran kelilingnya minimum. Penyelesaian: Tulis x: ukuran panjang persegipanjang (cm), y: ukuran lebar persegipanjang (cm), A: ukuran luas daerah persegipanjang (cm 2 ), dan K: ukuran keliling persegipanjang (cm). Karena x dan y menyatakan ukuran panjang dan lebar maka x 0 dan y 0. Dari soal diperoleh A = 64 xy = 64 y = 64 x. Jelas K(x) = 2(x + y) = 2 (x + 64 ). Jelas x 0. Jelas K (x) = 0 d[2(x+64 x )] Jadi titik kritis K adalah x = 8. Uji turunan pertama di x = 8: x (8) 8 (8) + f (x) 0 + f(x) Min. Rel. x = 0 2 (1 64 x2) x = 8 x = 8. Jadi Persegipanjang yang ukuran luasnya 64cm 2 dan ukuran kelilingnya minimum merupakan persegi dengan ukuran 8cm. 13