LAMPIRAN. Kajadian adalah suatu himpunan bagian dari ruang contoh Ω. (Grimmett dan Stirzaker, 2001) Definisi A.3 (Medan-σ)

Ukuran: px
Mulai penontonan dengan halaman:

Download "LAMPIRAN. Kajadian adalah suatu himpunan bagian dari ruang contoh Ω. (Grimmett dan Stirzaker, 2001) Definisi A.3 (Medan-σ)"

Transkripsi

1 LAMPIRAN 55

2 56 LAMPIRAN Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian, dan Peluang Berbagai macam kejadian diperoleh melalui pengamatan dari serangkaian percobaan yang dilakukan dalam kondisi yang sama. Dalam banyak kasus, hasil percobaan tersebut bergantung pada faktor kebetulan dan tidak dapat diprediksi dengan tepat. Tetapi, kita bisa mengetahui semua kemungkinan hasil untuk setiap percobaan. Definisi A.1 (Ruang contoh) Himpunan semua hasil dari suatu percobaan acak disebut ruang contoh dan dinotasikan dengan Ω. Definisi A.2 (Kejadian) Kajadian adalah suatu himpunan bagian dari ruang contoh Ω. Definisi A.3 (Medan-σ) Medan-σ adalah himpunan yang anggotanya merupakan himpunan bagian dari Ω yang memenuhi syarat-syarat sebagai berikut: a) b jika,,, maka c) jika. Medan-σ terkecil mengandung semua selang berbentuk,,, disebut medan Borel, dan anggotanya disebut himpunan Borel.

3 57 Definisi A.4 (Ukuran Peluang) Ukuran peluang P pada Ω, adalah suatu fungsi : 0,1 yang memenuhi a) 0, dan Ω 1. b Jika,,, adalah himpunan angota anggota yang saling lepas yaitu untuk semua pasangan, dengan maka:. Definisi A.5 (Kejadian saling bebas) Kejadian-kejadian A dan B dikatakan saling bebas jika: Secara umum, himpunan kejadian ; dikatakan saling bebas jika: untuk semua himpunan bagian terhingga J dari I. Peubah Acak dan Fungsi Sebaran Definisi A.6 (Peubah acak) Peubah acak adalah suatu fungsi : Ω dengan sifat bahwa Ω untuk setiap. Peubah acak dinotasikan dengan huruf capital seperti X, Y, dan Z. Sedangkan nilai peubah acak dinotasikan dengan huruf kecil seperti x, y, dan z. Setiap peubah acak mempunyai sebaran, sebagaimana didefinisikan berikut ini. Definisi A.7 (Fungsi Sebaran) Fungsi sebaran dari peubah acak X adalah fungsi 0,1 diberikan oleh.

4 58 Definisi A.8 (Peubah acak diskrit) Peubah acak X disebut diskrit jika nilainya hanya pada himpunan bagian tercacah,, dari. Definisi A.9 (Fungsi kepekatan peluang) Fungsi kepekatan peluang dari peubah acak diskrit X adalah fungsi : 0,1 yang diberikan oleh:. Definisi A.10 (Peubah acak Poisson) Jika suatu peubah acak X nilai-nilainya dalam himpunan {0,1,2, } dengan fungsi kepekatan peluang!, untuk 0,1,2, dengan 0, maka X dikatakan memiliki sebaran Poisson dengan parameter. Nilai Harapan, Ragam, Momen Definisi A.11 (Nilai harapan, momen, ragam) Misalkan X adalah peubah acak diskrit dengan fungsi kepekatan peluang p(x). Nilai harapan dari peubah acak X adalah. Moment ke-k, dengan k merupakan bilangan bulat positif, dari suatu peubah acak X adalah. Misalkan momen ke-1,. Maka momen pusat ke-k atau dari peubah acak X adalah.

5 59 Nilai harapan dari peubah acak X merupakan momen pertama dari X, sedangkan ragam merupakan momen pusat ke-2 dari peubah acak X. Ragam (Varian) dari X, dan dilambangkan dengan atau adalah nilai harapan dari kuadrat perbedaan antara peubah acak X dengan nilai harapannya, yaitu. (Hogg et al, 2005) Penduga dan Sifat-sifatnya Definisi A.12 (Statistik) Statistik adalah suatu fungsi dari satu atau lebih peubah acak yang tidak bergantung pada satu atau beberapa parameter. (Hogg et al, 2005) Definisi A.13 (Penduga) Misalkan,,, adalah contoh acak. Suatu statistik,,, yang digunakan untuk menduga fungsi parameter dikatakan sebagai penduga (estimator) bagi, yang dinotasikan sebagai. Nilai,,, dari U dengan nilai pengamatan,, disebut sebagai dugaan (estimate) bagi. Definisi A.14 (Penduga tak bias) (Hogg et al, 2005) a) Suatu statistik yang nilai harapannya sama dengan parameter, dituliskan, disebut penduga tak bias bagi. Selainnya statistik dikatakan berbias. b) Jika lim, maka penduga disebut penduga tak bias asimtotik. (Hogg et al, 2005)

6 60 Definisi A.15 (Penduga konsisten) Suatu statistik yang konvergen dalam peluang ke suatu parameter, disebut penduga konsisten bagi. Definisi A.16 (MSE suatu penduga) (Hogg et al, 2005) Mean Square Error (MSE) dari suatu penduga W untuk parameter adalah fungsi dari yang didefinisikan oleh. Dengan kata lain MSE adalah nilai harapan kuadrat dari selisih antara penduga W dan parameter. Dari sini diperoleh:. Definisi A.17 (O(.)) (Cassella dan Berger, 2002) Simbol O(.) dibaca big-o-h, ini merupakan suatu cara untuk membandingkan besarnya dua fungsi dan dengan x menuju suatu limit L. Notasi, Menyatakan bahwa terbatas, untuk. (Serfling, 1980) Definisi A.18 (o(h)) Suatu fungsi f disebut o(h), 0, jika lim 0. Hal ini berarti bahwa 0 lebih cepat daripada 0. (Ross, 2007) Dengan menggunakan definisi 31 dan 32 maka didapatkan hal-hal sebagai berikut: a) Suatu barisan bilangan nyata {a n } disebut terbatas dan ditulis 1 untuk, jika ada bilangan terhingga A dan B sehingga untuk semua bilangan asli n. b) Suatu barisan yang konvergen ke nol untuk, dapat dituliskan 1, untuk. (Purcell and Varberg, 1998)

7 61 62Definisi A.19 (Fungsi indikator) Misalkan A adalah suatu kejadian. Fungsi indikator dari A adalah suatu fungsi Ω 0,1, yang diberikan oleh 1, jika ω 0, jika ω. (Grimmett and Stirzaker, 2001) Definisi A.20 (Konvergen dalam peluang) Misalkan,,, adalah barisan peubah acak pada suatu ruang peluang Ω,,. Barisan peubah acak dikatakan konvergen dalam peluang ke X, dinotasikan, jika untuk setiap 0 berlaku: 0, untuk. Definisi A.21 (Konvergen dalam sebaran) Misalkan,,, adalah barisan peubah acak pada suatu ruang peluang Ω,,. Barisan peubah acak dikatakan konvergen dalam sebaran ke X, dinotasikan, jika untuk setiap x pada fungsi yang kontinu berlaku, untuk. Definisi A.22 (Titik Lebesque) Suatu titik s dikatakan titik Lebesgue dari fungsi jika 1 lim 0. 2 (Wheeden and Zygmund, 1977)

8 62 Lema A.1 (Formula Young dari Teorema Taylor) Misalkan g memiliki turunan ke-n yang terhingga pada suatu titik x. Maka,! untuk. Bukti: Lihat Serfling (1980) Lema A.2 (Pertidaksamaan Chebyshev) Jika X adalah peubah acak dengan nilai harapan dari ragam, maka untuk setiap k > 0, berlaku:. (Ross, 2007) Bukti: Lihat Lampiran 2. Lema A.3 (Ketaksamaan Cauchy-Schwarz) Jika X dan Y adalah peubah acak dengan momen kedua terbatas maka dan akan bernilai sama dengan jika dan hanya jika 0 1 atau untuk suatu konstanta a. Bukti: Lihat lampiran 3 Lema A.4 (Momen dan momen pusat peubah acak Poisson) Jika X adalah peubah acak Poisson dengan parameter μ, maka i.. (A.1) ii.. (A.2) iii. 3. (A.3) iv (A.4) v. 3. (A.5) (Grimmet dan Stirzaker, 2001) Bukti: Lihat lampiran 4.

9 63 Lampiran 2. Lema A.2 (Pertidaksamaan Chebyshev) Jika X adalah peubah acak dengan nilai harapan dari ragam, maka untuk setiap k > 0, berlaku:. Bukti: Karena adalah peubah acak tak negatif, maka dapat digunakan pertidaksamaan Markov di atas, dengan a = k, sehingga diperoleh dan akhirnya dipeoleh. Jadi Lema A.2 terbukti.

10 64 Lampiran 3. Lema A.3 (Ketaksamaan Cauchy-Schwarz) Jika X dan Y adalah peubah acak dengan momen kedua terbatas maka dan akan bernilai sama dengan jika dan hanya jika 0 1 atau untuk suatu konstanta a. Bukti: Pilih salah satu dari 0 1 atau 0 1. Pada kasus pertama, persamaan akan terpenuhi karena kedua ruas mempunyai nilai nol, sehingga kita dapat mengasumsikan 0 1, yang berarti bahwa X mempunyai suatu nilai 0 dengan peluang positif, sehingga 0. Didefinisikan fungsi kuadrat 2. Fungsi kuadrat di atas akan bernilai minimum pada saat sehingga 0. Untuk setiap yang real ganti dengan 2 2 sehingga 0 Di satu sisi, hal ini berimplikasi bahwa.

11 65 Dan di sisi lain jika sama akan 0. Jika menempati nilai yang tidak nol dengan peluang yang positif, akan didapatkan 0. Hal ini mengakibatkan kontradiksi, maka haruslah 01. Jadi terbukti.

12 66 Lampiran 4. Lema A.4 (Momen pusat) Jika X adalah peubah acak Poisson dengan parameter μ, maka i.. (A.1) ii.. (A.2) iii. 3. (A.3) iv (A.4) v. 3. (A.5) Bukti: Untuk membuktikan persamaan-persamaan di atas digunakan fungsi pembangkit peluang untuk peubah acak Poisson dan Teorema A.1 adalah sebagai berikut!. Teorema A.1 Jika X memiliki fungsi pembangkit peluang, maka i. ii. Secara umum dapat ditulis Bukti: (Grimmet dan Stirzaker, 2001) Berdasarkan teorema dan persamaan (A.6) maka A. 6 (A.7) (A.8) (A.9) (A.10) Dari persamaan (A.7) secara langsung dapat membuktikan persamaan (A.1). Kemudian akan dibuktikan persamaan (A.2), (A.3), (A.4), dan (A.5). Untuk membuktikan persamaan (A.2) digunakan persamaan (A.7) dan (A.8) sehingga 1

13 67. Untuk membuktikan persamaan (A.3) digunakan persamaan (A.7), (A.8), dan (A.9) sehingga Untuk membuktikan persamaan (A.4) digunakan persamaan (A.7), (A.8), (A.9), dan (A.10) sehingga Dengan menggunakan persamaan (A.1), (A.2), (A.3), dan (A.4) maka dapat dibuktikan persamaan (A.5) sebagai berikut

14 68 Lampiran 5. Program-program Simulasi A. Program membangkitkan realisasi proses Poisson periodik untuk interval pengamatan [0,500] Random<-function(wsize,tau) { maxlambda< LAB<-(maxlambda)*wsize N<-rpois(1,LAB) points<-runif(n,0,wsize) lambda<-2*exp(sin((2*pi*points)/tau))+0.02*points p<-lambda/maxlambda p[p<0]<-1e-06 p[p>=1]< hold<-rbinom(n,1,p)==1 selected<-points[hold] return(selected) } # Bangkitkan Proses Poisson dgn wsize=500 dan tau=10 Data<-Random(500,5) Data B. Program membangkitkan Penduga dan grafiknya untuk interval pengamatan interval pengamatan [0,500] Duga<-function(Data,wsize,titik,band,tau) { K<-floor((wsize-titik)/tau) vdt<-1:k for(k in 1:K) { pusat<-titik+(k-1)*tau bawah<-pusat-band atas<-pusat+band sample<-data[data>=bawah&data<=atas] vdt[k]<-length(sample)/(2*k*band) } Dugaan<-((sum(vdt)/log((wsize/tau),base = exp(1))) -( *((wsize/log((wsize/tau),base = exp(1)))))) return(dugaan) } Penduga<-function(Data,wsize,a,b,band,tau) { x<-seq(a,b,0.1) yduga<-seq(a,b,0.1) K<-length(yduga) for(k in 1:K) { titik1<-x[k] yduga[k]<-duga(data,wsize,titik1,band,tau)

15 69 } return(yduga) } #a,b adalah batas bawah dan batas atas interval yang dievaluasi #Program menampilkan gambar fungsi sebenarnya VS fungsi dugaan Gambar<-function(a,b,tau) { x<-seq(a,b,0.1) ytrue<-2*exp(sin((2*pi*x)/tau)) *x plot(x,ytrue,xlim=c(0,10),ylim=c(-2,6),type="l",col=4) par(new=t) plot(x,yduga,xlim=c(0,10),ylim=c(-2,6),type="l",col=6) } # Untuk me-run program gunakan # yduga<-penduga(data,wsize,a,b,band,tau) # Untuk meng-create gambar fungsi sebenarnya VS fungsi dugaan gunakan: # Gambar1<-Gambar(a,b,tau) # Nilai variabel a dan b pada Penduga dan Gambar harus sama # Evaluasi penduga pada selang [0,10], n=500, band=0.8, tau=10 yduga<-penduga(data,500,0,10,0.8,10) Gambar1<-Gambar(0,10,10) C. Program memeriksa kenormalan asimtotik Penduga<-function(wsize,titik,band,tau,L) { Dugaan<-1:L for(l in 1:L) { Data<-Random(wsize,tau) Dugaan[l]<-Duga(Data,wsize,titik,band,tau) } return(dugaan) } dugaan<-penduga(1000,12, ,10,500) mean(dugaan) var(dugaan) qqnorm(dugaan,col=4) qqline(dugaan) D. Program Menentukan lambda dan bandwith optimum untuk interval pengamatan interval pengamatan [0,500] ### Menentukan Bandwith Optimum untuk wsize=500 ### Isikan data tentang tau dan titik s tau<-10 s<-12 lambda<-2*exp(sin((2*pi*s)/tau)) *s lambdaturunan2<-0.32*(pi^2)*((cos((2*pi*s)/tau))^2 -sin((2*pi*s)/tau))*exp(sin((2*pi*s)/tau))

16 70 bandwith<-(((9*lambda*tau)/(2*(lambdaturunan2)^2))/500)^(1/5) lambda bandwith E. Program pendekatan asimtotik nilai harapan dan ragam penduga ### Pendekatan Nilai Harapan untuk tau=5 n=500&1000, ### Isikan data tentang "s" dan "band" s<-6 band< lambdac<-2*exp(sin((2*pi*s)/5)) lambdacturunan2<-0.32*(pi^2)*((cos((2*pi*s)/5))^2- sin((2*pi*s)/5))*exp(sin((2*pi*s)/5)) PendekatanNilaiHarapan<-lambdaC+(lambdaCturunan2*(band^2))/6 PendekatanNilaiHarapan

Lampiran A. Beberapa Definisi dan Lema Teknis

Lampiran A. Beberapa Definisi dan Lema Teknis LAMPIRAN 33 Lampiran A. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Definisi A.1 (Ruang contoh dan kejadian) Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya

Lebih terperinci

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya tidak dapat diprediksi dengan tepat tetapi kita

Lebih terperinci

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan

Lebih terperinci

PENDAHULUAN LANDASAN TEORI

PENDAHULUAN LANDASAN TEORI 1 PENDAHULUAN Latar Belakang Dalam kehidupan sehari-hari, banyak permasalahan yang dapat dimodelkan dengan proses stokastik. Proses stokastik dapat dibedakan menjadi dua yaitu proses stokastik dengan waktu

Lebih terperinci

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan diketahui

Lebih terperinci

Defenisi 15 (Kejadian) Kejadian adalah suatu himpunan bagian dari Nang contoh a. (Grimmett dan Stirzaker 2001)

Defenisi 15 (Kejadian) Kejadian adalah suatu himpunan bagian dari Nang contoh a. (Grimmett dan Stirzaker 2001) Lampiran: Beberapa Definisi dan Lema Teknis Ruang contoh, kejadian dan peluang Berbagai macam pengamatan diperoleh melalui penggulangan percobaan yang dilakukan dalam kondisi yang sama. Dalarn banyak kasus,

Lebih terperinci

ABSTRACT JOKO DWI SURAWU. Keywords:

ABSTRACT JOKO DWI SURAWU. Keywords: ABSTRACT JOKO DWI SURAWU. Asymptotic Distribution of an Estimator for Periodic Component of Intensity Function of a Periodic Poisson Process in the Presence of Linear Trend. Supervised by I WAYAN MANGKU

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Perumusan Masalah Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas diasumsikan terintegralkan lokal

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang

( x) LANDASAN TEORI. ω Ω ke satu dan hanya satu bilangan real X( ω ) disebut peubah acak. Ρ = Ρ. Ruang Contoh, Kejadian dan Peluang LANDASAN TEORI Ruang Contoh Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam ondisi yang sama yang hasilnya tida dapat dipredisi secara tepat tetapi ita dapat mengetahui semua emunginan hasil

Lebih terperinci

SIFAT-SIFAT STATISTIKA TIKA ORDE-2 FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR DAN MODIFIKASINYA NENENG MILA MARLIANA

SIFAT-SIFAT STATISTIKA TIKA ORDE-2 FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR DAN MODIFIKASINYA NENENG MILA MARLIANA SIFAT-SIFAT STATISTIKA TIKA ORDE-2 PENDUGA TIPE KERNEL L BAGI K KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR DAN MODIFIKASINYA NENENG MILA MARLIANA SEKOLAH PASCASARJANASARJANA

Lebih terperinci

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis DAFTAR PUSTAKA Browder, A. 1996. Mathematical Analysis : An Introduction. Springer. New York. Dudley, R.M. 1989. Real Analysis and Probability. Wadsworth & Brooks. California. Durret, R. 1996. Probability

Lebih terperinci

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang Latar Belaang Terdapat banya permasalahan atau ejadian dalam ehidupan sehari hari yang dapat dimodelan dengan suatu proses stoasti Proses stoasti merupaan permasalahan yang beraitan dengan suatu aturan-aturan

Lebih terperinci

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN FUNGSI PANGKAT PROSES POISSON NON-HOMOGEN WINDIANI ERLIANA

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN FUNGSI PANGKAT PROSES POISSON NON-HOMOGEN WINDIANI ERLIANA PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN FUNGSI PANGKAT PROSES POISSON NON-HOMOGEN WINDIANI ERLIANA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH

KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 9 BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang

Lebih terperinci

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK PERKALIAN FUNGSI PERIODIK DENGAN TREN LINEAR DARI SUATU PROSES POISSON NON-HOMOGEN LIA YULIAWATI SEKOLAH PASCASARJANA INSTITUT PERTANIAN

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL Ro fah Nur Rachmawati Jurusan Matematika, Fakultas Sains dan Teknologi, Binus University Jl.

Lebih terperinci

BAB IV SIMULASI PEMBANDINGAN PERILAKU PENDUGA FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK DENGAN BANDWIDTH OPTIMAL DAN BANDWIDTH OPTIMAL ASIMTOTIK

BAB IV SIMULASI PEMBANDINGAN PERILAKU PENDUGA FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK DENGAN BANDWIDTH OPTIMAL DAN BANDWIDTH OPTIMAL ASIMTOTIK BAB IV SIMULASI PEMBANDINGAN PERILAKU PENDUGA FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK DENGAN BANDWIDTH OPTIMAL DAN BANDWIDTH OPTIMAL ASIMTOTIK Pada bagian ini dilakukan simulasi untuk membandingkan

Lebih terperinci

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( )

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( ) LAMPIRAN 21 Lampiran 1 (Pembuktian Lema 2.1 Lema 2.1 (Eksistensi Fungsi Intensitas global Jika ([ ] adalah proses Poisson periodik dengan fungsi intensitas, maka ([ ] pada Definisi 2.28 ada dan nilainya

Lebih terperinci

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Ro fah Nur Rachmawati Mathematics & Statistics Department, School of Computer Science, Binus

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log II. TINJAUAN PUSTAKA Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log Normal Menggunakan Metode Generalized Moment digunakan beberapa definisi, dan teorema yang berkaitan dengan

Lebih terperinci

KAJIAN BANDWIDTH OPTIMAL PADA PENDUGAAN FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK SURASNO

KAJIAN BANDWIDTH OPTIMAL PADA PENDUGAAN FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK SURASNO KAJIAN BANDWIDTH OPTIMAL PADA PENDUGAAN FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK SURASNO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan

Lebih terperinci

BAB IV REDUKSI BIAS PADA PENDUGAAN

BAB IV REDUKSI BIAS PADA PENDUGAAN BAB IV REDUKSI BIAS PADA PENDUGAAN 4.1. Asimtotik Orde-2 Berdasarkan hasil simulasi pada Helmers dan Mangku (2007) kasus kernel seragam, aproksimasi asimtotik orde pertama pada ragam dan bias, gagal memprediksikan

Lebih terperinci

Bukti : Dengan menggunakan aturan peluang total (law of total probability), dapat kita nyatakan. e e n. n k

Bukti : Dengan menggunakan aturan peluang total (law of total probability), dapat kita nyatakan. e e n. n k LAMPIRAN Lampiran 1. Pembuktian Lema 1 Lema 1 (Jumlah Peubah Acak Poisson) Misalkan X dan Y adalah peubah acak yang saling bebas dan memiliki sebaran Poisson dengan parameter berturut-turut λ 1 dan λ.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI Teori yang ditulis dalam bab ini merupakan beberapa landasan yang digunakan untuk menganalisis sebaran besarnya klaim yang berekor kurus (thin tailed) dan yang berekor gemuk (fat

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 21 Beberapa Pengertian Definisi 1 [Ruang Contoh] Ruang contoh adalah himpunan semua hasil yang mungkin dari suatu percobaan acak, dan dinotasikan dengan (Grimmet dan Stirzaker,1992)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Peluang Definisi 2.1.1 Percobaan Acak (Ross 2000) Suatu percobaan yang dapat diulang dalam kondisi yang sama dan semua kemungkinan hasil yang muncul dapat diketahui tetapi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan selanjutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Distribusi Logistik Distribusi logistik merupakan distribusi yang memiliki fungsi kepekatan peluang kontinu. Bentuk kurva distribusi logistik adalah simetris dan uni modal. Bentuk

Lebih terperinci

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT (T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Ro fah Nur Rachmawati Universitas Bina Nusantara Jl. K.H. Syahdan No. 9 Palmerah Jakarta Barat 11480 rrachmawati@binus.edu

Lebih terperinci

PENDUGAAN FUNGSI SEBARAN DALAM MODEL NONPARAMETRIK RONI WIJAYA

PENDUGAAN FUNGSI SEBARAN DALAM MODEL NONPARAMETRIK RONI WIJAYA PENDUGAAN FUNGSI SEBARAN DALAM MODEL NONPARAMETRIK RONI WIJAYA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2013 PERNYATAAN MENGENAI SKRIPSI DAN SUMBER

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

SEBARAN ASIMTOTIK PENDUGA TURUNAN N PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

SEBARAN ASIMTOTIK PENDUGA TURUNAN N PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR SEBARAN ASIMTOTIK PENDUGA TURUNANN PERTAMA DAN KEDUA DARI KOMPONE EN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR SALIWATI SEKOLAH PASCASARJANAA INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN WENTI ISMAYULIA

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN WENTI ISMAYULIA PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN LINEAR SUATU PROSES POISSON NON-HOMOGEN WENTI ISMAYULIA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

TINJAUAN PUSTAKA. Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan. merupakan penjabaran definisi dan teorema yang digunakan:

TINJAUAN PUSTAKA. Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan. merupakan penjabaran definisi dan teorema yang digunakan: II. TINJAUAN PUSTAKA Dalam tinjauan pustaka penelitian Karakteristik Penduga Parameter Distribusi Generalized Eksponensial Menggunakan Metode Generalized Momen digunakan beberapa definisi dan teorema yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T } adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik penduga distribusi generalized gamma dengan metode generalized moment ini, penulis menggunakan definisi, teorema dan konsep dasar

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data 5 II. TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data panel ini, penulis menggunakan definisi, teorema dan konsep dasar yang berkaitan dengan pendugaan parameter,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan seringkali dilakukan pengulangan yang biasanya dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul

Lebih terperinci

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E

II. TINJAUAN PUSTAKA. Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E 5 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Peluang Ruang sampel S adalah himpunan semua hasil dari suatu percobaan. Kejadian E adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian P(E) adalah

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh BAB III INTEGRAL LEBESGUE Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh fungsi-fungsi terukur dan memenuhi sifat yang berkaitan dengan integral Lebesgue. Kajian mengenai keterukuran suatu

Lebih terperinci

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi semua fungsi yang terintegralkan Lebesgue, 1. Sebagaimana telah dirumuskan

Lebih terperinci

II.TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi

II.TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi II.TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi generalized weibull menggunakan metode generalized momen ini, penulis menggunakan definisi dan konsep dasar

Lebih terperinci

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR. Oleh: LIA NURLIANA

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR. Oleh: LIA NURLIANA KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR Oleh: LIA NURLIANA PROGRAM STUDI MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

II. LANDASAN TEORI. sementara grafik distribusi F tidak simetrik dan umumnya sedikit positif seperti

II. LANDASAN TEORI. sementara grafik distribusi F tidak simetrik dan umumnya sedikit positif seperti 4 II. LANDASAN TEORI 2.1 Distribusi F Distribusi F merupakan salah satu distribusi kontinu. Dengan variabel acak X memenuhi batas X > 0, sehingga luas daerah dibawah kurva sama dengan satu, sementara grafik

Lebih terperinci

TINJAUAN PUSTAKA. Dalam menentukan penduga parameter dari distribusi G3F dan karakteristik dari

TINJAUAN PUSTAKA. Dalam menentukan penduga parameter dari distribusi G3F dan karakteristik dari II. TINJAUAN PUSTAKA Dalam menentukan penduga parameter dari distribusi G3F dan karakteristik dari penduga tersebut, maka dalam hal ini penulis menggunakan beberapa definisi dan teorema yang berkaitan

Lebih terperinci

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY 3.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang Ω,,. Misalkan ; adalah rantai Markov dengan state berhingga

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR PADA PROSES POISSON NON-HOMOGEN SALMUN K.

PENDUGAAN FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR PADA PROSES POISSON NON-HOMOGEN SALMUN K. PENDUGAAN FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR PADA PROSES POISSON NON-HOMOGEN SALMUN K. NASIB SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan

I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan I. PENDAHULUAN 1.1 Latar Belakang Statistika merupakan ilmu tentang pengumpulan, pengaturan, analisis, dan pendugaan data untuk membantu proses pengambilan keputusan secara lebih efisien. Ilmu statistika

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik, adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu ruang states. Jadi,

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT HUKUM BILANGAN BESAR LEMAH DAN KUAT Misalkan X 1, X 2, X 3... barisan variabel random. Kita tulis S n = n X i. Dalam subbab ini kita akan menjawab pertanyaan

Lebih terperinci

BAB II KAJIAN TEORI. hasil percobaan yang berbeda dan masing-masing mempunyai. itu menyusun kejadian, maka probabilitas kejadian

BAB II KAJIAN TEORI. hasil percobaan yang berbeda dan masing-masing mempunyai. itu menyusun kejadian, maka probabilitas kejadian BAB II KAJIAN TEORI A. Probabilitas Teorema 2.1 (Walpole, 1992) Probabilitas menunjukan suatu percobaan mempunyai hasil percobaan yang berbeda dan masing-masing mempunyai kemungkinan yang sama untuk terjadi,

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

II. TINJAUAN PUSTAKA. Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi

II. TINJAUAN PUSTAKA. Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi II. TINJAUAN PUSTAKA 2.1 Distribusi Normal Umum Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi normal umum, jika dan hanya jika fungsi densitasnya berbentuk: ; Penulisan notasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T} adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengantar Pada bab ini akan diuraikan beberapa landasan teori untuk menunjang penulisan skripsi ini. Uraian ini terdiri dari beberapa bagian yang akan dipaparkan secara terperinci

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

TINJAUAN PUSTAKA. Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu

TINJAUAN PUSTAKA. Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu II. TINJAUAN PUSTAKA. Distribusi Weibull Distribusi Weibull adalah distribusi yang paling banyak digunakan untuk waktu hidup dalam tekhnik ketahanan. Distribusi ini adalah distribusi serbaguna yang dapat

Lebih terperinci

KONSISTENSI ESTIMATOR

KONSISTENSI ESTIMATOR KONSISTENSI ESTIMATOR TUGAS STATISTIKA MATEMATIKA II Oleh 1. Wahyu Nikmatus S. (121810101010) 2. Vivie Aisyafi F. (121810101050) 3. Rere Figurani A. (121810101052) 4. Dwindah Setiari W. (121810101054)

Lebih terperinci

DISTRIBUSI SATU PEUBAH ACAK

DISTRIBUSI SATU PEUBAH ACAK 0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 4 BAB II KAJIAN PUSTAKA Pada sub bab ini akan diberikan beberapa definisi dan teori yang mendukung rancangan Sequential Probability Ratio Test (SPRT) yaitu percobaan dan ruang sampel, peubah acak dan fungsi

Lebih terperinci

Estimasi Titik. (Point Estimation) Minggu ke 1-3. Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada

Estimasi Titik. (Point Estimation) Minggu ke 1-3. Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada Estimasi Titik (Point Estimation) Minggu ke 1-3 Prof. Dr. Sri Haryatmi, M. Sc. Universitas Gadjah Mada 2014 Prof. Dr. Sri Haryatmi, M. Sc. (UGM) Daftar Isi 2014 1 / 33 DAFTAR ISI 1 Minggu 1 Pertemuan 1

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 3 BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu ruang state. Jika

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. INJAUAN PUSAKA.1 Penduga Area Kecil Rao (003) mengemukakan bahwa suatu area disebut kecil apabila contoh yang diambil pada area tersebut tidak mencukupi untuk melakukan pendugaan langsung dengan hasil

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

URAIAN POKOK-POKOK PERKULIAHAN

URAIAN POKOK-POKOK PERKULIAHAN Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan

Lebih terperinci

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan

TINJAUAN PUSTAKA. ruang sampel dan dilambangkan dengan huruf S. Ruang sampel beranggotakan II. TINJAUAN PUSTAKA 2.1 Percobaan dan Ruang Sampel Menurut Walpole (1995), istilah percobaan digunakan untuk sembarang proses yang dapat membangkitkan data. Himpunan semua hasil suatu percobaan disebut

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

KONSEP DASAR TERKAIT METODE BAYES

KONSEP DASAR TERKAIT METODE BAYES KONSEP DASAR TERKAIT METODE BAYES 2.3. Peubah Acak dan Distribusi Peluang Pada statistika kita melakukan percobaan dimana percobaan tersebut akan menghasilkan suatu peluang. Ruang sampel pada percobaan

Lebih terperinci

PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN LINEAR BONNO ANDRI WIBOWO

PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN LINEAR BONNO ANDRI WIBOWO PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN LINEAR BONNO ANDRI WIBOWO DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2014

Lebih terperinci

LANDASAN TEORI. Dalam proses penelitian pendekatan distribusi generalized t(,,, ), ), melalui distribusi generalized beta 2

LANDASAN TEORI. Dalam proses penelitian pendekatan distribusi generalized t(,,, ), ), melalui distribusi generalized beta 2 5 II. LANDASAN TEORI Dalam proses penelitian pendekatan distribusi generalized t terhadap distribusi gamma dan melalui distribusi generalized beta 2 distribusi generalized diperlukan gamma beberapa konsep

Lebih terperinci

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3

Lebih terperinci

PERTIDAKSAMAAN

PERTIDAKSAMAAN PERTIDAKSAMAAN A. Pengertian 1. Notasi Pertidaksamaan Misalnya ada dua bilangan riil a dan b. Ada beberapa notasi yang bisa dibuat yaitu: a. a dikatakan kurang dari b, ditulis a b jika dan hanya jika a

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN FUNGSI PANGKAT INTAN FITRIA SARI

PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN FUNGSI PANGKAT INTAN FITRIA SARI PENDUGAAN FUNGSI NILAI HARAPAN PADA PROSES POISSON PERIODIK MAJEMUK DENGAN TREN FUNGSI PANGKAT INTAN FITRIA SARI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

Sistem Bilangan Ri l

Sistem Bilangan Ri l Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari distribusi generalized lambda

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

Sistem Bilangan Riil. Pendahuluan

Sistem Bilangan Riil. Pendahuluan Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

STK 203 TEORI STATISTIKA I

STK 203 TEORI STATISTIKA I STK 203 TEORI STATISTIKA I II. PEUBAH ACAK DISKRET II. Peubah Acak Diskret 1 PEUBAH ACAK DISKRET Definisi 2.1. (Peubah Acak) : Peubah Acak Y adalah suatu fungsi yang memetakan seluruh anggota ruang contoh

Lebih terperinci