Tugas Statistika Matematika TEORI PELUANG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Tugas Statistika Matematika TEORI PELUANG"

Transkripsi

1 Lusi Agustin Ria Ammelia Wahyu Atiqoh Hani R Tugas Statistika Matematika TEORI PELUANG Percobaan acak menjadi percobaan yang hasilnya tidak dapat diprediksi dengan pasti (dalam probabilitas dasar). Misalkan Ω himpunan bilangan-bilangan / sub interval garis real /semua hasil yang mungkin dari percobaan acak, maka Ω sering disebut ruang hasil (pada teori probabilitas), dan disebut ruang sampel (pada teori statistik). Diberikan ruang sampel Ω, ukuran adalah fungsi himpunan yang telah ditetapkan secara pasti mana yang merupakan himpunan bagian dari Ω yang memenuhi syarat tertentu, yang diberikan dalam definisi berikut: Definisi 1.1 Diberikan f himpunan subset ruang sampelω. f disebut bidang-σ (atau aljabar-σ) jika dan hanya jika memenuhi syarat berikut: (i) Himpunan kosong Ø ϵ f. (ii) Jika A ϵ f, maka komplemennya, A c ϵ f. (iii) Jika A i ϵ f, i=1,2,, makagabungkannya A i ϵ f. Sebuah pasangan (Ω, f) terdiri dari himpunan Ω dan bidang-σ f merupakan subsets dari Ω disebut ruang terukur. Anggota f disebut himpunan terukur dalam teori ukuran atau kejadian di probabilitas dan statistik. Menggunakan hukum D Morgan, didapat: ( A i ) c = A i c. Untuk sembarang Ω yang diberikan, ada 2 bidang-σ trivial. Pertama adalah himpunan yang mengandung 2 anggota pasti, Ø danω. Ini kemungkinan terkecil bidang-σ pada Ω. Kedua adalah himpunan semua subset dari Ω, yang disebut power set dan adalah terbesar bidang-σ padaω. Oleh karena itu,bidang-σ di (1.1) adalah σ ({A}). Perhatikan bahwa σ({a,a c }), σ({a,ω}), dan σ({a, })semua sama dengan σ({a}). Tentu saja, jika C itu sendiri adalah bidang-σ, maka σ(c) = C. Biarkan C menjadi kumpulan semua interval terbuka terbatas pada R. Lalu B = σ(c) disebut Borel σ-bidang. Unsur-unsur dari B disebut Borel set. The Borel bidang-σ B k pada ruang Euclidk-dimensi R k dapat didefinisikan secara sama. Hal ini dapat menunjukkan bahwa semua interval (terbatas atau tak terbatas), set terbuka, dan set tertutup adalah himpunan Borel.

2 Misalkan C R k menjadi set Borel dan dimisalkankan B C ={C B: B B k }. maka (C, B C ) adalah ruang terukur dan B C disebut Borel bidang-σ pada C. Definisi 1.2. misalkan (Ω,f) menjadi ruang yang terukur. Fungsi set ν didefinisikan pada f disebut ukuran jika dan hanya jika memiliki syarat berikut: (i) 0 ν (A) untuk setiap A F. (ii) ν ( ) = 0. (iii) Jika A i F, i = 1, 2,..., dan A i adalah terpisah, yaitu, A i A j = untuk setiap i j, makaν v( i=1 Ai) = i=1 v(ai) Tripel (Ω,F,v) disebut ruang terukur. Jikav(Ω) = 1, maka v disebut ukuran probabilitas dan (Ω,F,P) disebut ruang probabilitas. Terkadang ukuran bisa menjadi sangat abstrak, walaupun ukuran adalah perpanjangan panjang, A F, A luas atau volume. Contohnya v(a) = { (1.2) 0 A = Jika Ω adalah dihitung dalam arti bahwa ada satu-ke-satu korespondensi antara Ω dan himpunan semua bilangan bulat, maka kita biasanya dapat mempertimbangkan σ-bidang trivial yang berisi semua himpunan bagian dari Ω dan ukuran yang memberikan suatu Nilai setiap bagian dari Ω. Ketika Ω adalah terhitung (misalnya, Ω = R atau [0,1]), Tidak mungkin untuk menentukan ukuran yang wajar untuk setiap subset dari Ω. Proposisi 1.1 Misal (Ω,F,v)menjadi ruang terukur. (i) Monotonisitas. Jika A B, maka v(a) v(b). (ii) Subadditifitas. Untuk barisana 1, A 2,, (iii) v( i=1 Ai) i=1 v(ai) Kontinuitas. Jika A 1 A 2 A 3 (or A 1 A 2 A 3 and ν(a 1 ) <), maka v (lim n An) = lim n v(an), dimana lim n An = i=1 Ai (or = Ai i=1 ). Ada korespondensi satu-satu diantara himpunan semua ukuran probabilitas pada (R,B) dan sebuah fungsi pada R. Misal P adalah ukuran probabilitas. Fungsi distribusi kumulatif (c.d.f) dari P didefinisikan F(x) = P ((, x]), x R. (1.4) Proposisi 1.2 (i) Misal F(c.d.f.) pada R. Maka (a) F( ) = lim x F(x) = 0; (b) F() = lim x F(x) = 1; (c) F tidak meningkat F(x) F(y) if x y; (d) F is kontinu, lim y x,y>x F(y) = F(x). (ii) Misalkan fungsi F bernilai real pada memenuhi R (a) - (d) di bagian (i). Maka F adalah(c.d.f.)dariukuranprobabilitas yang unikpada (R, B).

3 Proposisi 1.3 (Mengukur Hasil kali teorema) diberikan (Ω i, F i, V i )i = 1, k, menjadi ruang ukuran dengan langkah-langkah σ- menghitung terbatas, di mana k 2 adalah bilangan bulat. Kemudian terdapat σ- terbatas ukuran yang tunggal pada hasil kali σ-field (F 1. F k ), yang disebut ukuran produk dan dilambangkan dengan V 1. V k, sehingga Untuk semua A i F i, i = 1, k. V 1 V k (A 1 A k ) = V 1 (A 1 ) V k (A k ) Di R 2, ada ukuran yang tunggal, hasil ukuran m m, dimana m m ([a 1, b 1 ] [a 2, b 2 ]) adalah sama dengan nilai yang diberikan oleh (1,5). langkah ini disebut ukuran Lebesgue pada (R 2, B 2 ). The Lebesgue mengukur pada (R 3, B 3 ) adalah m m m, yang sama dengan volume biasa untuk subset dari bentuk [a 1, b 1 ] [a 2, b 2 ] [a 3, b 3 ]. The Lebesgue mengukur pada (R k, B k ) untuk setiap bilangan bulat positif k adalah sama. Konsep c.d.f. dapat diperpanjang untuk R k. Misalkan P probabilitas Teori 6 1. Probabilitas mengukur pada (R k, B k ). c.d.f. dari P, didefinisikan oleh : F(x 1,..., x k ) = P ((,x 1 ] (,x k ]), x i R. (1.6) ada korespondensi satu-ke-satu antara ukuran probabilitas dan sendi cdf di R k. Beberapa properti dari c.d.f. F i (x) =lim xj,j=1, i 1,i+1, k F(x 1, x i 1, x, x i + 1, x k ) disebut c.d.f. marjinal i Rupanya, c.d.f s marjinal yang ditentukan oleh cdf bersama mereka Tapi c.d.f. bersama tidak dapat ditentukan oleh k marjinal c.d.f s itu. Ada satu yang istimewa, tapi yang penting kasus di mana seorang c.d.f bersama F ditentukan oleh k c.d.f. marjinal Melalui F i s F(x 1,..., x k ) = F 1 (x 1 ) F k (x k ), (x 1,..., x k ) R k, (1.7) Proposisi 1.3 dapat diperluas untuk kasus yang melibatkan jauh lebih banyak-langkah ruang yakin (Billingsley, 1986). Secara khusus, jika (R k, B k, P i ), i = 1,2,..., adalah ruang probabilitas, maka ada P ukuran probabilitas produk pada i=1 (R k, B k ) sehingga untuk setiap bilangan bulat positif l dan B i B k, i = 1,, l, P(B 1 B l R k R k ) = P 1 (B 1 ) P l (B l ) fungsi terukur dan distribusi Sejak Ω bisa sewenang-wenang, untuk mempertimbangkan fungsi (Mapping) f dari Ω ke Λ ruang sederhana (sering Λ = R k ). Biarkan B Λ. Kemudian gambar invers dari B di bawah f adalah f 1 (B) = {f B} = {ω Ω f(ω) B}.

4 Fungsi invers f 1 kebutuhan tidak ada untuk f 1 (B) didefinisikan untuk memverifikasi sifat sebagai berikut: a) f 1 (B c ) = (f 1 (B)) c untuk setiap B Λ; b) f 1 ( B i ) = f 1 (B i ) untuk setiap B i Λ, i = 1,2,.... Diberikan C subset himpunan dari Λ f 1 (C) = {f 1 (C) C C}. Definisi 1.3. diberikan (Ω, F) dan (Λ, G) menjadi ruang terukur dan f sebuah Fungsi dari Ω untuk Λ. Fungsi f disebut fungsi terukur dari (Ω, F) ke (Λ, G) jika dan hanya jika f 1 (G) F. Jika Λ = R dan G = B (Borel σ-field), maka f dikatakan Borel terukur atau disebut fungsi Borel pada (Ω, F) (atau sehubungan dengan F). Dalam teori peluang fungsi terukur disebut elemen acak dan dilambangkan oleh salah satu X, Y, Z,... Jika X diukur dari (Ω, F) untuk (R, B), maka disebut sebagai variabel acak; jika X diukur dari (Ω, F) ke (R k, B k,), maka disebut k-vektor acak. Jika X 1,..., X k adalah variabel acak yang didefinisikan pada ruang peluang umum, maka vector (X 1,..., X k ) adalah k-vektor acak. (Sebagai konvensi notasi, vektor setiap c R k dinotasikan dengan (c 1,..., c k,), di mana c i, adalah komponen i dari c.) Jika f diukur dari (Ω, F) ke (Λ, G), maka f 1 (G) adalah sub-σ-bidang F (verifikasi). Hal ini disebut σ-bidang yang dihasilkan oleh f dan dinotasikan dengan σ (f). Secara umum, σ (X) adalah antara sepele σ-bidang {, Ω} dan F, dan berisi lebih subset jika X lebih rumit. Untuk fungsi sederhana IA, kami telah menunjukkan bahwa σ (IA) hanya empat elemen. Kelas fungsi sederhana diperoleh dengan mengambil kombinasi linear. indikator himpunan terukur, yaitu, k φ(ω) = i=1 a i IA i (ω) (1.8) di mana A 1,, A k adalah set terukur pada Ω dan a 1,..., a k adalah bilangan real. Satu dapat menunjukkan secara langsung bahwa fungsi tersebut adalah fungsi Borel, Dari Proposisi 1.4. Misalkan A 1,, A k menjadi partisi Ω, yaitu, A i s yang saling lepas dan A 1.. A k = Ω. Maka fungsi sederhana φ diberikan oleh (1,8) dengan berbeda ai 's persis ciri partisi ini dan σ (φ) = σ ({A 1,, A k }). Proposisi 1.4. Biarkan (Ω, F) menjadi ruang terukur. i. f adalah Borel jika dan hanya jika f 1 (a, ) F untuk semua a R. ii. Jika f dan g adalah Borel, maka begitu juga fg dan af + bg, di mana a dan b adalah real nomor; juga, f / g yaitu Borel disediakan g (ω) 6 = 0 untuk setiap Ω ω. iii. Jika f 1, f 2,... adalah Borel, maka begitu juga sup n f n, inf n f n, lim sup n f n, dan Lim inf n f n. Selain itu, himpunan

5 A = {ω Ω: lim n f n (ω)exists} Merupakan kejadian dari fungsi Borel h(ω) = { lim n f n (ω) ω A f 1 (ω) ω bukan A iv. Misalkan f diukur dari (Ω, F) ke (Λ, G) dan g diukur dari (Λ, G) ke (Δ, H). Maka fungsi g f komposit dapat diukur dari (Ω, F) ke (Δ, H). v. Mari Ω menjadi set Borel dalam R p. Jika f adalah fungsi kontinu dari Ω ke R q, maka f dapat diukur. Proposisi 1.4 menunjukkan bahwa ada banyak fungsi Borel. Faktanya, sulit untuk menemukan fungsi non-borel. Hasil berikut ini sangat berguna dalam bukti teknis. Biarkan f menjadi non Fungsi Borel negatif pada (Ω, F). Maka terdapat urutan sederhana fungsi {φ n} memuaskan 0 φ 1 φ 2 f dan lim n φ n = f Biarkan (Ω, F, ν) menjadi ruang ukuran dan f menjadi fungsi terukur dari (Ω, F) ke (Λ, G). Ukuran disebabkan oleh f, dinotasikan dengan ν f -1, adalah ukuran pada G didefinisikan sebagai Jika ν = P adalah ukuran probabilitas dan X adalah variabel random atau vektor acak, maka P X -1 disebut hukum atau distribusi X dan dilambangkan dengan P X. C.d.f. The P X didefinisikan oleh (1.4) atau (1.6) disebut juga c.d.f. yang atau c.d.f. bersama X dan dilambangkan dengan F X. Di sisi lain, untuk c.d.f. setiap atau c.d.f. bersama F, terdapat setidaknya satu variabel acak atau vektor (biasanya ada banyak) didefinisikan pada beberapa ruang probabilitas untuk berikut ini yang FX = F. adalah beberapa contoh variabel acak dan c.d.

1. σ field dan pengukuran Definisi 1.1

1. σ field dan pengukuran Definisi 1.1 TEORI PROBABILITAS 1. σ field dan pengukuran Misalkan Ω adalah elemen dari himpunan. Contoh Ω merupakan himpunan bilangan dalam suatu interval di bilangan riil yang merupakan hasil dari percobaan random.

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA VARIABEL RANDOM Misalkan (Ω, A, P) ruang probabilitas dan R = {x < x < } dan B : Borel field pada R. Andaikan X : Ω R dan untuk setiap A R, kita definisikan

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh BAB III INTEGRAL LEBESGUE Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh fungsi-fungsi terukur dan memenuhi sifat yang berkaitan dengan integral Lebesgue. Kajian mengenai keterukuran suatu

Lebih terperinci

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya tidak dapat diprediksi dengan tepat tetapi kita

Lebih terperinci

BAB 3 KONDISI SPECTRUM. Pada bab ini akan diperlihatkan hasil utama dari penelitian ini. Hasil utama yang

BAB 3 KONDISI SPECTRUM. Pada bab ini akan diperlihatkan hasil utama dari penelitian ini. Hasil utama yang BAB 3 KONDISI SPECTRUM Pada bab ini akan diperlihatkan hasil utama dari penelitian ini. Hasil utama yang diperoleh berdasarkan penjelasan - penjelasan yang telah dipaparkan pada bab - bab sebelumnya. Hasil

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3. Topologi Garis Bilangan Real 3.1 Teori Limit Limit, supremum, dan infimum Titik limit 3.2 Himpunan Buka dan Himpunan Tutup 3.3

Lebih terperinci

I. Aljabar Himpunan Handout Analisis Riil I (PAM 351)

I. Aljabar Himpunan Handout Analisis Riil I (PAM 351) I. Aljabar Himpunan Aljabar Himpunan Dalam bab ini kita akan menyajikan latar belakang yang diperlukan untuk mempelajari analisis riil. Dua alat utama analisis riil, yakni aljabar himpunan dan fungsi,

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Bab 1 Sifat Kelengkapan Bilangan Real 2 1.1 Paradoks Zeno ACHILLES TORTOISE 0 1 1½ Sumber: skeptic.com 1 1 1... 1 2 4 8?

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Bab 7 Limit dan Kekontinuan 2 Isaac Newton (1643-1727) Isaac Newton adalah seorang fisikawan & matematikawan Inggris yang

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 18, 2011 Kita telah mencatat sebelumnya bahwa supremum dan infimum suatu himpunan tidak harus merupakan anggota himpunan

Lebih terperinci

5. Sifat Kelengkapan Bilangan Real

5. Sifat Kelengkapan Bilangan Real 5. Sifat Kelengkapan Bilangan Real Sifat aljabar dan sifat urutan bilangan real telah dibahas sebelumnya. Selanjutnya, akan dijelaskan sifat kelengkapan bilangan real. Bilangan rasional ℚ juga memenuhi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fungsi Densitas Definisi 2.1 (Walpole & Myers, 1989) Fungsi adalah fungsi kepadatan peluang peubah acak kontinu, yang biasanya disebut fungsi densitas,yang didefinisikan di atas

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4.2 Sifat-Sifat Fungsi Kontinu Diberikan f dan g, keduanya terdefinisi pada himpunan A, kita definisikan f + g, f g, fg, f/g secara

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

FUNGSI KONTINU. sedemikian sehingga jika x adalah titik dari A (c), maka f (x) berada pada Vg (f (c)). (Lihat Gambar 5.1.1).

FUNGSI KONTINU. sedemikian sehingga jika x adalah titik dari A (c), maka f (x) berada pada Vg (f (c)). (Lihat Gambar 5.1.1). FUNGSI KONTINU 51 FUNGSI KONTINU 511 Definisi A R, f: A R, dan c A Kita mengatakan bahwa f kontinu di c jika, diberi persekitaran Vg (f (c)) dari f (c) terdapat persekitaran (c) dari c sedemikian sehingga

Lebih terperinci

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti Kuliah 2: FUNGSI MULTIVARIABEL Indah Yanti Definisi Dasar Perhatikan fungsi f: A R n R m : x f x n = m = 1 fungsi bernilai riil satu variabel n = 1, m > 1 fungsi bernilai vektor satu variabel n > 1, m

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan

Lebih terperinci

KONSTRUKSI SISTEM BILANGAN

KONSTRUKSI SISTEM BILANGAN KONSTRUKSI SISTEM BILANGAN KEVIN MANDIRA LIMANTA 1. Konstruksi Aljabar 1.1. Bilangan Natural. Himpunan bilangan paling primitif adalah bilangan natural N, yang dicacah dengan aturan sebagai berikut: (1)

Lebih terperinci

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR MATERI A. Persamaan dan Pertidaksamaan Nilai Mutlak A. PERSAMAAN DAN PERTIDAKSAMAAN YANG MEMUAT NILAI MUTLAK Dalam matematika, sesuatu yang nilainya selalu positif

Lebih terperinci

TOPOLOGI RUANG LINEAR

TOPOLOGI RUANG LINEAR TOPOLOGI RUANG LINEAR Nila Kurniasih Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo Jalan KHA. Dahlan 3 Purworejo e-mail: kurniasih.nila@yahoo.co.id Abstrak Tulisan ini bertujuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan selanjutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3.2 Himpunan Buka dan Himpunan Tutup Titik limit dari suatu himpunan tidak harus merupakan anggota himpunan tersebut. Pada interval

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,

Lebih terperinci

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi semua fungsi yang terintegralkan Lebesgue, 1. Sebagaimana telah dirumuskan

Lebih terperinci

Lampiran A. Beberapa Definisi dan Lema Teknis

Lampiran A. Beberapa Definisi dan Lema Teknis LAMPIRAN 33 Lampiran A. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Definisi A.1 (Ruang contoh dan kejadian) Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya

Lebih terperinci

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua II. LANDASAN TEORI 2.1 Limit Fungsi Definisi 2.1.1(Edwin J, 1987) Misalkan I interval terbuka pada R dan f: I R fungsi bernilai real. Secara matematis ditulis lim f(x) = l untuk suatu a I, yaitu nilai

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut

Lebih terperinci

HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma

HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma HIMPUNAN MATEMATIKA Program Studi Agroteknologi Universitas Gunadarma Ruang Lingkup Pengertian Himpunan Notasi Himpunan Cara menyatakan Himpunan Macam Himpunan Diagram Venn Operasi Himpunan dan Sifat-sifatnya

Lebih terperinci

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN I MODUL ATAS RING Direncanakan

Lebih terperinci

Analisis Real A: Teori Ukuran dan Integral

Analisis Real A: Teori Ukuran dan Integral Analisis Real A: Teori Ukuran dan Integral Johan Matheus Tuwankotta March 5, 203 Departemen Matematika, FMIPA, Institut Teknologi Bandung, Jl. Ganesha no. 0, Bandung, Indonesia. mailto:theo@math.itb.ac.id

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Himpunan. Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Himpunan Bahan kuliah Matematika Diskrit 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan,

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. November 19, 2007 Secara geometris, f kontinu di suatu titik berarti bahwa grafiknya tidak terputus

Lebih terperinci

Analisis Real. Johan Matheus Tuwankotta 1. December 3,

Analisis Real. Johan Matheus Tuwankotta 1. December 3, Analisis Real Johan Matheus Tuwankotta December 3, 200 Departemen Matematika, FMIPA, Institut Teknologi Bandung, jl. Ganesha no. 0, Bandung, Indonesia. mailto:theo@dns.math.itb.ac.id 2 Daftar Isi Sistem

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Bab II Kajian Teori Copula

Bab II Kajian Teori Copula Bab Kajian Teori Copula.1 Pendahuluan Copula Tesis ini mengacu pada terminologi copula sebagai fungsi yang menghubungkan fungsi distribusi multivariat terhadap fungsi distribusi marginal uniform. Misalkan

Lebih terperinci

KUANTOR KHUSUS (Minggu ke-8)

KUANTOR KHUSUS (Minggu ke-8) KUANTOR KHUSUS (Minggu ke-8) 1 4 Kuantor Jenis Lain Terdapatlah satu dan hanya satu x yang mempunyai sifat P. ( x)(p(x) ( y)(p(y) = y = x)) Terdapat x yang memenuhi sifat p dan untuk setiap y yang memenuhi

Lebih terperinci

PENDAHULUAN LANDASAN TEORI

PENDAHULUAN LANDASAN TEORI 1 PENDAHULUAN Latar Belakang Dalam kehidupan sehari-hari, banyak permasalahan yang dapat dimodelkan dengan proses stokastik. Proses stokastik dapat dibedakan menjadi dua yaitu proses stokastik dengan waktu

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT HUKUM BILANGAN BESAR LEMAH DAN KUAT Misalkan X 1, X 2, X 3... barisan variabel random. Kita tulis S n = n X i. Dalam subbab ini kita akan menjawab pertanyaan

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

MINGGU KE-7 INTEGRAL LEBESQUE

MINGGU KE-7 INTEGRAL LEBESQUE MINGGU KE-7 INTEGRAL LEBESQUE INTEGRAL LEBESQUE (Ω, A, µ): measure space Fungsi Ψ : Ω R disebut sederhana bila jelajahnya berhingga. Misalkan A A. Maka I A : Ω {0, 1} yang didefinisikan sebagai I A (X

Lebih terperinci

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.

Lebih terperinci

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM.

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. HUKUM ITERASI LOGARITMA TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. 00290 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 5.3 Kalkulus Turunan Pada bagian ini kita akan membahas sejumlah aturan untuk diferensial dan aturan untuk turunan, yg mempunyai kemiripan

Lebih terperinci

HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI

HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI HIMPUNAN ARUM HANDINI PRIMANDARI, M.SC AYUNDYAH KESUMAWATI, M.SI Himpunan Jenis-jenis himpunan Operasi Pada Himpunan Cara Menuliskan Himpunan Himpunan kosong & semesta Himpunan berhingga & tak berhingga

Lebih terperinci

DISTRIBUSI SATU PEUBAH ACAK

DISTRIBUSI SATU PEUBAH ACAK 0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak

Lebih terperinci

Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HIMPUNAN Himpunan (set) Himpunan (set) adalah kumpulan objekobjek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan Enumerasi Simbol-simbol Baku Notasi

Lebih terperinci

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA Mila Apriliani Utari, Encum Sumiaty, Sumanang Muchtar Departemen Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia *Coresponding

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T } adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu

Lebih terperinci

HIMPUNAN. Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si

HIMPUNAN. Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si HIMPUNAN Arum Handini Primandari, M.Sc Ayundyah Kesumawati, M.Si 1. Himpunan kosong & semesta 2. Himpunan berhingga & tak berhingga Jenis-jenis himpunan 3. Himpunan bagian (subset) 4. Himpunan saling lepas

Lebih terperinci

DASAR-DASAR TEORI PELUANG

DASAR-DASAR TEORI PELUANG DASAR-DASAR TEORI PELUANG Herry P. Suryawan 1 Ruang Peluang Definisi 1.1 Diberikan himpunan tak kosong Ω. Aljabar-σ (σ-algebra pada Ω adalah koleksi subhimpunan A dari Ω dengan sifat (i, Ω A (ii jika A

Lebih terperinci

LANDASAN MATEMATIKA Handout 2

LANDASAN MATEMATIKA Handout 2 LANDASAN MATEMATIKA Handout 2 (Himpunan bagian, kesamaan dua himpunan, comparable, himpunan kosong, himpunan kuasa, kardinalitas, himpunan hingga dan tak hingga) Tatik Retno Murniasih, S.Si., M.Pd. tretnom@unikama.ac.id

Lebih terperinci

MA3081 STATISTIKA MATEMATIKA We love Statistics

MA3081 STATISTIKA MATEMATIKA We love Statistics Catatan Kuliah MA3081 STATISTIKA MATEMATIKA We love Statistics disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Daftar Isi 1 Peubah Acak

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 4. Fungsi Kontinu 4.1 Konsep Kekontinuan Fungsi kontinu Limit fungsi dan limit barisan Prapeta himpunan buka 4.2 Sifat-Sifat Fungsi

Lebih terperinci

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd SUBRUANG VEKTOR Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd Disusun Oleh : Kelompok 6/ III A4 1. Nina Octaviani Nugraheni 14144100115 2. Emi Suryani 14144100126

Lebih terperinci

16. Analisis Multi Resolusi

16. Analisis Multi Resolusi 16. Analisis Multi esolusi Esensi dari basis ortonormal yang dibangun oleh sebuah wavelet adalah sifat multi resolusi-nya, sehingga kita dapat menganalisis suatu signal pada berbagai frekuensi di suatu

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

asimtot.wordpress.com BAB I PENDAHULUAN

asimtot.wordpress.com BAB I PENDAHULUAN BAB I PENDAHULUAN. Latar Belakang Kalkulus Differensial dan Integral sangat luas penggunaannya dalam berbagai bidang seperti penentuan maksimum dan minimum. Suatu fungsi yang sering digunakan mahasiswa

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut:

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: Bagian 5. RUANG VEKTOR 5.1 Lapangan (Field) Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: 1. dan 2., 3.,

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Teori Himpunan Jurusan Informatika FMIPA Unsyiah February 25, 2015 Himpunan (set) adalah koleksi dari objek-objek yang terdefinisikan dengan baik. Terdefinisikan dengan baik dimaksudkan bahwa untuk sebarang

Lebih terperinci

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari.

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari. BAB III Standard Kompetensi 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring menggunakannya dalam kehidupan sehari-hari. Kompetensi Dasar: Mahasiswa diharapkan dapat 3.1 Menyebutkan definisi

Lebih terperinci

Hidup penuh dengan ketidakpastian

Hidup penuh dengan ketidakpastian BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar MATEMATIKA DISKRIT

BAB 6 ALJABAR BOOLE. 1. Definisi Dasar MATEMATIKA DISKRIT BAB 6 ALJABAR BOOLE 1. Definisi Dasar Himpunan dan proposisi mempunyai sifat yang serupa yaitu memenuhi hukum identitas. Hukum ini digunakan untuk mendefinisikan struktur matematika abstrak yang disebut

Lebih terperinci

BAB III FUNGSI YOUNG DAN KOMPLEMEN YOUNG

BAB III FUNGSI YOUNG DAN KOMPLEMEN YOUNG BAB III FUNGSI YOUNG DAN KOMPLEMEN YOUNG Pada bab ini, dibahas tentang definisi fungsi Young dengan domain real diperluas dan komplemennya. Sebelumnya, dalam studi deret Fourier, W. H. Young telah menganalisis

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 5 KUANTOR II: METODE MEMILIH (c) Hendra Gunawan (2015) 2 Masih Berurusan dengan Kuantor Sekarang kita akan membahas metode memilih,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

PENGANTAR MODEL PROBABILITAS

PENGANTAR MODEL PROBABILITAS PENGANTAR MODEL PROBABILITAS (PMP, Minggu 1-7) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 1:HIMPUNAN Operasi Himpunan Sifat-Sifat Operasi Himpunan 2 Minggu 2:COUNTING TECHNIQUE

Lebih terperinci

Matematika Komputasional. Himpunan. Oleh: M. Ali Fauzi PTIIK - UB

Matematika Komputasional. Himpunan. Oleh: M. Ali Fauzi PTIIK - UB Matematika Komputasional Himpunan Oleh: M. Ali Fauzi PTIIK - UB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah

Lebih terperinci

Ruang Vektor. Adri Priadana. ilkomadri.com

Ruang Vektor. Adri Priadana. ilkomadri.com Ruang Vektor Adri Priadana ilkomadri.com MEDAN SKLAR Misalkan diketahui bahwa K adalah himpunan, dan didefinisikan 2 buah operasi penjumlahan (+) dan perkalian (*). Maka K dikatakan medan skalar jika dipenuhi

Lebih terperinci

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan

Lebih terperinci

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit BAB I RUANG EKTOR UMUM Dalam bab ini akan dipelajari tentang konsep ruang vektor umum, sub ruang vektor dan sifat-sifatnya. Pada pembicaraan ini, para mahasiswa dianggap sudah mengenal konsep dan sifat

Lebih terperinci

FUNGSI DAN LIMIT FUNGSI

FUNGSI DAN LIMIT FUNGSI 2 FUNGSI DAN LIMIT FUNGSI 2.1 Fungsi dan Grafiknya Definisi Sebuah fungsi f dari himpunan A ke himpunan B adalah suatu aturan yang memasangkan setiap x anggota A dengan tepat satu y anggota B. A disebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya;

BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya; BAB II TINJAUAN PUSTAKA A. Himpunan 1. Pengertian Himpunan Himpunan merupakan konsep mendasar yang terdapat dalam ilmu matematika. Himpunan adalah kumpulan obyek yang didefinisikan secara jelas. Ada tiga

Lebih terperinci

BAB I DERIVATIF (TURUNAN)

BAB I DERIVATIF (TURUNAN) BAB I DERIVATIF (TURUNAN) Pada bab ini akan dipaparkan pengertian derivatif suatu fungsi, beberapa sifat aljabar derivatif, aturan rantai, dan derifativ fungsi invers. A. Pengertian Derivatif Pengertian

Lebih terperinci

Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1

Bahan kuliah IF2120 Matematika Diskrit. Himpunan. Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB 1 Bahan kuliah IF2120 Matematika Diskrit Himpunan Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan

Lebih terperinci

Himpunan (set) Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Himpunan (set) Objek di dalam himpunan disebut elemen, unsur, atau anggota. Teori Himpunan 2011 Himpunan (set) Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Cara Penyajian Himpunan 1. Enumerasi Contoh 1. -

Lebih terperinci

Uraian Singkat Himpunan

Uraian Singkat Himpunan Uraian Singkat Himpunan Yus Mochamad Cholily Jurusan Pendidikan Matematika Universitas Muhammadiyah Malang email:ymcholily@gmail.com March 3, 2014 1 Daftar Isi 1 Tujuan 3 2 Notasi Himpunan 3 3 Operasi

Lebih terperinci

Minggu XI ANALISIS KOMPONEN UTAMA. Utami, H

Minggu XI ANALISIS KOMPONEN UTAMA. Utami, H Minggu XI ANALISIS KOMPONEN UTAMA Utami, H Outline 1 Pendahuluan 2 Tujuan 3 Analisis Komponen Utama 4 Contoh Utami, H Minggu XIANALISIS KOMPONEN UTAMA 2 / 16 Outline 1 Pendahuluan 2 Tujuan 3 Analisis Komponen

Lebih terperinci

Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota.

Definisi. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. Himpunan 1 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota

Lebih terperinci

II. KONSEP DASAR GRUP. abstrak (abstract algebra). Sistem aljabar (algebraic system) terdiri dari suatu

II. KONSEP DASAR GRUP. abstrak (abstract algebra). Sistem aljabar (algebraic system) terdiri dari suatu II KONSEP DASAR GRUP Suatu cabang matematika yang mempelajari struktur aljabar dinamakan aljabar abstrak abstract algebra Sistem aljabar algebraic system terdiri dari suatu himpunan obyek satu atau lebih

Lebih terperinci