Pengantar Proses Stokastik
|
|
|
- Hendra Kurnia
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia
2 Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang sampel S adalah himpunan dari semua hasil yang mungkin dari suatu percobaan. Contoh: dari pelemparan sebuah dadu diperoleh keluaran S = {1, 2, 3, 4, 5, 6}. Kejadian adalah himpunan bagian dari ruang sampel. Biasa dinotasikan dengan huruf kapital. Contoh: munculnya bilangan genap pada pelemparan sebuah dadu: A = {2, 4, 6}.
3 Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Gabungan Kejadian A B = {a S : a A atau a B} Irisan Kejadian A B = {a S : a A dan a B}
4 Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Kejadian A dan B bersifat mutually exclusive (saling asing) jika A B = φ. Komplemen A c = Ā = {a S : a / A}
5 Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Partisi Ruang Sampel Sebuah himpunan kejadian {A 1, A 2,...} merupakan partisi dari ruang sampel S jika 1 Kejadian-kejadian tersebut bersifat mutually exclusive, A i A j = φ jika i j. 2 i A i = S
6 Peluang Ruang Sampel dan Kejadian Peluang Peluang kejadian A adalah n(a) P(A) = lim n n n(a) : banyaknya keluaran A n : banyaknya percobaan atau P(A) = n(a) n(s) n(a) : banyaknya keluaran A n(s) : banyaknya anggota ruang sampel S
7 Ruang Sampel dan Kejadian Peluang Sifat-sifat peluang 1 0 P(A) 1 2 P(S) = 1 P(φ) = 0 3 Untuk himpunan kejadian A 1, A 2,... yang mutually exclusive, ( ) P A n = P(A n ) n=1 4 P(A B) = P(A) + P(B) P(A B) 5 P(A c ) = 1 P(A) 6 Jika A B maka P(A) P(B) n=1
8 Ruang Sampel dan Kejadian Peluang Misalkan P(A B) = P(A B c ) = 0.6. Hitung P(A)!
9 Ruang Sampel dan Kejadian Peluang Jawab: P(A B) = P(A) + P(B) P(A B) = 0.6 P(A B c ) = P(A) + P(B c ) P(A B c ) = 0.6 Jumlahkan kedua persamaan tersebut diperoleh 2P(A) + P(B) + P(B c ) (P(A B) + P(A B c )) = 1.2 2P(A) + 1 P(A) = 1.2 P(A) = 0.2 Note: P(B) + P(B c ) = 1 P(A B) + P(A B c ) = P(A)
10 Peubah Acak Peubah Acak Peubah Acak Peubah acak adalah fungsi yang memetakan anggota ruang sampel S ke bilangan real. Contoh: Misalkan dua buah koin dilemparkan. Misalkan X menyatakan banyaknya sisi muka yang muncul, maka X adalah peubah acak yang bernilai 0, 1, dan2 dengan peluang munculnya P(X = 0) = P(BB) = 1 4 P(X = 1) = P(MB, BM) = 1 2 P(X = 2) = P(MM) = 1 4
11 Peubah Acak Diskrit Peubah Acak Peubah Acak Diskrit Peubah acak diskrit merupakan peubah acak yang terdefinisi pada barisan terhitung dari bilangan {x i, i = 1, 2,...} sedemikian hingga ( ) P {X = x i } = P(X = x i ) = 1 i i
12 Peubah Acak Peubah Acak Diskrit Fungsi peluang { p i, jika x = x i p(x) = P(X = x) = 0, lainnya. Fungsi distribusi F X (x) = i p(x i )
13 Distribusi Binomial Peubah Acak Peubah Acak Diskrit Misalkan sebuah percobaan yang keluarannya berupa sebuah sukses atau sebuah gagal. Misalkan X = 1 jika hasilnya sukses dan X = 0 jika gagal, maka fungsi peluangnya p(0) = P(X = 0) = 1 p p(1) = P(X = 1) = p di mana p merupakan peluang sukses dan 0 p 1. Maka X merupakan peubah acak Bernoulli.
14 Peubah Acak Peubah Acak Diskrit Jika terdapat n percobaan independen dengan keluaran berupa sukses dan gagal dan X menyatakan banyaknya sukses yang diperoleh, maka X berdistribusi Binomial dengan parameter (n, p) dan fungsi peluangnya ( ) n p(x) = p x (1 p) n x, x = 0, 1, 2,... x
15 Peubah Acak Peubah Acak Diskrit Misalkan sebuah mesin pesawat akan rusak dalam penerbangannya dengan peluang 1 p, saling bebas antara mesin satu dengan lainnya. Misalkan pesawat akan terbang dengan sukses jika setidaknya 50% mesinnya dapat bekerja dengan baik. Untuk p berapa, sebuah pesawat dengan 4 mesin akan lebih dipilih daripada pesawat dengan 2 mesin?
16 Peubah Acak Peubah Acak Diskrit Peluang bahwa pesawat dengan 4 mesin akan terbang dengan sukses adalah P(X 2) = P(X = 2) + P(X = 3) + P(X = 4) ( ) ( ) ( ) 4 = p 2 (1 p) p 3 4 (1 p) + p 4 (1 p) = 6p 2 (1 p) 2 + 4p 3 (1 p) + p 4 Peluang bahwa pesawat dengan 2 mesin akan terbang dengan sukses adalah P(X 1) = P(X = 1) + P(X = 2) ( ) ( ) 2 2 = p(1 p) + p 2 (1 p) = 2p(1 p) + p 2
17 Peubah Acak Peubah Acak Diskrit Maka, peluang pesawat dengan 4 mesin akan lebih dipilih daripada pesawat dengan 2 mesin adalah 6p 2 (1 p) 2 + 4p 3 (1 p) + p 4 2p(1 p) + p 2 6p(1 p) 2 + 4p 2 (1 p) + p 3 2 p 3p 3 8p 2 + 7p 2 0 (p 1) 2 (3p 2) 0 p 2 3
18 Distribusi Geometrik Peubah Acak Peubah Acak Diskrit Misalkan percobaan-percobaan yang saling bebas, masing-masing memiliki peluang sukses p, dilakukan hingga diperoleh sukses pertama. Misalkan X menyatakan banyaknya percobaan yang dilakukan untuk mencapai sukses pertama, maka X dikatakan sebagai peubah acak Geometrik dengan parameter p dan fungsi peluangnya P(X = n) = (1 p) n 1 p, n = 1, 2,...
19 Peubah Acak Peubah Acak Diskrit Sebuah koin dilemparkan dengan peluang muncul sisi muka sebesar p, sampai muka pertama muncul. Misalkan N menyatakan banyaknya pelemparan yang dibutuhkan, asumsikan bahwa masing-masing pelemparan yang sukses saling bebas. Tentukan P(N)!
20 Peubah Acak Peubah Acak Diskrit N merupakan p.a yang menyatakan banyaknya pelemparan yang dibutuhkan sehingga muncul sisi muka yang pertama. Maka P(N = 1) = P(M) = p, P(N = 2) = P(B, M) = (1 p)p, P(N = 3) = P(B, B, M) = (1 p) 2 p,. P(N = n) = P(B, B,..., B, M) = (1 p) n 1 p, n 1 Note: muncul B sebanyak n 1 kali
21 Distribusi Poisson Peubah Acak Peubah Acak Diskrit Sebuah peubah acak X yang bernilai 0, 1, 2,... dikatakan peubah acak Poisson dengan parameter λ, jika untuk λ > 0, P(X = x) = e λ λx, x = 0, 1, 2,... x! Distribusi Poisson menyatakan banyaknya kejadian yang terjadi pada suatu selang waktu atau area tertentu.
22 Peubah Acak Peubah Acak Diskrit Misalkan banyaknya kesalahan penulisan dalam sebuah halaman dari suatu buku berdistribusi Poisson dengan parameter λ = 1. Hitung peluang bahwa terdapat setidaknya satu kesalahan pada halaman 5!
23 Peubah Acak Peubah Acak Diskrit P(X 1) = 1 P(X = 0) = 1 e
24 Peubah Acak Kontinu Peubah Acak Peubah Acak Kontinu X merupakan peubah acak kontinu jika terdapat fungsi nonnegatif f (x), terdefinisi untuk semua bilangan real x (, ) sehingga F X (x) = x f X (t)dt atau f X (x) = d dx F X (x)
25 Distribusi Uniform Peubah Acak Peubah Acak Kontinu Sebuah peubah acak dikatakan berdistribusi Uniform sepanjang interval (a, b) jika fungsi peluangnya diberikan f X (x) = { 1 b a, a < x < b 0, x lainnya.
26 Peubah Acak Peubah Acak Kontinu Jika X U( 1, 1). Tentukan P ( X > 1 2)!
27 Peubah Acak Peubah Acak Kontinu Maka P f X (x) = 1 1 ( 1) = 1 2, 1 < x < 1 ( X > 1 ) ( = P X < 1 ) ( + P X > 1 ) = = 1/2 1 [ 1 2 x 1 2 dx + ] 1/ / dx [ 1 2 x ] 1 1/2 = = 1 2
28 Distribusi Eksponensial Peubah Acak Peubah Acak Kontinu Sebuah peubah acak kontinu yang memiliki fungsi peluang sebagai berikut, untuk suatu λ > 0, { λe λx, jika x 0 f X (x) =. 0, jika x < 0 disebut sebagai peubah acak Eksponensial dengan parameter λ.
29 Peubah Acak Peubah Acak Kontinu Misalkan waktu tunggu (dalam menit) antrian di Bank berdistribusi Eksponensial dengan mean 10. Berapa peluang bahwa seorang nasabah menunggu lebih dari 15 menit untuk dilayani?
30 Peubah Acak Peubah Acak Kontinu P(X > 15) = 1 P(X 15) = 1 (1 e 15λ ) = e 15( 1 10) = e 3 2
31 Distribusi Gamma Peubah Acak Peubah Acak Kontinu Sebuah peubah acak kontinu X dengan fungsi peluang f X (x) = 1 Γ(α)β α x α 1 e x β, x 0 untuk suatu β > 0, α > 0 dikatakan berdistribusi Gamma dengan parameter (α, β)
32 Peubah Acak Peubah Acak Kontinu Definisi fungsi Gamma: Γ(α) = e x x α 1 dx 0 Note: Γ(n) = (n 1)! Γ(n + 1) = nγ(n), n > 0
33 Peubah Acak Peubah Acak Kontinu Apa yang dapat kita katakan tentang disribusi Gamma jika α = 1?
34 Peubah Acak Peubah Acak Kontinu Misalkan X Gamma(α = 1, β) maka f (x) = 1 Γ(1) β 1 x 1 1 e x β = 1 β e x β ( ) Maka X Eksp λ = 1 β
35 Distribusi Normal Peubah Acak Peubah Acak Kontinu X merupakan peubah acak Normal dengan parameter µ dan σ 2 jika fungsi peluang X diberikan f X (x) = 1 σ 2π e 1 2( x µ σ ) 2, < x <
36 Peubah Acak Peubah Acak Kontinu Jumlah (dalam ons) sereal MILO berdistribusi Normal dengan mean 16.5 dan standar deviasi σ. Jika si pengemas MILO disyaratkan harus mengisi minimal 90 % kotak sereal MILO dengan 16 ons atau lebih, berapa nilai maksimal dari σ?
37 Peubah Acak Peubah Acak Kontinu P ( Z X N(16.5, σ 2 ) P(X 16) 0.9 ) ( = 1 P σ Z P ) σ ( Z 0.5 ) 0.1 σ Z σ σ
38 Ekspektasi Parameter Distribusi Ekspektasi Distribusi Kontinu Distribusi Diskrit E(X ) = x f X (x)dx E(X ) = x i p i i
39 Parameter Distribusi Ekspektasi Karakteristik ekspektasi: E(g(X )) = g(x)f (x) (untuk distribusi kontinu) E(cX ) = ce(x ), c konstan E(aX + b) = ae(x ) + b E(X 1 + X X n ) = E(X 1 ) + E(X 2 ) E(X n ) E(X Y ) = E(X ) E(Y ), hanya jika X dan Y saling bebas
40 Parameter Distribusi Ekspektasi Misalkan X menyatakan lama (jam) mahasiswa belajar Pengantar Proses Stokastik dan fungsi peluang X adalah sebagai berikut: { x 2, 2 x < 3 f (x) = 1 4, 4 < x < 6 Berapa rata-rata lama waktu mahasiswa belajar Pengantar Proses Stokastik?
41 Parameter Distribusi Ekspektasi E(X ) = = = 2 x f (x) dx 3 x (0)dx + [ 1 3 x 3 x 2 2 ] x (x 2) dx + [ ] x 2 4 = x (0)dx + 4 x ( ) 1 dx 4
42 Variansi Parameter Distribusi Variansi Variansi: Karakteristik variansi: Var(X ) = E[(X X ) 2 ] = E(X 2 ) [E(X )] 2 Var(cX ) = c 2 Var(X ), Var(X 1 + X X n ) = c konstan n i,j=1 Cov[X i, X j ] Var(X 1 + X X n ) = Var(X 1 ) + Var(X 2 ) Var(X n ), hanya jika X i saling bebas
43 Kovariansi Parameter Distribusi Kovariansi Kovariansi: Cov(X, Y ) = E[(X X )(Y Ȳ )] = E(XY ) E(X )E(Y ) Karakteristik kovariansi: Cov(X, X ) = Var(X ) Cov(X, Y ) = 0, jika X dan Y saling bebas Cov(X, Y ) = Cov(Y, X ) Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)
44 Diskusi Diskusi Diskusi 1. Diketahui Tentukan: a. P ( ) X > 1 4 b. Tentukan F (x) 2. Diketahui fungsi peluang: 2x, 0 x 1 2 f (x) = 3 4, 2 < x < 3 0, x yang lain. f (x) = c(4x 2x 2 ), 0 < x < 2 Hitung E(X ) pada P ( 1 2 < X < 3 2).
45 Diskusi Diskusi 3. Maskapai penerbangan mengetahui bahwa 5% dari pemesan tiket tidak datang untuk membeli tiketnya. Dengan alasan ini, maskapai tidak ragu untuk menjual 52 tiket dengan kapasitas duduk 50 orang. Berapa peluang ada kursi yang tersedia untuk setiap pemesan tiket yang datang?
46 Diskusi Diskusi 4. Medibank, perusahaan asuransi kesehatan terbesar di Australia, memiliki polis yang menanggung 100% biaya kesehatan hingga maksimal 1 juta dolar/th polis. Diketahui total tagihan kesehatan X /th memiliki fungsi peluang: f X (x) = x(4 x), 0 < x < 3 9 Jika Y menyatakan total pembayaran yang dilakukan Medibank, tentukan nilai yang mungkin untuk Y! Tentukan ekspektasi dari Y!
47 Penyelesaian Diskusi Diskusi 1. Pertama, cek apakah fungsi tsb merupakan fungsi peluang 1/2 0 2x dx dx = [ x 2] [ ] 1/ x 2 = = 1 a. Nilai P ( X > 1 4) adalah ( P X > 1 ) ( = 1 P X 1 ) 1/4 = 1 2x dx 4 4 = 1 [ x 2] 1/4 = =
48 Diskusi Diskusi b. F (x) nya adalah Untuk x < 0 dan 0 x 1 2 F (x) = Untuk 1 2 < x < 2 x F (x) = f (t)dt = dt + 1/2 0 x 0 dt + 0 2t dt + = 0 + [ x 2] 1/ = 1 4 2t dt = x 2 x 1/2 0 dt
49 Diskusi Diskusi Untuk 2 x 3 F (x) = Untuk x > 3 F (x) = 0 0 dt + 1/2 0 2t dt + = 0 + [ t 2] 1/ dt + 1/2 0 [ 3 4 t 2t dt + = 0 + [ x 2] 1/ /2 ] x x 0 dt dt 2 = x 3 2 = 3 4 x /2 ] 3 [ 3 4 t dt x 4 dt dt + 0 = = 1
50 Diskusi Diskusi x 2, 0 x Jadi, F (x) = 4, 1 2 < x < x 5 4, 2 x 3 1, x > 3
51 Diskusi Diskusi 2. Pertama, tentukan c berdasarkan sifat x f (x) dx = c(4x 2x 2 )dx = [ 2cx cx 3 ] 2 0 = 1 8c 16 3 c = c = 1 c = 3 8 Jadi, kita mempunyai f (x) = 3 8 (4x 2x 2 ) = 3 2 x 3 4 x 2
52 Diskusi Diskusi E(X ) = = 3/2 1/2 x ( 3 2 x 3 ) 4 x 2 dx = [ 1 2 x x 4 ] 3/2 1/2 = /2 1/2 3 2 x x 3 dx
53 Diskusi Diskusi 3. Misalkan X merupakan peubah acak yang menyatakan banyaknya orang yang tidak datang (peluang sukses), maka X B(52, 0.05) Banyaknya yang tidak datang adalah 5%x52 = 2.6 sehingga peluang ada kursi yang tersedia untuk setiap pemesan tiket yang datang adalah jika paling sedikit ada 2 orang yang tidak datang yaitu P(X 2) = 1 [P(X = 0) + P(X = 1)] ( ) ( ) 52 = 1 (0.05) 0 (0.95) (0.05) 1 (0.95) = 0.74
54 Diskusi Diskusi 4. Jika Y menyatakan total pembayaran yang dilakukan Medibank, maka nilai yang mungkin untuk Y adalah dan ekspektasi Y adalah E(Y ) =. = Y = min{x, 1} 3 x f X (x) dx + x = x(4 x) 9 1 dx + 1.f X (x) dx 3 1 x(4 x) 1. dx 9
55 Pustaka Pustaka Pustaka Ross, Sheldon M Introduction to Probability Models; 9th Edition. New York: Academic Press. Syuhada, Khreshna I.A. Materi Kuliah: MA4181 Pengantar Proses Stokastik. Departemen Matematika ITB, Bandung. Taylor, Howard M. dan Samuel Karlin A First Course in Stochastic Processes; Second Edition. New York: Academic Press. Virtamo, J Queueing Theory/ Probability Theory.
Pengantar Proses Stokastik
Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang
Pengantar Proses Stokastik
Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.
Pengantar Proses Stokastik
Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.
Pengantar Proses Stokastik
: Dasar-dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Diskusi 1. Misalkan sebuah koin yang mempunyai peluang muncul muka sebesar.7, dilantunkan tiga kali. Misalkan X menyatakan banyaknya
Pengantar Proses Stokastik
Diskusi 1: Dasar-dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 215 Latihan 1 Dasar-dasar Probabilitas Latihan 1 1. Diketahui Tentukan: a. P ( ) X > 1 4 b. Tentukan F (x) 2. Diketahui
Pengantar Proses Stokastik
Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai
Pengantar Proses Stokastik
Bab 4: Distribusi Eksponensial Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Distribusi Eksponensial Pendahuluan Distribusi eksponensial dapat dipandang sebagai
Statistika Farmasi
Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu
CATATAN KULIAH PENGANTAR PROSES STOKASTIK
CATATAN KULIAH PENGANTAR PROSES STOKASTIK Oleh Atina Ahdika, S.Si, M.Si PROGRAM STUDI STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 2016 Daftar Isi Daftar Isi iv
Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)
Peubah Acak dan Distribusi
BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari
Pengantar Proses Stokastik
: Dasar-dasar Probabilitas, Peluang dan Ekspektasi Bersyarat Statistika FMIPA Universitas Islam Indonesia April 13, 2017 1. Misalkan sebuah koin yang mempunyai peluang muncul muka sebesar 0.7, dilantunkan
Pengantar Proses Stokastik
Bab 6: Rantai Markov Waktu Kontinu Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Pendahuluan Rantai Markov Waktu Kontinu Pendahuluan Pada bab ini, kita akan belajar mengenai
Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)
MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi
MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi
Pengantar Proses Stokastik
Bab 5: Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 2015 Waktu Antar Kedatangan Waktu Antar Kedatangan Misalkan T 1 menyatakan waktu dari kejadian/kedatangan pertama. Misalkan
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika
AK5161 Matematika Keuangan Aktuaria
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika
BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist
BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi
AK5161 Matematika Keuangan Aktuaria
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika
Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika
Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)
CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya
CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan
Catatan Kuliah. MA5181 Proses Stokastik
Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik
Catatan Kuliah. MA5181 Proses Stokastik
Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik
Pengantar Proses Stokastik
Bab 3: Rantai Markov Diskrit Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Rantai Markov Rantai Markov Rantai Markov Misalkan sebuah proses stokastik {X t } dengan t = 0, 1, 2,....
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik
Pengantar Proses Stokastik
: Peluang dan Ekspektasi Bersyarat Statistika FMIPA Universitas Islam Indonesia Peluang dan Ekspektasi Bersyarat 1. Catatan dalam perusahaan asuransi otomotif memberikan informasi bahwa (i) setiap pelanggan
Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik A. Jadwal kuliah:
Pengantar Statistika Matematik(a)
Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014
Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.
Beberapa 27 April 2014 Beberapa Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat memahami dan menghitung
MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik
Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)
Pengantar Statistika Matematik(a)
Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014
Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat
MA38 Teori Peluang - Khreshna Syuhada Bab 9 Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat Ilustrasi 9. Misalkan banyaknya kecelakaan kerja rata-rata per minggu di suatu pabrik adalah empat.
DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN. Sudarno Jurusan Matematika FMIPA UNDIP. Abstrak
DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN Sudarno Jurusan Matematika FMIPA UNDIP Abstrak Dalam proses stokhastik yang mana kejadian dapat muncul kembali membentuk proses pembahauruan. Proses pembaharuan
STATISTICS. WEEK 5 Hanung N. Prasetyo TELKOM POLTECH/HANUNG NP
STATISTICS WEEK 5 Hanung N. Prasetyo Kompetensi 1. Mahasiswa memahamikonsep dasar distribusi peluang kontinu khusus seperti uniform dan eksponensial 2. Mahasiswamampumelakukanoperasi hitungyang berkaitan
Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA
CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi
Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA
CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi
Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah
BAB 1 Peluang dan Ekspektasi Bersyarat 1.1 EKSPEKTASI Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah E(X) x x p X (x) dan E(X)
Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Kuis Selamat Datang MA5181 Proses Stokastik Precise. Prospective. Tanggal 23 Agustus 2016, Waktu: suka-suka menit 1. Mahasiswa yang datang ke ruang kuliah mengikuti suatu proses dengan laju kedatangan
MA4081 PENGANTAR PROSES STOKASTIK Bab 3 Distribusi Eksponensial dan Aplikasinya
MA4081 PENGANTAR PROSES STOKASTIK Bab 3 Distribusi Eksponensial dan Aplikasinya Orang Pintar Belajar Stokastik Kuliah ProsStok, untuk apa? Fakultas Ekonomi ITB? Math is the language of economics. If you
Pengantar Statistika Matematika II
Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik
Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi
Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.
Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen.
Peluang Peluang dan Kejadian Peluang Bersyarat Peubah Acak dan Nilai Harapan Kovarian dan Korelasi 1.1 PELUANG DAN KEJADIAN Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan
Distribusi Probabilitas : Gamma & Eksponensial
Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya
Minggu 1 Review Peubah Acak; Karakteristik Time Series. Minggu 4-6 Model Moving Average (MA), Autoregressive (AR)
CNH4S3 Analisis Time Series [Dosen] Aniq A Rohmawati, M.Si [Jadwal] Need to reschedule? [About] The purpose of time series analysis is generally twofold: to understand or model the stochastic mechanism
MA3081 STATISTIKA MATEMATIKA We love Statistics
Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak
Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah
Variabel Random dan Nilai Harapan Oleh Azimmatul Ihwah Outcomes dari suatu eksperimen dapat dinyatakan dengan angka untuk mempermudah. Suatu variabel yang mengasosiakan outcomes dari suatu eksperimen dengan
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik
Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah
Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi
PENGANTAR MODEL PROBABILITAS
PENGANTAR MODEL PROBABILITAS (PMP, Minggu 8-14) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 8:MOMEN VARIABEL RANDOM Mean dan Variansi Fungsi Pembangkit Momen (MGF) 2 Minggu
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik
STATISTIK PERTEMUAN VI
STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi
Catatan Kuliah. MA5181 Proses Stokastik
Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik
STK511 Analisis Statistika. Pertemuan 3 Sebaran Peluang Peubah Acak
STK511 Analisis Statistika Pertemuan 3 Sebaran Peluang Peubah Acak Beberapa Konsep Dasar Percobaan statistika: kegiatan yang hasil akhir keluarannya tidak diketahui di awal, tetapi kemungkinan-kemungkinannya
STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak
STK 511 Analisis statistika Materi 3 Sebaran Peubah Acak 1 Konsep Peluang 2 Peluang Peluang dapat diartikan sebagai ukuran kemungkinan terjadinya suatu kejadian Untuk memahami peluang diperlukan pemahaman
P (A c B c ) = P [(A B) c ] = 1 P (A B) = 1 P (A) P (B) + P (AB)
Diskusi 1 Tanggal 29 Januari 2014, Waktu: suka-suka menit Peluang suatu kejadian; sifat-sifat peluang (termasuk kejadian-kejadian saling asing dan saling bebas); peluang bersyarat; peluang total; 1. Buktikan
Model dan Simulasi Universitas Indo Global Mandiri
Model dan Simulasi Universitas Indo Global Mandiri Nomor random >> angka muncul secara acak (random/tidak terurut) dengan probabilitas untuk muncul yang sama. Probabilitas/Peluang merupakan ukuran kecenderungan
THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP
THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL
Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 13/11/2013
3//203 STATISTIK INDUSTRI Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh:
STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI
STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran
Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)
Pengantar Statistika Matematika II
Pengantar a Matematika II - Estimator Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia April 17, 2017 atinaahdika.com Dalam kondisi real, kita tidak mengetahui parameter dari populasi
Distribusi Peluang Kontinyu STATISTIK INDUSTRI 1. Distribusi Peluang Kontinyu. Distribusi Diskrit Uniform. Distribusi Diskrit Uniform 17/12/2014
STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Rata-rata dan Variansi Rumus Umum: Distribusi Peluang Diskrit dan Kontinyu UNIFORM Distribusi Diskrit Uniform Distribusi Diskrit Uniform Contoh: Suatu
MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson
MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC Pengantar Seperti sudah disampaikan sebelumnya, analog
28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω
SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan
Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko
MA4081 PENGANTAR PROSES STOKASTIK
Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012 Tentang
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X
Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik
Pengantar Statistika Matematika II
Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan
DISTRIBUSI DISKRIT KHUSUS
DISTRIBUSI DISKRIT KHUSUS UNIFORM (SERAGAM) BERNOULLI BINOMIAL POISSON MULTINOMIAL HIPERGEOMETRIK GEOMETRIK BINOMIAL NEGATIF MA3181 Teori Peluang 27 Oktober 2014 Utriweni Mukhaiyar DISTRIBUSI UNIFORM (SERAGAM)
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik
Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean
MA38 Teori Peluang - Khreshna Syuhada Bab 7 Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean Ilustrasi 7. Seorang peserta kuis diberi dua buah pertanyaan (P-, P-2), yang harus dijawab dengan
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik
DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran
Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)
PENGANTAR PROBABILITAS STATISTIKA UNIPA SBY
PENGANTAR PROBABILITAS GANGGA ANURAGA POKOK BAHASAN Konsep dasar probabilitas Teori himpunan Permutasi Kombinasi Koefisien binomial Koefisien multinomial Probabilitas Aksioma probabilitas Probabilitas
PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh
PEUBAH ACAK Materi 4 - STK211 Metode Statistika October 2, 2017 Okt, 2017 1 Pendahuluan Pernahkah bertanya, mengapa dalam soal ujian penerimaan mahasiswa baru, jika jawaban benar diberi nilai 4, salah
Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Daftar
Pengantar Statistika Matematika II
Bab 6: Statistika FMIPA Universitas Islam Indonesia Inferensi Statistik Pendahuluan Inferensi Statistik Inferensi statistik adalah metode untuk menarik kesimpulan mengenai suatu populasi. Inferensi statistik
Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)
Bab 2 DISTRIBUSI PELUANG
Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut
Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.
Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang
Statistika (MMS-1403)
Statistika (MMS-1403) Dr. Danardono, MPH [email protected] Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Minggu ke- Pokok Bahasan Sub Pokok Bahasan 1. Pendahuluan 1 Perkuliahan
25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak
Konsep Peubah Acak Metode Statistika (STK11) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan
Peubah Acak (Lanjutan)
Learning Outcomes 13 April 2014 Learning Outcomes Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat
P (A c B c ) = P [(A B) c ] = 1 P (A B) = 1 P (A) P (B) + P (AB)
Diskusi 1 Tanggal 29 Januari 2014, Waktu: suka-suka menit Peluang suatu kejadian; sifat-sifat peluang (termasuk kejadian-kejadian saling asing dan saling bebas); peluang bersyarat; peluang total; 1. Buktikan
Peubah Acak dan Distribusi Kontinu
BAB 1 Peubah Acak dan Distribusi Kontinu 1.1 Fungsi distribusi Definisi: Misalkan X peubah acak. Fungsi distribusi (kumulatif) dari X adalah F X (x) = P (X x) Contoh: 1. Misalkan X Bin(3, 0.5), maka fungsi
Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.
6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin
MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik
Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)
Statistika (MMS-1001)
Statistika (MMS-1001) Dr. Danardono, MPH [email protected] Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif
Statistika (MMS-1001)
Statistika (MMS-1001) Dr. Danardono, MPH [email protected] Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Tatap Muka Pokok Bahasan Sub Pokok Bahasan 1. Statistika Deskriptif
AK5161 Matematika Keuangan Aktuaria
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika
Catatan Kuliah. MA4183 Model Risiko
Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko
MA4081 PENGANTAR PROSES STOKASTIK
Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012 Tentang
Dasar-dasar Statistika Pemodelan Sistem
Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari 2016
STATISTIKA UNIPA SURABAYA
MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi
MA5181 PROSES STOKASTIK
Catatan Kuliah MA5181 PROSES STOKASTIK (not just) Always Listening, Always Understanding disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012
