BAB II TINJAUAN PUSTAKA

dokumen-dokumen yang mirip
BAB II LANDASAN TEORI

OPTIMASI PORTOFOLIO POINT AND FIGURE MENGGUNAKAN MODEL HIDDEN MARKOV DAN APLIKASINYA PADA SAHAM BUMI RESOURCES Tbk KASTOLAN

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI

BAB IV MODEL HIDDEN MARKOV

Lampiran A. Beberapa Definisi dan Lema Teknis

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

KAJIAN MODEL HIDDEN MARKOV KONTINU DAN APLIKASINYA PADA HARGA BERAS MUSAFA

BAB II TINJAUAN PUSTAKA

BAB 2 LANDASAN TEORI

Lampiran 1. Beberapa Definisi dan Lema Teknis

II. TINJAUAN PUSTAKA. real. T dinamakan himpunan indeks dari proses atau ruang parameter yang

PENDAHULUAN LANDASAN TEORI

II. LANDASAN TEORI ( ) =

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

KAJIAN MODEL HIDDEN MARKOV DISKRET DAN APLIKASINYA PADA DNA N U R M A I L Y

Penelitian Operasional II Rantai Markov RANTAI MARKOV

BAB II LANDASAN TEORI

DASAR-DASAR TEORI PELUANG

Defenisi 15 (Kejadian) Kejadian adalah suatu himpunan bagian dari Nang contoh a. (Grimmett dan Stirzaker 2001)

BAB III METODE PENELITIAN

Silabus. Proses Stokastik (MMM 5403) Proses Stokastik. Contoh

PEMODELAN NILAI TUKAR RUPIAH TERHADAP DOLAR AMERIKA MENGGUNAKAN HIDDEN MARKOV SATU WAKTU SEBELUMNYA SRI RAMADANIATY

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA

BAB II TINJAUAN PUSTAKA

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

RANTAI MARKOV ( MARKOV CHAIN )

BAB 2 LANDASAN TEORI

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR

BAB II TINJAUAN PUSTAKA

PEMODELAN HUBUNGAN PELANGGAN DAN PERUSAHAAN MENGGUNAKAN RANTAI MARKOV ADITYA PRAYUDANTO

II. TINJAUAN PUSTAKA. Pada bab ini akan didiskusikan tentang istilah-istilah, teorema-teorema yang akan

Catatan Kuliah. MA5181 Proses Stokastik

ABSTRACT JOKO DWI SURAWU. Keywords:

LAMPIRAN. Kajadian adalah suatu himpunan bagian dari ruang contoh Ω. (Grimmett dan Stirzaker, 2001) Definisi A.3 (Medan-σ)

II. LANDASAN TEORI. Pada bagian ini akan diuraikan beberapa definisi dan teori penunjang yang akan digunakan di dalam pembahasan.

Pengantar Proses Stokastik

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

Hukum Iterasi Logaritma

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

Pengantar Proses Stokastik

KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log

BAB 2 TINJAUAN PUSTAKA

Pengantar Statistika Matematik(a)

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Pengantar Proses Stokastik

III. HASIL DAN PEMBAHASAN

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM.

UNIVERSITAS PENDIDIKAN INDONESIA

BAB II TINJAUAN PUSTAKA. komoditas, model pergerakan harga komoditas, rantai Markov, simulasi Standard

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

BAB II KAJIAN PUSTAKA

Pengantar Proses Stokastik

Pengantar Proses Stokastik

BAB II LANDASAN TEORI

Catatan Kuliah. MA5181 Proses Stokastik

PEMODELAN KLAIM ASURANSI KERUGIAN MENGGUNAKAN POISSON HIDDEN MARKOV UNTUK DATA OVERDISPERSI HENDRA GUSTRA

BAB III PORTOFOLIO POINT AND FIGURE

BAB 1. Rantai Markov 1.1 ILUSTRASI

II. TINJAUAN PUSTAKA

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

Discrete Time Dynamical Systems

BAB III KEKONVERGENAN LEMAH

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang

STATISTIK PERTEMUAN VI

Reliabilitas Suatu Mesin Menggunakan Rantai Markov (Studi Kasus: Mesin Proofer Di Pabrik Roti Super Jam Banten)

PEMODELAN POISSON HIDDEN MARKOV PADA INFEKSI NOSOKOMIAL JUNIAWAN PRASETYO

BAB II TINJAUAN PUSTAKA

5. Sifat Kelengkapan Bilangan Real

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

STATISTIKA UNIPA SURABAYA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

1. σ field dan pengukuran Definisi 1.1

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA

Tugas Statistika Matematika TEORI PELUANG

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

BAB 2 LANDASAN TEORI

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

BAB II KAJIAN PUSTAKA

DISTRIBUSI SATU PEUBAH ACAK

Catatan Kuliah. MA5181 Proses Stokastik

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

KONSEP DASAR TERKAIT METODE BAYES

BAB II KAJIAN PUSTAKA. bersyarat, momen bersyarat, distribusi binomial, martingale, tingkat bunga &

BAB II TINJAUAN PUSTAKA

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

BAB V IMPLEMENTASI SIMULASI MONTE CARLO UNTUK PENILAIAN OPSI PUT AMERIKA

BAB II TINJAUAN PUSTAKA

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang

Transkripsi:

BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan selanjutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan yang dapat diulang dalam kondisi yang sama dan semua kemungkinan hasil yang muncul dapat diketahui, tetapi hasilnya tidak dapat ditentukan dengan tepat disebut percobaan acak. Definisi 2.1.2 (Ruang Contoh dan Kejadian) (Ghahramani 2005) Himpunan semua kemungkinan hasil dari suatu percobaan acak disebut ruang contoh, dinotasikan dengan Ω. Suatu kejadian A adalah himpunan bagian dari Ω. Definisi 2.1.3 (Medan-σ) (Ghahramani 2005) Medan-σ (σ-field) adalah suatu himpunan F yang anggotanya himpunan bagian dari Ω serta memenuhi syarat-syarat berikut. 1. F; 2. Jika A, A, F, maka A F; 3. Jika A F maka A F, dengan A menyatakan komplemen dari himpunan A. Definisi 2.1.4 (Ukuran Peluang) (Ghahramani 2005) Suatu ukuran peluang P pada (Ω, F) adalah suatu fungsi P F [0,1] yang memenuhi syarat-syarat berikut. 1. P( ) = 0 dan P(Ω) = 1; 2. Jika A, A, F adalah himpunan-himpunan yang saling lepas, yaitu P A P A. i 1 i 1 A A =, untuk setiap i, j dengan i j, maka i i Pasangan (Ω, F, P) disebut ruang peluang (probability space).

6 Definisi 2.1.5 (Kejadian Saling Bebas) (Grimmet & Stirzaker 2001) Misalnya (Ω, F, P) adalah ruang peluang dan A, B F. Kejadian A dan B dikatakan saling bebas jika P(A B) = P(A)P(B). Secara umum, misalnya I adalah himpunan indeks, himpunan kejadian {A : i I} disebut saling bebas jika P A P ( A ) untuk setiap himpunan bagian berhingga J dari I. i i ij ij Definisi 2.1.6 (Peluang Bersyarat) (Grimmet & Stirzaker 2001) Misalnya (Ω, F, P) adalah ruang peluang dan A, B F. Jika P(B) > 0 maka peluang kejadian A dengan syarat diketahui kejadian B adalah PA B = P(A B). P(B) Teorema 2.1.7 (Teorema Bayes) (Hogg & Craig 2005) Misalnya (Ω, F, P) adalah ruang peluang dan C F, i = 1,2, k. Misalnya kejadian C terjadi hanya dengan salah satu kejadian C maka peluang bersyarat dari C setelah diketahui C adalah P C j C i 1 P C C i i P C C P C P C C k P C P C j j j. Definisi 2.1.8 (Peubah Acak) (Grimmet & Stirzaker 2001) Misalnya (Ω, F, P) adalah ruang peluang. Peubah acak (random variable) X merupakan fungsi X Ω R di mana {ω Ω X(ω) x} F untuk setiap x R. Peubah acak dinotasikan dengan huruf besar, sedangkan nilai dari peubah acak tersebut dinotasikan dengan huruf kecil. Definisi 2.1.9 (Peubah Acak Diskret) (Ghahramani 2005) Misalnya Ω adalah ruang contoh, F adalah medan-σ dari Ω dan S adalah himpunan berhingga. Suatu fungsi X Ω S disebut peubah acak diskret jika memenuhi sifat untuk setiap A S berlaku {ω Ω X(ω) A} F.

7 Definisi 2.1.10 (Fungsi Kerapatan Peluang) (Grimmet & Stirzaker 2001) Misalnya (Ω, F, P) adalah ruang peluang. Fungsi kerapatan peluang (probability mass function) dari peubah acak diskret X adalah fungsi p R [0,1] yang didefinisikan oleh p (x) = P(X = x) untuk setiap x R. Definisi 2.1.11 (Fungsi Kerapatan Peluang Bersama Dua Peubah Acak Diskret) (Grimmet & Stirzaker 2001) Misalnya (Ω, F, P) adalah ruang peluang. Fungsi kerapatan peluang bersama dari peubah acak diskret X dan Y adalah suatu fungsi p, : R [0,1] yang didefiniskan oleh p, (x, y) = P(X = x, Y = y) untuk setiap x, y R. Definisi 2.1.12 (Fungsi Kerapatan Peluang Bersyarat) (Ross 2000) Jika X dan Y adalah peubah acak diskret, maka fungsi kerapatan peluang bersyarat dari X jika diberikan Y = y dengan P(Y = y) > 0 untuk setiap y adalah p (x y) = P(X = x, Y = y). P(Y = y) Definisi 2.1.13 (Bebas Stokastik Identik) (Hogg & Craig 2005) Misalnya X, X,, X adalah barisan peubah acak yang memiliki fungsi kerapatan yang sama, yaitu f(x) sehingga f (x ) = f(x ) f (x ) = f(x ) f (x ) = f(x ) dan fungsi kerapatan bersamanya adalah f(x )f(x ) f(x ). Peubah acak X, X,, X disebut bebas stokastik identik. Definisi 2.1.14 (Nilai Harapan Peubah Acak Diskret) (Ghahramani 2005) Misalnya X adalah peubah acak diskret dengan fungsi kerapatan peluang p (x) = P(X = x), maka nilai harapan dari peubah acak X adalah E[X] = xp (x).

8 Definisi 2.1.15 (Fungsi Indikator) (Cassela & Berger 1990) Misalnya A adalah suatu kejadian pada ruang peluang (Ω, F, P). Fungsi indikator dari A adalah suatu fungsi I Ω {0,1} yang didefinisikan oleh I A 1, jika A ( ). 0, jika A Definisi 2.1.16 (Kontinu Absolut) (Billingsley 1995) Jika P dan P adalah dua ukuran peluang pada (Ω, F). Ukuran peluang P dikatakan kontinu absolut ke ukuran peluang P jika untuk setiap A F, P(A) = 0 mengakibatkan P(A) = 0, dinotasikan P P. Jika P P dan P P maka kedua ukuran dikatakan ekivalen dan dinotasikan P P. Teorema 2.1.17 (Radon-Nikodym) (Billingsley 1995) Jika P dan P adalah dua ukuran peluang pada (Ω, F) sedemikian sehingga P P, maka terdapat peubah acak tak negatif Λ sehingga P(A) = A F, dinotasikan dengan dp dp F = Λ. Λ dp untuk semua 2.2 Rantai Markov Definisi 2.2.1 (Ruang State) (Grimmet & Stirzaker 2001) Misalnya S adalah himpunan nilai dari barisan peubah acak, maka S disebut ruang state. Definisi 2.2.2 (Proses Stokastik) (Ross 2000) Proses stokastik {X : k N} yang terdefinisi pada ruang peluang (Ω, F, P) adalah suatu himpunan dari peubah acak yang memetakan ruang contoh Ω ke suatu ruang state S. Jadi, untuk setiap k N, X adalah peubah acak. Dalam hal ini, k N dianggap sebagai waktu dan nilai dari peubah acak X sebagai state (keadaan) dari proses pada waktu k.

9 Definisi 2.2.3 (Rantai Markov dengan Waktu Diskret) (Ross 2000) Misalnya (Ω, F, P) adalah ruang peluang dan S adalah ruang state. Proses stokastik {X : k N} dengan ruang state S, disebut rantai Markov dengan waktu diskret jika untuk setiap k {0, 1, 2, } berlaku PX = i X = i, X = i,, X = i = PX = i X = i untuk semua kemungkinan nilai dari i, i,, i, i S. Jadi pada rantai Markov, sebaran bersyarat dari sebarang state yang akan datang X bebas terhadap semua state yang lalu X, X,, X dan hanya bergantung pada state sekarang X. Definisi 2.2.4 (Matriks Peluang Transisi) (Ross 2000) Misalnya {X : k N} adalah rantai Markov yang terdefinisi pada (Ω, F, P) a a a a dengan ruang state S berukuran N. Matriks A = a = a a a adalah matriks peluang transisi di mana a = P(X = j X = i) untuk semua i, j S. Nilai a menyatakan peluang bahwa jika proses tersebut berada pada state i maka berikutnya proses akan beralih ke state j. Karena nilai peluang adalah tak negatif dan karena proses harus mengalami transisi ke suatu state, maka berlaku: 1. a 0, untuk semua i, j S; a a 2. N a ji 1, untuk semua i S. j1 Definisi 2.2.5 (Rantai Markov Homogen) (Ross 2000) Rantai Markov {X : k N} yang terdefinisi pada (Ω, F, P) dengan ruang state S dikatakan homogen jika P(X = j X = i) = P(X = j X = i) untuk semua i, j S. Pada rantai Markov homogen, nilai a tidak bergantung pada k N.

10 Definisi 2.2.6 (Peluang Transisi n-step) (Ross 2000) Misalnya {X : k N} adalah rantai Markov yang terdefinisi pada (Ω, F, P) dengan ruang state S. Peluang transisi n-step a () adalah peluang suatu proses berpindah dari state i ke state j dengan n langkah yang didefinisikan sebagai a () = P(X = j X = i), n > 0, i, j S. Definisi 2.2.7 (Terakses) (Ross 2000) Misalnya {X : k N} adalah rantai Markov yang terdefinisi pada (Ω, F, P) dengan ruang state S. Suatu state j disebut terakses (accessible) dari state i, dinotasikan i j, jika ada sebuah bilangan bulat k 0 sehingga a () > 0. Definisi 2.2.8 (Berkomunikasi) (Ross 2000) Misalnya {X : k N} adalah rantai Markov yang terdefinisi pada (Ω, F, P) dengan ruang state S. Dua state i dan j disebut berkomunikasi (communicate), dinotasikan i j, jika state i dapat diakses dari state j dan state j dapat diakses dari state i. Definisi 2.2.9 (Kelas State) (Ross 2000) Misalnya {X : k N} adalah rantai Markov yang terdefinisi pada (Ω, F, P) dengan ruang state S. Suatu kelas state adalah suatu himpunan tak kososng C S sehingga semua pasangan state anggota C berkomunikasi satu dengan yang lainnya, serta tidak ada anggota C yang berkomunikasi dengan suatu state yang bukan anggota C. Definisi 2.2.10 (Rantai Markov Tak Tereduksi) (Ross 2000) Suatu rantai Markov disebut tak tereduksi (irreducible) jika hanya terdapat satu kelas state, yaitu jika semua state-nya berkomunikasi satu dengan yang lainnya. Definisi 2.2.11 (The First-Passage Time Probability) (Ross 2000) Misalnya {X : k N} adalah rantai Markov yang terdefinisi pada (Ω, F, P) dengan ruang state S. f () merupakan peluang bahwa mulai dari state i, proses

11 bertransisi untuk pertama kali ke state j terjadi pada waktu n. Peluang ini disebut the first-passage time probability. Jadi, untuk setiap n = 1, 2, 3, berlaku f () = P(X = j: X j untuk semua 1 k n 1 X = i), i, j S, dan f () = 0 untuk semua i, j S. Selanjutnya, untuk setiap i, j S didefinisikan f = f (). Jadi untuk setiap i, j S, f menyatakan peluang bahwa suatu proses yang dimulai dari state i akan pernah bertransisi ke state j. Khususnya, untuk setiap state i, f menyatakan peluang bahwa suatu proses yang dimulai dari state i akan pernah bertransisi kembali ke state i. Definisi 2.2.12 (Recurrent dan Transient) (Ross 2000) Misalnya {X : k N} adalah rantai Markov yang terdefinisi pada (Ω, F, P) dengan ruang state S. State i disebut recurrent (berulang) jika f = 1 dan transient jika f < 1. Teorema 2.2.13 (Recurrent dan Transient) (Ross 2000) Misalnya {X : k N} adalah rantai Markov yang terdefinisi pada (Ω, F, P) dengan ruang state S. State i disebut recurrent jika ( n) aii dan transient jika n0 n0 a ( n) ii. Definisi 2.2.14 (Periode, Periodik, dan Aperiodik) (Grimmet & Stirzaker 2001) Misalnya {X : k N} adalah rantai Markov yang terdefinisi pada (Ω, F, P) dengan ruang state S. Suatu state i disebut memiliki periode d ditulis d(i) jika d adalah persekutuan terbesar (the greatest common divisor) bagi n sehingga a () > 0, dinotasikan d(i) = gcd {n a () > 0}. Suatu state i disebut periodik jika d(i) > 1 dan aperiodik jika d(i) = 1.

12 Definisi 2.2.15 (Positive Recurrent dan Null Recurrent) (Ross 2000) Misalnya {X : k N} adalah rantai Markov yang terdefinisi pada (Ω, F, P) dengan ruang state S. Suatu state disebut berulang positif (positive recurrent) jika state tersebut adalah berulang (recurrent) serta berlaku jika proses dimulai dari state i maka nilai harapan dari waktu sampai proses tersebut kembali ke state i adalah bilangan terhingga (finite). State recurrent yang tidak positive recurrent disebut null recurrent. Definisi 2.2.16 (Ergodic) (Ross 2000) Rantai Markov yang positive recurrent dan aperiodik disebut ergodic. Teorema 2.2.17 (Nilai Harapan Rantai Markov Homogen) (Ross 2000) Misalnya X = {X : k N} adalah rantai Markov ergodic yang terdefinisi pada (Ω, F, P) dengan ruang state S berukuran N. Misalnya A = a merupakan matriks peluang transisi berukuran N N dengan a = P(X = j X = i). Nilai harapan dari X dinotasikan E[X] = π yang memenuhi Aπ = π dan π = 1, di mana π 0, j S. Definisi 2.2.18 (Himpunan P-Null) (Grimmet & Stirzaker 2001) Misalnya (Ω, F, P) adalah ruang peluang. Himpunan P-Null didefinisikan sebagai N {N Ω N A, A F, P(A) = 0}. Definisi 2.2.19 (Ruang Peluang Lengkap) (Grimmet & Stirzaker 2001) Sebuah ruang peluang (Ω, F, P) disebut lengkap, jika A B, B F, dan P(B) = 0 maka A F. Definisi 2.2.20 (Filtrasi) (Grimmet & Stirzaker 2001) Misalnya F adalah medan-σ dan G = {G k N} adalah barisan submedan-σ dari F dan memenuhi G G untuk semua k N, maka G disebut filtrasi.

13 Definisi 2.2.21 (Filtrasi Lengkap) (Grimmet & Stirzaker 2001) Misalnya (Ω, F, P) adalah ruang peluang lengkap dan {G k N} adalah sebuah filtrasi. Jika G memuat semua himpunan P-Null di F, maka G disebut filtrasi lengkap. Definisi 2.2.22 (Terukur atau Measurable) (Grimmet & Stirzaker 2001) Misalnya X adalah peubah acak diskret yang terdefinisi pada ruang peluang (Ω, F, P) dan S adalah ruang state. Jika {ω Ω X(ω) A} F untuk setiap A S, maka X dikatakan terukur-f. Definisi 2.2.23 (Adapted) (Grimmet & Stirzaker 2001) Barisan peubah acak {X k N} yang terdefinisi pada ruang peluang (Ω, F, P) dikatakan adapted terhadap filtrasi {G }, jika X terukur-g untuk setiap k N. Definisi 2.2.24 (Predictable) (Grimmet & Stirzaker 2001) Barisan peubah acak {X : k N} yang terdefinisi pada ruang peluang (Ω, F, P) dikatakan predictable (terduga) terhadap filtrasi {F }, jika X terukur-f untuk setiap k N. Definisi 2.2.25 (Nilai Harapan Bersyarat) (Shreve 2004) Misalnya (Ω, F, P) adalah ruang peluang, G adalah submedan-σ dari F, dan X adalah peubah acak yang terintegralan pada (Ω, F, P), maka E[X G] disebut nilai harapan bersyarat dari X jika diketahui G, didefinisikan sebagai sebarang peubah acak Y yang memenuhi: 1. Y terukur- G; 2. YdP = XdP, A G; Persamaan EX GdP = XdP dapat ditulis E I EX G = E[I X]. Teorema 2.2.26 (Nilai Harapan Bersyarat) (Billingsley 1995) Misalnya X terintegralkan, G dan G adalah dua medan-σ yang memenuhi G G, maka berlaku E[E[X G ] G ] = E[E[X G ] G ] = E[X G ].

14 Teorema 2.2.27 (Sifat-Sifat Nilai Harapan Bersyarat) (Shreve 2004) Misalnya (Ω, F, P) adalah ruang peluang, G adalah submedan-σ dari F, X, Y dan XY adalah peubah acak yang terintegralkan pada (Ω, F, P), a dan b adalah konstanta, maka berlaku: 1. E EX G = E[X]; 2. Jika X terukur- G, maka EX G = E[X]; 3. EaX + by G = aex G + bey G; 4. Jika X 0, maka EX G 0; 5. Jika Y terukur-g, maka EYX G = YEX G. Definisi 2.2.28 (Martingale) (Williams 1991) Misalnya X = {X k N} adalah proses stokastik yang terdefinisi pada ruang peluang (Ω, F, P), dan {F n N} adalah filtasi dari F. Proses stokastik X disebut proses martingale jika berlaku: 1. X adalah adapted terhadap {F n N}; 2. E[ X ] <, k; 3. E[X F ] = X, a.s (n N). Teorema 2.2.29 (Representasi Martingale) (Williams 1991) Jika {X k N} adalah proses martingale yang terdefinisi pada ruang peluang (Ω, F, P), dan {F : n N} adalah filtasi dari F, maka terdapat secara tunggal proses H = {H : t N} yang predictable dengan E[ H ] < dan proses martingale Z = {Z : t N} sehingga berlaku X = X + H (Z Z ). Definisi 2.2.30 (Stopping Time) (Williams 1991) Misalnya (Ω, F, P) adalah ruang peluang dengan {F : n N} adalah filtrasi dari F. Suatu fungsi T Ω N { } disebut stopping time dari proses stokastik {X k N} jika {T n} = {ω Ω T(ω) n} F, n.

15 Definisi 2.2.31 (Gerak Brown) (Karatzas & Shreve 1987) Proses stokastik {X k N} yang adapted terhadap filtrasi {F n N} disebut gerak Brown berdimensi satu jika berlaku: 1. X = 0; 2. untuk 0 s < t, peubah acak X X adalah saling bebas; 3. untuk 0 s t, berlaku X X ~N(0, t s). 2.3 Barisan Bilangan Real, Kekontinuan, dan Fungsi Concave Definisi 2.3.1 (Medan Borel) (Hogg & Craig 2005) Medan Borel adalah medan-σ terkecil yang mengandung semua selang berbentuk (, r] dengan r R, dinotasikan B(R). Definisi 2.3.2 (Barisan) (Bartle 1976) Suatu barisan S = {s } dari bilangan real adalah suatu fungsi dari N (himpunan bilangan bulat positif) ke R (himpunan bilangan real). Definisi 2.3.3 (Konvergen Hampir Pasti) (Grimmet & Stirzaker 2001) Misalnya X, X, adalah peubah acak dalam ruang peluang (Ω, F, P). Suatu barisan peubah acak X, X, dikatakan konvergen hampir pasti ke peubah acak X, dinotasikan X. X untuk n, jika ε > 0 berlaku P lim X X < ε = 1. Dengan kata lain, konvergen hampir pasti adalah konvergen dengan peluang sama dengan 1. Definisi 2.3.4 (Batas Atas dan Batas Bawah) (Bartle 1976) Misalnya S R, u R disebut batas atas dari S jika s u, s S, dan w R disebut batas bawah dari S jika w s, s S. Himpunan S terbatas di atas jika memiliki batas atas, dan terbatas di bawah jika memiliki batas bawah. Jika himpunan S memiliki batas atas dan batas bawah, maka himpunan S disebut terbatas.

16 Definisi 2.3.5 (Supremum dan Infimum) (Bartle 1976) 1. Suatu bilangan u R disebut supremum (batas atas terkecil) dari S R jika berlaku: a. s u, s S; b. jika s v, s S, maka u v. 2. Suatu bilangan w R disebut infimum (batas bawah terbesar) dari S R jika berlaku: a. w s, s S; b. jika v s, s S, maka v w. Definisi 2.3.6 (Himpunan Konveks) (Royden 1988) Misalnya K R adalah himpunan vektor. K disebut himpunan konveks jika untuk semua x, y K maka λx + (1 λ)y K untuk 0 λ 1. Selanjutnya, {z z = λx + (1 λ)y} disebut segmen garis yang menghubungkan x dan y. K adalah himpunan konveks jika untuk setiap x, y di K, maka segmen garis yang menghubungkan x dan y juga terletak di K.. Definisi 2.3.7 (Fungsi Concave) (Royden 1988) Misalnya f adalah fungsi yang terdefinisi pada himpunan konveks K. Fungsi f disebut fungsi concave jika untuk semua x, y K dan 0 < λ < 1 berlaku f(λx + (1 λ)y) λf(x) + (1 λ)f(y). Sedangkan jika untuk semua x, y K dengan x y dan 0 < λ < 1 berlaku f(λx + (1 λ)y) > λf(x) + (1 λ)f(y) maka f disebut strictly concave. Definisi 2.3.8 (Kekontinuan) (Purcell & Varberg 1999) Suatu fungsi f disebut kontinu pada bilangan c jika berlaku lim f ( x) f ( c). Fungsi f disebut kontinu kanan pada bilangan c jika berlaku lim f ( x) f ( c), xc xc sedangkan fungsi f disebut kontinu kiri pada bilangan c jika berlaku lim f ( x) f ( c). Fungsi f disebut kontinu pada interval I jika f kontinu pada xc

17 bilangan c untuk semua c I. Himpunan fungsi-fungsi yang kontinu pada interval I dinotasikan sebagai C (I). Definisi 2.3.9 (Fungsi Naik dan Fungsi Turun) (Purcell & Varberg 1999) Misalnya x, x R. 1. Fungsi f dikatakan fungsi naik, jika x < x maka f(x ) < f(x ). 2. Fungsi f dikatakan fungsi turun, jika x < x maka f(x ) > f(x ). 2.4 Ruang Vektor dan Hasil Kali Dalam Definisi 2.4.1 (Ruang Vektor) (Anton 1997) V disebut ruang vektor, jika untuk setiap vektor u, v, w V dan sebarang skalar k dan l berlaku: 1. Jika u, v, V, maka u + v V; 2. u + v = v + u; 3. u + (v + w) = (u + v) + w; 4. Ada 0 V sehingga 0 + u = u + 0, u V; 5. u V, ada u V sehingga u + (-u) = (-u) + u = 0; 6. Jika k adalah sebarang skalar dan u V, maka ku V; 7. k (u + v) = k u + k v; 8. (k + l) u = k u + l u; 9. k (l u) = (k l) u; 10. 1u = u. Definisi 2.4.2 (Perkalian Dalam) (Anton 1997) Jika u = (u, u,, u ) dan v = (v, v,, v) adalah sebarang vektor di R, maka hasil kali dalam (euclidean inner product) u, v didefinisikan dengan u, v = u v + u v + + u v. Definisi 2.4.3 (Ruang Hasil Kali Dalam) (Anton 1997) Sebuah hasil kali dalam pada ruang vektor real V adalah fungsi yang mengasosiasikan bilangan real u, v dengan masing-masing pasangan vektor u

18 dan v pada V sedimikian sehingga aksioma-aksioma berikut dipenuhi untuk semua u, v, w V dan skalar k. 1. u, v = v, u ; 2. u + v, w = u, w + v, w ; 3. ku, v = k u, v ; 4. v, v 0 dan v, v = 0 jika dan hanya jika v = 0. Sebuah ruang vektor real dengan sebuah hasil kali dalam dinamakan ruang hasil kali dalam real. 2.5 Perhitungan Galat (Error) Definisi 2.5.1 (Mean Absolute Percentage Error) (Wei 1994) Mean Absolute Percentage Error (MAPE) atau persentase rataan galat absolut didefinisikan sebagai MAPE = 1 N Y Y 100%. Semakin kecil nilai MAPE mendekati 0, maka semakin kecil pula kesalahan akibat penggunaan Y. Y