Lampiran A. Beberapa Definisi dan Lema Teknis

Ukuran: px
Mulai penontonan dengan halaman:

Download "Lampiran A. Beberapa Definisi dan Lema Teknis"

Transkripsi

1 LAMPIRAN

2 33 Lampiran A. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Definisi A.1 (Ruang contoh dan kejadian) Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya tidak dapat diprediksi secara tepat tapi kita dapat mengetahui semua kemungkinan hasil yang muncul disebut percobaan acak. Himpunan semua hasil yang mungkin dari percobaan acak disebut ruang contoh dan dinotasikan dengan Ω. Suatu kejadian adalah himpunan bagian dari rung contoh. (Ross 1996) Definisi A.2 (Medan -) Suatu himpunan yang anggotanya terdiri atas himpunan bagian dari Ω disebut dengan medan - jika memenuhi syarat sebagai berikut: (i) (ii). Jika maka. (iii) Jika,, maka. (Grimmet dan Stirzaker 1992) Medan-terkecil yang mengandung semua selang berbentuk,, disebut medan Borel, dinotasikan B( dan anggota dari medan Borel disebut himpunan Borel. Definisi A.3 (Ukuran peluang) Ukuran peluang P pada Ω, adalah fungsi P : 0,1 yang memenuhi: (i) P 0, PΩ 1. (ii) Jika,, adalah himpunan disjoin yang merupakan anggota dari, yaitu untuk setiap i, j dengan maka P P. Tripel (Ω,, P) disebut sebagai ruang peluang.

3 34 Definisi A.4 (Kejadian saling bebas) Kejadian dan dikatakan saling bebas jika P P P. Secara umum, himpunan kejadian, dikatakan saling bebas jika P P untuk setiap himpunan bagian dari. Peubah Acak dan Fungsi Sebaran Definisi A.5 (Peubah acak) Peubah acak adalah fungsi : Ω dengan Ω; untuk setiap. Definisi A.6 (Fungsi sebaran) Fungsi sebaran dari suatu peubah acak X adalah : 0,1, yang didefinisikan oleh P. Definisi A.7 (Peubah acak diskret) Peubah acak dikatakan diskret jika semua himpunan nilai,, merupakan himpunan tercacah. Untuk peubah acak diskret fungsi kepekatan peluang didefinisikan sebagai berikut: Definisi A.8 (Fungsi kerapatan peluang) Fungsi kerapatan peluang dari peubah acak diskret adalah fungsi : 0,1 dengan P.

4 35 Definisi A.9 (Peubah acak Poisson) Suatu peubah acak disebut peubah acak Poisson dengan parameter, 0, jika fungsi kerapatan peluangnya diberikan oleh P, untuk 0,1,2,! (Ghahramani 2005) Kekonvergenan Definisi A.10 (Kekonvergenan barisan bilangan nyata) Barisan disebut mempunyai limit dan dituliskan lim atau jika, apabila untuk setiap 0 terdapat sebuah bilangan sedemikian sehingga jika maka. Jika lim ada, dikatakan barisan tersebut konvergen. Jika tidak, barisan tersebut dikatakan divergen. (Stewart 1999) Lema A.1 (Deret-p) Deret (disebut juga deret-p) konvergen jika 1, dan divergen jika 1. Bukti: Lihat Stewart (1999). Definisi A.11 ( Konvergen dalam peluang) Misalkan,,, adalah peubah acak dalam ruang peluang Ω,, P. Barisan peubah acak konvergen dalam peluang ke, dinotasikan, jika untuk setiap 0, P 0 untuk. Nilai Harapan, Ragam dan Momen Definisi A.12 (Nilai harapan) Misalkan adalah peubah acak diskret dengan fungsi kerapatan peluang P. Nilai harapan dari dinotasikan E, adalah

5 36 jika jumlah diatas konvergen mutlak. E P, Lema A.2 Jika,,, adalah peubah acak dan,,, adalah konstanta sembarang, maka Bukti: Lihat Ghahramani (2005). E E. Definisi A.13 (Ragam) Misalkan adalah peubah acak diskret dengan fungsi kerapatan peluang dan nilai harapan E, ragam dari dinotasikan dengan Var atau, adalah E E E. Lema A.3 Jika adalah peubah acak maka untuk sembarang konstanta a dan b berlaku Var Var. (Ghahramani 2005) Bukti: Dari definisi dapat dituliskan bahwa Var E E E E E E E E E E

6 37 Var. Dengan demikian Lema A.3 terbukti. Definisi A.14 (Covarian) Misalkan dan adalah peubah acak, covarian dari dan didefinisikan sebagai Cov, E E E. (Ghahramani 2005) Lema A.4 Misalkan dan adalah peubah acak dan misalkan pula a dan b adalah konstanta sembarang, maka Var Var 2Cov,. Jika dan adalah peubah acak yang saling bebas, maka Var Var. (Ghahramani 2005) Bukti: Dari definisi dapat dituliskan bahwa E E E E E E E E E E E 2 E E Var Var 2Cov,. Dengan demikian Lema A.4 terbukti. Definisi A.15 (Momen ke-k) Jika k adalah bilangan bulat positif, maka momen ke-k atau dari peubah acak adalah E.

7 38 Definisi A.16 (Momen pusat ke-k) Jika k adalah bilangan bulat positif, maka momen pusat ke-k atau dari peubah acak adalah E. Nilai harapan peubah acak merupakan momen pertama dari. Nilai harapan dari kuadrat perbedaan jarak antara peubah acaka dengan nilai harapannya disebut ragam dari. Ragam merupakan momen pusat ke-2 dari peubah acak. Definisi A.17 (Fungsi pembangkit peluang) Fungsi pembangkit peluang dari suatu peubah acak X adalah E untuk suatu sehingga nilai harapan di atas ada. Lema A.5 Jika memiliki fungsi pembangkit peluang, maka (i) 1 E, (ii) Secara umum dapat ditulis E Bukti:Lihat Grimmet and Stirzaker (1992). Lema A.6 Jika adalah peubah acak Poisson dengan parameter, maka (i) E, (ii) E, (iii)e 3, (iv) E 7 6, (v) E 3. Bukti: Dari Definisi A.17 diperoleh A. 1 A. 2 A. 3 A. 4 A. 5

8 39 E.! Berdasarkan Lema A.5 dan persamaan A. 6 diperoleh E, Sehingga persamaan A. 1 terbukti. Dari persamaan A. 6 dan A. 7 diperoleh E 1 E E, A. 6 A. 7 A. 8 sehingga persamaan A. 2 terbukti. Dari persamaan A. 6, A. 7, dan A. 8 diperoleh E 1 2 E 3E 2E E 3 2 E 3, A. 9 sehingga persamaan A. 3 terbukti. Dengan menggunakan persamaan A. 6, A. 7, A. 8, dan A. 9 diperoleh E E 6E 11E 6E E E 7 6. A. 10 sehingga persamaan A. 4 terbukti. Dengan menggunakan persamaan A. 6, A. 7, A. 8, A. 9 dan A. 10 diperoleh E E E E 4E 6 E 4 E E E E 3. sehingga persamaan A. 5 terbukti. Dengan demikian Lema A.6 terbukti.

9 40 Penduga Definisi A.18 (Statistik) Statistik merupakan suatu fungsi dari satu atau lebih peubah acak yang tidak tergantung pada satu atau beberapa parameter yang nilainya tidak diketahui. Definisi A.19 (Penduga) Misalkan,,, adalah contoh acak. Suatu statistik,,, yang digunakan untuk menduga fungsi parameter, dikatakan sebagai penduga bagi, dilambangkan oleh. Nilai amatan,,, dari dengan nilai amatan,,,, disebut sebagai dugaan bagi. Definisi A.20 (Penduga tak bias) disebut penduga tak bias bagi, bila E. Bila E, maka disebut bias bagi penduga. Bila lim E, maka disebut sebagai penduga tak bias asimtotik bagi. Definisi A.21 (Penduga konsisten) Suatu statistik,,, yang konvergen dalam peluang ke parameter, yaitu disebut penduga konsisten bagi. Definisi A.22 (Mean Square Error) Mean Square Error (MSE) dari penduga untuk parameter adalah fungsi dari yang didefinisikan oleh E. Dengan kata lain MSE adalah nilai harapan dari kuadrat selisih antara penduga dan parameter. Dari sini diperoleh E Var E Var. (Cassela and Berger 1990)

10 41 Definisi A.23 (O(1) dan o(1)) (i) Suatu barisan bilangan nyata disebut terbatas dan ditulis 1 untuk, jika ada bilangan terhingga dan sehingga untuk semua bilangan asli n. (ii) Suatu barisan yang konvergen ke nol untuk, dapat ditulis 1 untuk. (Purcell and Varberg 1998) Definisi A.24 (Fungsi indikator) Fungsi indikator dari himpunan, sering ditulis I, didefinisikan sebagai fungsi I 1, jika 0, jika. (Cassela and Berger 1990) Lema A.7 (Ketaksamaan Markov) Jika adalah peubah acak, maka untuk suatu 0, P. Bukti: (Ghahramani 2005) Misalkan, maka I, dengan I adalah fungsi indikator dari. Jika ditentukan nilai harapannya, maka diperoleh E EI EI P P E. Dengan demikian Lema A.7 terbukti. Lema A.8 (Ketaksamaan Chebyshev) Jika adalah peubah acak dengan nilai harapan dan ragam, maka untuk setiap 0, P. (Ghahramani 2005)

11 42 Bukti: Karena, dengan ketaksamaan Markov diperoleh P E. Oleh karena adalah ekuivalen, dengan demikian Lema A.8 terbukti. Lema A.9 (Ketaksamaan Chaucy-Schwarz) Jika dan adalah peubah acak, maka berlaku E E E. (Ghahramani 2005) Bukti: Untuk semua bilangan real, 0. Oleh karena untuk semua nilai dari, 2 0. Karena peubah acak non-negatif mempunyai nilai harapan non-negatif, maka E 2 0. Hal ini berimplikasi bahwa E 2E E 0. Jika ditulis dalam bentuk polinomial dalam yang berderajat 2, maka didapatkan E 2E E 0. Jika suatu polinomial berderajat 2 adalah positif maka diskriminannya adalah negatif, sehingga persamaan di atas dapat ditulis 4E 4E E 0 E E E Dengan demikian Lema A.9 terbukti. E E E. Lema A.10 (Formula Young dari Teorema Taylor) Misalkan g mempunyai nilai turunan ke-n yang terhingga pada suatu titik x, maka.! Untuk. Bukti: Lihat Serfling (1980).

12 43 Lema A.11 (Teorema deret Taylor) Misal f suatu fungsi maka deret Taylor dari f di a (atau di sekitar a atau yang berpusat di a) adalah! 1! " 2! (Stewart 1999) Definisi A.25 (Terintegralkan Lokal) Fungsi intensitas disebut terintegralkan lokal, jika untuk sembarang himpunan Borel terbatas diperoleh. (Dudley 1989) Definisi A.26 (Titik Lebesgue) Suatu titik s disebut titik Lebesgue dari suatu fungsi, jika 1 lim 0. 2 (Wheeden and Zygmund 1977) Lema A.12 (Teorema Limit Pusat (CLT)) Misalkan adalah barisan peubah acak yang bebas dengan masing-masing memiliki nilai harapan dan ragamnya bernilai berhingga. Jika dan untuk suatu 2,,, maka menyebar normal asimtotik dengan nilai harapan dan ragam,dinotasikan Bukti: Lihat Serfling (1980). 1 1, 1.

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya tidak dapat diprediksi dengan tepat tetapi kita

Lebih terperinci

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan

Lebih terperinci

PENDAHULUAN LANDASAN TEORI

PENDAHULUAN LANDASAN TEORI 1 PENDAHULUAN Latar Belakang Dalam kehidupan sehari-hari, banyak permasalahan yang dapat dimodelkan dengan proses stokastik. Proses stokastik dapat dibedakan menjadi dua yaitu proses stokastik dengan waktu

Lebih terperinci

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan diketahui

Lebih terperinci

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK PERKALIAN FUNGSI PERIODIK DENGAN TREN LINEAR DARI SUATU PROSES POISSON NON-HOMOGEN LIA YULIAWATI SEKOLAH PASCASARJANA INSTITUT PERTANIAN

Lebih terperinci

Defenisi 15 (Kejadian) Kejadian adalah suatu himpunan bagian dari Nang contoh a. (Grimmett dan Stirzaker 2001)

Defenisi 15 (Kejadian) Kejadian adalah suatu himpunan bagian dari Nang contoh a. (Grimmett dan Stirzaker 2001) Lampiran: Beberapa Definisi dan Lema Teknis Ruang contoh, kejadian dan peluang Berbagai macam pengamatan diperoleh melalui penggulangan percobaan yang dilakukan dalam kondisi yang sama. Dalarn banyak kasus,

Lebih terperinci

LAMPIRAN. Kajadian adalah suatu himpunan bagian dari ruang contoh Ω. (Grimmett dan Stirzaker, 2001) Definisi A.3 (Medan-σ)

LAMPIRAN. Kajadian adalah suatu himpunan bagian dari ruang contoh Ω. (Grimmett dan Stirzaker, 2001) Definisi A.3 (Medan-σ) LAMPIRAN 55 56 LAMPIRAN Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian, dan Peluang Berbagai macam kejadian diperoleh melalui pengamatan dari serangkaian percobaan yang dilakukan

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 9 BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH

KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang Latar Belaang Terdapat banya permasalahan atau ejadian dalam ehidupan sehari hari yang dapat dimodelan dengan suatu proses stoasti Proses stoasti merupaan permasalahan yang beraitan dengan suatu aturan-aturan

Lebih terperinci

ABSTRACT JOKO DWI SURAWU. Keywords:

ABSTRACT JOKO DWI SURAWU. Keywords: ABSTRACT JOKO DWI SURAWU. Asymptotic Distribution of an Estimator for Periodic Component of Intensity Function of a Periodic Poisson Process in the Presence of Linear Trend. Supervised by I WAYAN MANGKU

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Peluang Definisi 2.1.1 Percobaan Acak (Ross 2000) Suatu percobaan yang dapat diulang dalam kondisi yang sama dan semua kemungkinan hasil yang muncul dapat diketahui tetapi

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Perumusan Masalah Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas diasumsikan terintegralkan lokal

Lebih terperinci

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang LANDASAN TEORI Ruang Contoh Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam ondisi yang sama yang hasilnya tida dapat dipredisi secara tepat tetapi ita dapat mengetahui semua emunginan hasil

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL Ro fah Nur Rachmawati Jurusan Matematika, Fakultas Sains dan Teknologi, Binus University Jl.

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan selanjutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

SIFAT-SIFAT STATISTIKA TIKA ORDE-2 FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR DAN MODIFIKASINYA NENENG MILA MARLIANA

SIFAT-SIFAT STATISTIKA TIKA ORDE-2 FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR DAN MODIFIKASINYA NENENG MILA MARLIANA SIFAT-SIFAT STATISTIKA TIKA ORDE-2 PENDUGA TIPE KERNEL L BAGI K KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR DAN MODIFIKASINYA NENENG MILA MARLIANA SEKOLAH PASCASARJANASARJANA

Lebih terperinci

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Ro fah Nur Rachmawati Mathematics & Statistics Department, School of Computer Science, Binus

Lebih terperinci

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis DAFTAR PUSTAKA Browder, A. 1996. Mathematical Analysis : An Introduction. Springer. New York. Dudley, R.M. 1989. Real Analysis and Probability. Wadsworth & Brooks. California. Durret, R. 1996. Probability

Lebih terperinci

BAB IV REDUKSI BIAS PADA PENDUGAAN

BAB IV REDUKSI BIAS PADA PENDUGAAN BAB IV REDUKSI BIAS PADA PENDUGAAN 4.1. Asimtotik Orde-2 Berdasarkan hasil simulasi pada Helmers dan Mangku (2007) kasus kernel seragam, aproksimasi asimtotik orde pertama pada ragam dan bias, gagal memprediksikan

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log II. TINJAUAN PUSTAKA Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log Normal Menggunakan Metode Generalized Moment digunakan beberapa definisi, dan teorema yang berkaitan dengan

Lebih terperinci

KAJIAN BANDWIDTH OPTIMAL PADA PENDUGAAN FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK SURASNO

KAJIAN BANDWIDTH OPTIMAL PADA PENDUGAAN FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK SURASNO KAJIAN BANDWIDTH OPTIMAL PADA PENDUGAAN FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK SURASNO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci

SEBARAN ASIMTOTIK PENDUGA TURUNAN N PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

SEBARAN ASIMTOTIK PENDUGA TURUNAN N PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR SEBARAN ASIMTOTIK PENDUGA TURUNANN PERTAMA DAN KEDUA DARI KOMPONE EN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR SALIWATI SEKOLAH PASCASARJANAA INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT (T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Ro fah Nur Rachmawati Universitas Bina Nusantara Jl. K.H. Syahdan No. 9 Palmerah Jakarta Barat 11480 rrachmawati@binus.edu

Lebih terperinci

PENDUGAAN FUNGSI SEBARAN DALAM MODEL NONPARAMETRIK RONI WIJAYA

PENDUGAAN FUNGSI SEBARAN DALAM MODEL NONPARAMETRIK RONI WIJAYA PENDUGAAN FUNGSI SEBARAN DALAM MODEL NONPARAMETRIK RONI WIJAYA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2013 PERNYATAAN MENGENAI SKRIPSI DAN SUMBER

Lebih terperinci

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga,

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga, DERET TAK HINGGA Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan Definisi Deret tak hingga,, konvergen dan mempunyai jumlah S, apabila barisan jumlah jumlah parsial konvergen menuju S.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T } adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 21 Beberapa Pengertian Definisi 1 [Ruang Contoh] Ruang contoh adalah himpunan semua hasil yang mungkin dari suatu percobaan acak, dan dinotasikan dengan (Grimmet dan Stirzaker,1992)

Lebih terperinci

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN WENTI ISMAYULIA

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN WENTI ISMAYULIA PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN WENTI ISMAYULIA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data 5 II. TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data panel ini, penulis menggunakan definisi, teorema dan konsep dasar yang berkaitan dengan pendugaan parameter,

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( )

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( ) LAMPIRAN 21 Lampiran 1 (Pembuktian Lema 2.1 Lema 2.1 (Eksistensi Fungsi Intensitas global Jika ([ ] adalah proses Poisson periodik dengan fungsi intensitas, maka ([ ] pada Definisi 2.28 ada dan nilainya

Lebih terperinci

PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN FUNGSI PANGKAT INTAN FITRIA SARI

PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN FUNGSI PANGKAT INTAN FITRIA SARI PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN FUNGSI PANGKAT INTAN FITRIA SARI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN LINEAR BONNO ANDRI WIBOWO

PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN LINEAR BONNO ANDRI WIBOWO PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN LINEAR BONNO ANDRI WIBOWO DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2014

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

II. LANDASAN TEORI. Pada bagian ini akan diuraikan beberapa definisi dan teori penunjang yang akan digunakan di dalam pembahasan.

II. LANDASAN TEORI. Pada bagian ini akan diuraikan beberapa definisi dan teori penunjang yang akan digunakan di dalam pembahasan. II. LANDASAN TEORI Pada bagian ini akan diuraikan beberapa definisi dan teori penunjang yang akan digunakan di dalam pembahasan. 2.1 Istilah Ekonomi dan Keuangan Definisi 1 (Investasi) Dalam keuangan,

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Distribusi Logistik Distribusi logistik merupakan distribusi yang memiliki fungsi kepekatan peluang kontinu. Bentuk kurva distribusi logistik adalah simetris dan uni modal. Bentuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan seringkali dilakukan pengulangan yang biasanya dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik, adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu ruang states. Jadi,

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh BAB III INTEGRAL LEBESGUE Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh fungsi-fungsi terukur dan memenuhi sifat yang berkaitan dengan integral Lebesgue. Kajian mengenai keterukuran suatu

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR. Oleh: LIA NURLIANA

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR. Oleh: LIA NURLIANA KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR Oleh: LIA NURLIANA PROGRAM STUDI MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN FUNGSI PANGKAT PROSES POISSON NON-HOMOGEN WINDIANI ERLIANA

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN FUNGSI PANGKAT PROSES POISSON NON-HOMOGEN WINDIANI ERLIANA PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN FUNGSI PANGKAT PROSES POISSON NON-HOMOGEN WINDIANI ERLIANA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin

Lebih terperinci

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi semua fungsi yang terintegralkan Lebesgue, 1. Sebagaimana telah dirumuskan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 3 BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu ruang state. Jika

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

Dwi Lestari, M.Sc: Konvergensi Deret 1. KONVERGENSI DERET

Dwi Lestari, M.Sc: Konvergensi Deret   1. KONVERGENSI DERET 1. KONVERGENSI DERET Suatu barisan disebut konvergen jika terdapat bilangan Z yang setiap lingkungannya memuat semua. Jika bilangan Z itu ada maka dapat ditulis: lim sehingga dapat dikatakan bahwa barisan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. INJAUAN PUSAKA.1 Penduga Area Kecil Rao (003) mengemukakan bahwa suatu area disebut kecil apabila contoh yang diambil pada area tersebut tidak mencukupi untuk melakukan pendugaan langsung dengan hasil

Lebih terperinci

URAIAN POKOK-POKOK PERKULIAHAN

URAIAN POKOK-POKOK PERKULIAHAN Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik penduga distribusi generalized gamma dengan metode generalized moment ini, penulis menggunakan definisi, teorema dan konsep dasar

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

TINJAUAN PUSTAKA. Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan. merupakan penjabaran definisi dan teorema yang digunakan:

TINJAUAN PUSTAKA. Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan. merupakan penjabaran definisi dan teorema yang digunakan: II. TINJAUAN PUSTAKA Dalam tinjauan pustaka penelitian Karakteristik Penduga Parameter Distribusi Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan beberapa definisi dan teorema yang

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T} adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

KONSISTENSI ESTIMATOR

KONSISTENSI ESTIMATOR KONSISTENSI ESTIMATOR TUGAS STATISTIKA MATEMATIKA II Oleh 1. Wahyu Nikmatus S. (121810101010) 2. Vivie Aisyafi F. (121810101050) 3. Rere Figurani A. (121810101052) 4. Dwindah Setiari W. (121810101054)

Lebih terperinci

mengsumsikan tidak ada kesalahan pengukuran, validitas dapat dievaluasi dengan mengamati nilai bias dari penduganya. Bias, B ( ) dari populasi

mengsumsikan tidak ada kesalahan pengukuran, validitas dapat dievaluasi dengan mengamati nilai bias dari penduganya. Bias, B ( ) dari populasi TINJAUAN PUSTAKA Teori penarikan contoh mempunyai tujuan untuk membuat penarikan contoh menjadi lebih efisien. Teori penarikan contoh mencoba untuk mengembangkan metode pemilihan contoh dengan biaya yang

Lebih terperinci

KONSEP DASAR TERKAIT METODE BAYES

KONSEP DASAR TERKAIT METODE BAYES KONSEP DASAR TERKAIT METODE BAYES 2.3. Peubah Acak dan Distribusi Peluang Pada statistika kita melakukan percobaan dimana percobaan tersebut akan menghasilkan suatu peluang. Ruang sampel pada percobaan

Lebih terperinci

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY 3.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang Ω,,. Misalkan ; adalah rantai Markov dengan state berhingga

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen MATEMATIKA BISNIS Modul ke: DERET Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Barisan (sequence) adalah suatu susunan bilangan yang dibentuk menurut

Lebih terperinci

II.TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi

II.TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi II.TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi generalized weibull menggunakan metode generalized momen ini, penulis menggunakan definisi dan konsep dasar

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA Mila Apriliani Utari, Encum Sumiaty, Sumanang Muchtar Departemen Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia *Coresponding

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

TINJAUAN PUSTAKA. Dalam menentukan penduga parameter dari distribusi G3F dan karakteristik dari

TINJAUAN PUSTAKA. Dalam menentukan penduga parameter dari distribusi G3F dan karakteristik dari II. TINJAUAN PUSTAKA Dalam menentukan penduga parameter dari distribusi G3F dan karakteristik dari penduga tersebut, maka dalam hal ini penulis menggunakan beberapa definisi dan teorema yang berkaitan

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

BAB IV SIMULASI PEMBANDINGAN PERILAKU PENDUGA FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK DENGAN BANDWIDTH OPTIMAL DAN BANDWIDTH OPTIMAL ASIMTOTIK

BAB IV SIMULASI PEMBANDINGAN PERILAKU PENDUGA FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK DENGAN BANDWIDTH OPTIMAL DAN BANDWIDTH OPTIMAL ASIMTOTIK BAB IV SIMULASI PEMBANDINGAN PERILAKU PENDUGA FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK DENGAN BANDWIDTH OPTIMAL DAN BANDWIDTH OPTIMAL ASIMTOTIK Pada bagian ini dilakukan simulasi untuk membandingkan

Lebih terperinci

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT HUKUM BILANGAN BESAR LEMAH DAN KUAT Misalkan X 1, X 2, X 3... barisan variabel random. Kita tulis S n = n X i. Dalam subbab ini kita akan menjawab pertanyaan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna,

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, 3 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang bilangan sempurna, square free, keterbagian bilangan bulat, modulo, bilangan prima, ideal, daerah integral, ring quadratic.

Lebih terperinci

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri BAB II KAJIAN TEORI Analisis kekonvergenan pada barisan fungsi, apakah barisan fungsi itu? Apakah berbeda dengan barisan pada umumnya? Tentunya sebelum membahas mengenai barisan fungsi, apa saja jenis

Lebih terperinci

BARISAN DAN DERET. Drs. CARNOTO, M.Pd. NIP Pola Barisan Bilangan

BARISAN DAN DERET. Drs. CARNOTO, M.Pd. NIP Pola Barisan Bilangan BARISAN DAN DERET Drs. CARNOTO, M.Pd. NIP. 19640121 199010 1 001 Pola Barisan Bilangan Beberapa urutan bilangan yang sering kita pergunakan mempunyai pola tertentu. Pola ini Sering digunakan untuk menentukan

Lebih terperinci

TINJAUAN PUSTAKA. Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu

TINJAUAN PUSTAKA. Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu II. TINJAUAN PUSTAKA. Distribusi Weibull Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu hidup dalam tekhnik ketahanan. Distribusi ini adalah distribusi serbaguna yang dapat

Lebih terperinci

I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan

I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan I. PENDAHULUAN 1.1 Latar Belakang Statistika merupakan ilmu tentang pengumpulan, pengaturan, analisis, dan pendugaan data untuk membantu proses pengambilan keputusan secara lebih efisien. Ilmu statistika

Lebih terperinci

II. LANDASAN TEORI. sementara grafik distribusi F tidak simetrik dan umumnya sedikit positif seperti

II. LANDASAN TEORI. sementara grafik distribusi F tidak simetrik dan umumnya sedikit positif seperti 4 II. LANDASAN TEORI 2.1 Distribusi F Distribusi F merupakan salah satu distribusi kontinu. Dengan variabel acak X memenuhi batas X > 0, sehingga luas daerah dibawah kurva sama dengan satu, sementara grafik

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I II. PEUBAH ACAK DISKRET II. Peubah Acak Diskret 1 PEUBAH ACAK DISKRET Definisi 2.1. (Peubah Acak) : Peubah Acak Y adalah suatu fungsi yang memetakan seluruh anggota ruang contoh

Lebih terperinci

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14 Deret Binomial Ayundyah Kesumawati Prodi Statistika FMIPA-UII June 25, 2015 Ayundyah (UII) Deret Binomial June 25, 2015 1 / 14 Pendahuluan Deret Binomial Kita telah mengenal Rumus Binomial. Untuk bilangan

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol BAB II TINJAUAN PUSTAKA A. Regresi Regresi adalah suatu studi statistik untuk menjelaskan hubungan dua variabel atau lebih yang dinyatakan dalam bentuk persamaan. Salah satu variabel merupakan variabel

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR PADA PROSES POISSON NON-HOMOGEN SALMUN K.

PENDUGAAN FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR PADA PROSES POISSON NON-HOMOGEN SALMUN K. PENDUGAAN FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR PADA PROSES POISSON NON-HOMOGEN SALMUN K. NASIB SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

BAB II KAJIAN TEORI. hasil percobaan yang berbeda dan masing-masing mempunyai. itu menyusun kejadian, maka probabilitas kejadian

BAB II KAJIAN TEORI. hasil percobaan yang berbeda dan masing-masing mempunyai. itu menyusun kejadian, maka probabilitas kejadian BAB II KAJIAN TEORI A. Probabilitas Teorema 2.1 (Walpole, 1992) Probabilitas menunjukan suatu percobaan mempunyai hasil percobaan yang berbeda dan masing-masing mempunyai kemungkinan yang sama untuk terjadi,

Lebih terperinci

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk:

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk: DERET TAK HINGGA Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk: u k = u 1 + u 2 + u 3 + + u k + Bilangan-bilangan u 1, u 2, u 3, disebut suku-suku dalam deret tersebut.

Lebih terperinci

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA VARIABEL RANDOM Misalkan (Ω, A, P) ruang probabilitas dan R = {x < x < } dan B : Borel field pada R. Andaikan X : Ω R dan untuk setiap A R, kita definisikan

Lebih terperinci