4. BILANGAN ACAK dan Pembangkitannya

Ukuran: px
Mulai penontonan dengan halaman:

Download "4. BILANGAN ACAK dan Pembangkitannya"

Transkripsi

1 4. BILANGAN ACAK dan Pembangkitannya 4.1. Pengantar Bilangan Acak Bilangan acak merupakan suatu besaran dasar dalam modeling dan teknikteknik simulasi. Pada modeling dan simulasi banyak sekali memanfaatkan bilangan acak sebagai besaran untuk mendapatkan penyelesaian suatu permasalahan simulasi. Untuk mendapatkan bilangan yang benar-benar acak, secara manual dapat dilakukan dengan menggunakan undian, arisan, atau pemakaian mesin roullete. Tetapi secara komputasi, hal ini sulit dilakukan. Hal ini disebabkan bahwa komputer merupakan mesin deterministik, sedangkan bilangan acak muncul sebagai kejadian yang probabilistic. Satu-satunya cara untuk mendapatkan bilangan acak adalah dengan meng-gunakan pseudo random generator (pembangkit bilangan acak semu), dimana bilangan acak diperoleh secara deterministik (aritmatik). Berbagai metode untuk membangkitkan bilangan acak banyak dibahas, dalam modul ini hanya dibahas beberapa macam metode saja, - LCM (linear Congruent Method), - Suffle Method, d - Rejection Method. 1

2 4. 2. M4.2. e t ometode d e LLinear i n e a rcongruent C o n g r(lcm) u e n t ( L C M ) Metode Linear Congruent ini sangat banyak digunakan untuk membangkitkan bilangan acak r1, r2,, rn yang bernilai [0,m] dengan memanfaatkan nilai sebelumnya. Untuk membangkitkan bilangan acak ke n+1 (r n+1 ) dengan metode Linear Congruent, didefinisikan: r ar cmod m n1 n dimana a,c dan m dinamakan nilai pembangkit, r0 dinamakan nilai awal, biasanya nilai ini yang di-gunakan dalam proses randomize (mengacak di awal atau state awal). Contoh 4.1. Misalkan ditentukan a=4, c=1 dan r1=3, maka bilangan acak 0 s/d 8 (m=9) dapat dihitung: r2=((4)(3)+1) mod 9 = 4 r3=((4)(4)+1) mod 9 = 8 r4=((4)(8)+1) mod 9 = 6 dan seterusnya. 2

3 4. 2. M4.2. e t ometode d e LLinear i n e a rcongruent C o n g r(lcm) u e n t ( L C M ) A l g o r i t m a d a r i m e t o d e L i n e a r C o n g r u e n t i n i Masukkan a, c, m dan r1 Masukkan berapa bilangan acak yang akan dibangkitkan (n) Untuk i=1 s/d n : hitung r(i+1)=(a.r(i)+c) mod m Implementasi dari metode Linear Congruet ini dengan MATLAB adalah s e b a g a i b e r i k u t : % Mendefinisikan nilai pembangkit a=4; c=1; m=9; % Mendefinisikan nilai state awal r(1)=3; %Proses pembangkitan 20 bilangan acak for k=1:20 r(k+1)=mod(a*r(k)+c,m); end %Menampilkan bilangan acak disp(r) 3

4 4. 2. M4.2. e t ometode d e LLinear i n e a rcongruent C o n g r(lcm) u e n t ( L C M ) Simpan program ini ke dalam file acak.m. Untuk menampilkan hasil bilangan acak dapat dituliskan nama variabelnya yaitu r: Coba tampilkan hasilnya, seperti contoh berikut: >> acak Columns 1 through Columns 9 through Columns 17 through Perhatikan bahwa bilangan yang dihasilkan akan berulang setiap 9 bilangan, sehingga dapat dikatakan bahawa hasilnya tidak benarbenar acak! Disinilah menariknya mem-pelajari pembangkitan bilangan acak, yaitu mengubah mesin aritmatik menjadi mesin acak. Salah satu cara adalah dengan mengubah nilai pembangkitnya, misalkan dengan nilai pembangkit (a,c,m,r1) = (51,1,256,10) 4

5 4. 2. M4.2. e t ometode d e LLinear i n e a rcongruent C o n g r(lcm) u e n t ( L C M ) Untuk menganti nilai pembangkit, ubah nilai a,c, m dan r(1). Misalkan ubah dengan nilai (a,c,m,r1) = (327,1,512,11), maka ubah empat baris teratas dari program di atas yang tertulis: % Mendefinisikan nilai pembangkit a=4; c=1; m=9; % Mendefinisikan nilai state awal r(1)=3; menjadi % Mendefinisikan nilai pembangkit a=327; c=1; m=512; % Mendefinisikan nilai state awal r(1)=11; Perhatikan bagaimana hasilnya. Bila program ini dijalankan hasilnya akan menjadi: >> acak Columns 1 through Columns 9 through Columns 17 through Terlihat sampai 21 bilangan belum terdapat pengulangan. 5

6 4. 2. M4.2. e t ometode d e LLinear i n e a rcongruent C o n g r(lcm) u e n t ( L C M ) Tugas 4.1. Dengan menggunakan program ini dapatkan sampai berapa bilangan angka 11 muncul lagi. Contoh 4.3. Jalankan program acak.m berkali-kali, perhatikan hasilnya akan sama. Bila dijalankan lagi hasilnya akan: >> acak Columns 1 through Columns 9 through Columns 17 through Hasil ini sama dengan hasil sebelumnya Program acak.m di atas ubah nilai r(1) dengan : t=fix(clock); r(1)=floor(mod(t(6),m)); di baris paling atas. Fungsi fix dan floor adalah fungsi pem-bulatan digunakan untuk menjamin bilangan yang dihasilkan selalu bilangan bulat, dan fungsi mod adalah fungsi sisa pembagian yang digunakan untuk menjamin6 bilangan yang dihasilkan selalu lebih kecil dari m.

7 4. 2. M4.2. e t ometode d e LLinear i n e a rcongruent C o n g r(lcm) u e n t ( L C M ) Hasil dijalankan pertama: >> acak Columns 1 through Columns 8 through Columns 15 through Hasil dijalankan kedua: >> acak Columns 1 through Columns 8 through Columns 15 through Perhatikan hasilnya tidak pernah sama karena r(1) merupakan pengambilan nilai 1 ms. 7

8 4. 2. M4.2. e t ometode d e LLinear i n e a rcongruent C o n g r(lcm) u e n t ( L C M ) Contoh 4.4. Membangkitkan 20 bilangan acak 0 s/d 1dengan menggunakan fungsi standard dari MATLAB % Mendefinisikan state awal menggunakan waktu t=fix(clock) srand(t(6)) % Membangkitkan 20 bilangan acak % dilakukan dengan ukuran 1 baris 20 kolom x=rand(1,20) % Menampilkan bilangan acak disp(x) Simpan dengan nama file acak1.m, kemudian jalankan dengan menuliskan acak1. Hasil dari setiap komputer tidak akan sama. 8

9 4. 2. M4.2. e t ometode d e LLinear i n e a rcongruent C o n g r(lcm) u e n t ( L C M ) Contoh 4.5. Membangkitkan 20 bilangan acak 0 s/d 1 menggunakan LCM dengan nilai pembangkat (a,c,m) = (327,1,512) dan r1 adalah state awal yang dibangkitkan berdasarkan wkatu. % Mendefinisikan nilai pembangkit a=327; c=1; m=512; % Mendefinisikan nilai state awal t=fix(clock) r(1)=mod(t(6),m); %Proses pembangkitan 20 bilangan acak for k=1:19 r(k+1)=mod(a*r(k)+c,m); end r=r/m; %Menampilkan bilangan acak disp(r) Simpan dengan nama file acak2.m 9

10 4. 2. M e t o d e L i n e a r C o n g r u e n t ( L C M ) Tugas 4.2. Jalankan kedua program di atas (acak1.m dan acak2.m) dengan terlebih dahulu mengubah jumlah bilangan acaknya dengan 1000 bilangan acak, kemudian tuliskan perintah untuk menghitung histogram dari masing-masing bilangan acak sebagai berikut: h1=hist(x,10); h2=hist(r,10); Untuk menggambar histogramnya sebagai berikut: subplot(1,2,1), plot(h1), grid subplot(1,2,2), plot(h2), grid Perhatikan kemunculan setiap kejadian (range angka 0.1) dan apa yang berbeda. Untuk menjelaskan perbedaan bisa digunakan perhitungan statistik untuk: Menghitung ekspektasi dari kedua bilangan acak tersebut. Menghitung pengujian interval dari kedua distribusi di atas dengan menganggap salah satu sebagai nilai acuan. 10

11 4. 3. M e t o d e S h u f f l e U n t u k M e m p e r b a i k i B i l a n g a n A c a k Untuk memperbaiki hasil distribusi bilangan acak yang dibangkitkan dengan metode linear congruent agar seakan-akan tidak berulang, dapat digunakan metode suffle, yaitu mengganti kedudukan bilangan acak berdasarkan indeks pada barisan bilangan acaknya. Algoritma metode suffle ini adalah: 1. Bangkitkan n bilangan acak ai [0,1] dengan LCM 2. Bangkitkan bilangan acak baru b [0,1] dengan LCM 3. Hitung k = n b 4. Hitung r = ak 5. Hitung ak = b Ambil nilai r sebagai sebagai bilangan acak baru dan ulangi langkah 2. Kedua macam metode pembangkitan bilangan acak di atas (LCM dan Suffle) akan menghasilkan bilangan acak dengan distribusi uniform, dalam arti banyak kemungkinan munculnya setiap bilangan adalah sama. Berikut ini akan dibahas bagaimana membangkitkan bilangan acak dengan distribusi tertentu. 11

12 4. 3. M e t o d e S h u f f l e U n t u k M e m p e r b a i k i B i l a n g a n A c a k Tugas 4.2. Jalankan kedua program di atas (acak1.m dan acak2.m) dengan terlebih dahulu mengubah jumlah bilangan acaknya dengan 1000 bilangan acak, kemudian tuliskan perintah untuk menghitung histogram dari masing-masing bilangan acak sebagai berikut: h1=hist(x,10); h2=hist(r,10); Untuk menggambar histogramnya sebagai berikut: subplot(1,2,1), plot(h1), grid subplot(1,2,2), plot(h2), grid Perhatikan kemunculan setiap kejadian (range angka 0.1) dan apa yang berbeda. Untuk menjelaskan perbedaan bisa digunakan perhitungan statistik untuk: Menghitung ekspektasi dari kedua bilangan acak tersebut. Menghitung pengujian interval dari kedua distribusi di atas dengan menganggap salah satu sebagai nilai acuan. 12

13 4. 3. M e t o d e S h u f f l e U n t u k M e m p e r b a i k i B i l a n g a n A c a k Contoh 4.6. Bangkitkan 10 bilangan acak 0 s/d 9 atau ditulis [0 9] meng-gunakan metode LCM (a,c,m,r1)=(4,1,9,3), kemudian lakukan resuffle 3 kali. Tuliskan program di bawah ini, kemudian simpan dalam file acakre1.m % Nilai pembangkitan dan state awal a=4; c=1; m=9; r(1)=3; % membangkitkan 9 bilangan acak % karena state awal dianggap 1 bilangan for i=1:9 r(i+1)=mod(a*r(i)+c,m); end disp('sebelum resuffle:') disp(r) % resuffle 3 kali for i=1:3 r(10+1)=mod(a*r(9+i)+c,m); p=r(10+i); r(p+1)=p; end disp('sesudah resuffle:') 13

14 4. 3. M e t o d e S h u f f l e U n t u k M e m p e r b a i k i B i l a n g a n A c a k Jalankan program dengan menuliskan acakre1, dan hasilnya adalah: >> acakre1 Sebelum resuffle: Columns 1 through Columns 9 through Sesudah resuffle: Columns 1 through Columns 9 through

15 4.4.Membangkitkan Bilangan Acak Berdistribusi Non-Uniform Untuk membangkitkan bilangan acak a k yang berdistribusi non-uniform dengan fungsi f(a) yang didefinisikan berada pada [a min, a max ]. Jika integral dari fungsi f(a) dapat dihitung misalkan F(a) maka kita dapat membangkitkan bilangan acak ak dengan mentransformasikan bilangan acak 0<y< 1 dengan: a = F-1(y) Sebagai contoh dibangkitkan bilangan acak berdistribusi eksponensial sebagai berikut: dimana m adalah konstanta. Maka bangkitkan bilangan acak berdistribusi uniform y=[0,1], kemudian hitung : a F 1 ( y) ln( y) m Bangkitkan bilangan acak [0,1] yang berditribusi Maka integral fungsi f(a) adalah: F(a) = ½ e-2ª Sehingga invers dari F(a) adalah : a = - ln(y) / 2 15

16 4.4.Membangkitkan Bilangan Acak Berdistribusi Non-Uniform Implementasi dengan menggunakan MATLAB untuk mem-bangkitkan 10 bilangan acak berdistribusi f(a) adalah sebagai berikut: Bangkitkan 1000 bilangan acak uniform sebagai berikut: >> a=rand(1,1000) a = Columns 1 through Columns 6 through Gunakan fungsi a = -ln(y)/2 untuk membangkitkan bilangan acak eksponensial. >> b=-log(a)/2; >> b=b/max(b) b = Columns 1 through Columns 6 through

17 4.4.Membangkitkan Bilangan Acak Berdistribusi Non-Uniform Bila diperhatikan histogramnya sebagai berikut: subplot(2,1,1), hist(a,10),grid title('histogram Uniform') subplot(2,1,2), hist(b,10),grid title('histogram Eksponensial') Hasilnya adalah sebagai berikut: 17

18 4.5. M embangki tkan Bilangan Acak Berdistribusi Poisson Fungsi kepadatan probabilitas untuk distribusi Poisson dengan nilai rara-rata m didefinisikan: dimana i = 0,1,2,3,. Untuk membangkitkan bilangan acak berdistribusi Poisson digunakan nilai m dan pembangkitan bilangan acak uniform dengan menggunakan metode invers diperoleh bahwa: p m i 1 e i1 p i i m i! dimana i 0 Algoritma untuk membangkitkan bilangan acak berdistribusi Poisson adalah sebagai berikut: Dengan mengetahui rata-rata distribusi poisson m, maka : p 0 e p( i) m m Seterusnya tinggal memanfaatkan model rekursi dari pi. 18

19 4.5. M embangki tkan Bilangan Acak Berdistribusi Poisson Contoh 4.9. Membangkitkan n bilangan acak berdistribusi poisson dengan rata-rata m adalah sebagai berikut: % Set nilai rata-rata poisson (m) dan Jumlah bilangan acak yang dibangkitkan (n) m=input( Rata-rata poisson = ); n=input( Jumlah bilangan acak = ); % Membangkitkan 10 bilangan acak berdistribusi poisson for bil=1:n u=rand; i=0; p=exp(-m); F=p; sw=0; while sw==0; if u<f x(bil)=i; sw=1; else p=m*p/(i+1); F=F+p; i=i+1; end end end % Menampilkan bilangan acak disp(x); 19

20 4.5. M embangki tkan Bilangan Acak Berdistribusi Poisson Simpan dalam file poisson1.m, kemudian jalankan dengan memasukkan m=3 dan n=1000, hasilnya adalah: >> poisson1 Rata-rata poisson = 3 Jumlah bilangan acak = 10 Columns 1 through Columns 9 through Dengan histogram sebagai berikut: % Menampilkan histogram dari bilangan acak yang diperoleh t=min(x):max(x); h=hist(x,t); bar(t,h), grid 20

21 4. 6. M e t o d e R e j e c t i o n Metode Rejection ini merupakan metode pembangkitan bilangan acak yang secara langsung memanfaatkan fungsi ditsribusi bilangan acak f(a). Bila bilangan acak yang dibangkitkan berada pada daerah fungsi f(a) maka a diterima dan bila tidak, maka a ditolak. Metode ini sangat sederhana tetapi untuk membangkitkan banyak bilangan acak diperlukan waktu yang cukup lama. Algoritma metode rejection: 1. Bangkitkan 2 bilangan acak berditribusi uniform x dan y dengan [0,1]. 2. Bila y<f(x) maka x diterima dan bila tidak x ditolak. 21

22 4. 6. M e t o d e R e j e c t i o n Contoh 4.9. Bangkitkan 10 bilangan acak berdistribusi Poisson : e f ( a) m a! m a dimana m adalah nilai rata-rata Hasil dari pembangkitkan bilangan acak berdistribusi poisson dengan rata-rata 2 untuk a=[0,10] menggunakan metode rejection adalah sebagai berikut: x y f(x) x y f(x) ditolak ditolak ditolak diterima ditolak diterima diterima ditolak ditolak ditolak ditolak ditolak ditolak ditolak ditolak ditolak ditolak ditolak diterima ditolak 22

23 4. 6. M e t o d e R e j e c t i o n Dari hasil di atas terlihat bahwa untuk membangkitkan 10 bilangan acak, diperlukan 97 kali percobaan, ini menunjukkan bahwa metode ini tidak terlalu cepat untuk membangkitkan suatu bilangan acak. Tetapi metode ini memang sangat mudah diimplementasikan karena tidak berurusan dengan inversi dari fungsi distribusi f(a) yang terkadang cukup rumit. Metode rejection ini merupakan suatu metode pem-bangkitan bilangan acak yang banyak dibicarakan, meskipun tidak terlalu cepat ternyata membawa implikasi yang menarik yang akan mengantarkan ke arah pencarian acak (random walk) yang sangat terkenal. Metode ini juga menjadi dasar dari Metode Monte Carlo yang akan di bahas pada bab 5. Implementasi Metode Rejection untuk membangkitkan bilangan acak [0,9] berdistribusi poisson dalam MATLAB adalah sebagai berikut: 23

24 4. 6. M e t o d e R e j e c t i o n % Memasukkan jumlah bilangan acak yang dibangkitkan n=input('jumlah bilangan acak? '); % Menentukan nilai parameter poisson % misalkan m=3 m=3; % Metode rejection k=0; i=0; while k<=n i=i+1; x=floor(11*rand); y=rand; p=exp(-m)*m^x/factorial(x); fprintf('iterasi ke %d : %d %1.2f %1.2f ---> ',i,x,y,p); 24

25 4. 6. M e t o d e R e j e c t i o n if y<=p k=k+1; b(k)=x; fprintf('diterima\n'); else fprintf('ditolak\n'); end end %Menampilkan bilangan acak poisson disp(b) Simpan dalam file acakn.m, kemudian jalankan dengan menuliskan acakn, perhatikan untuk sejumlah bilangan diperlukan jumlah iterasi yang sangat besar dibandingkan dengan jumlah bilangan acak yang dihasilkan. 25

26 4. 6. M e t o d e R e j e c t i o n Tugas 4.3. Dengan menggunakan program acakn di atas, bangkitkan n bilangan berkali-kali sesuai tabel berikut ini: Jumlah bilangan yang dibangkitkan Jumlah iterasi

27 4. 6. M e t o d e R e j e c t i o n Gambarkan hasilkan sebagai berikut: Jumlah Iterasi Jumlah bilangan 27

28 4. 6. M e t o d e R e j e c t i o n Tugas 4.3. Buatlah program sederhana untuk membangkitkan bilangan acak [0,1] berdistribusi normal dengan ratarata =0.5 dan standard deviasi =0.2 dengan menggunakan metode rejection. 1. Distribusi normal dengan rata-rata dan standard deviasi didefinisikan : f ( x) 1 e 2 x Hitung waktu yang dibutuhkan untuk membangkitkan 100, 1000, dan bilangan acak. 28

Distribusi Bilangan Acak

Distribusi Bilangan Acak Distribusi Bilangan Acak Achmad Basuki Surabaya 2005 Tujuan Mahasiswa bisa membangkitkan bilangan acak dengan distribusi tertentu, seperti uniform, gaussian dan poisson. Mahasiswa bisa menghitung nilai-nilai

Lebih terperinci

Membangkitkan Bilangan Acak Menggunakan Matlab. Achmad Basuki

Membangkitkan Bilangan Acak Menggunakan Matlab. Achmad Basuki Membangkitkan Bilangan Acak Menggunakan Matlab Achmad Basuki 2004 Materi Linear Congruent Method Metode Resuffle Fungsi Standard Membangkitkan Bilangan Acak Grafik dan Statistik Bilangan Acak Pseudo Random

Lebih terperinci

Membangkitkan Bilangan Acak Menggunakan Matlab

Membangkitkan Bilangan Acak Menggunakan Matlab Membangkitkan Bilangan Acak Menggunakan Matlab Achmad Basuki 2004 Materi Linear Congruent Method Metode Resuffle Fungsi Standard Membangkitkan Bilangan Acak Menampilkan Grafik Bilangan Acak Pseudo Random

Lebih terperinci

BAB 3 PEMBANGUNAN MODEL SIMULASI MONTE CARLO. Simulasi Monte Carlo merupakan salah satu metode simulasi sederhana yang

BAB 3 PEMBANGUNAN MODEL SIMULASI MONTE CARLO. Simulasi Monte Carlo merupakan salah satu metode simulasi sederhana yang BAB 3 PEMBANGUNAN MODEL SIMULASI MONTE CARLO 3. Simulasi Monte Carlo Simulasi Monte Carlo merupakan salah satu metode simulasi sederhana yang dapat dibangun secara cepat menggunakan spreadsheet. Penggunaan

Lebih terperinci

IMPLEMENTASI LINEAR CONGRUENT METHOD (LCM) UNTUK PENGACAKAN SOAL UJIAN BERKATEGORI

IMPLEMENTASI LINEAR CONGRUENT METHOD (LCM) UNTUK PENGACAKAN SOAL UJIAN BERKATEGORI IMPLEMENTASI LINEAR CONGRUENT METHOD (LCM) UNTUK PENGACAKAN SOAL UJIAN BERKATEGORI Tonni Limbong 1, Janner Simarmata 2 1 Program Studi S1-Teknik Informatika STMIK Budi Darma Medan 2 Fakultas Ekonomi Universitas

Lebih terperinci

METODE MONTE CARLO. Presented by Muchammad Chusnan Aprianto Dr.KHEZ Muttaqien Istitute of Technology

METODE MONTE CARLO. Presented by Muchammad Chusnan Aprianto Dr.KHEZ Muttaqien Istitute of Technology METODE MONTE CARLO Presented by Muchammad Chusnan Aprianto Dr.KHEZ Muttaqien Istitute of Technology 1 M O N T E C A R L O Metode pencarian acak adalah suatu metode dimana solusi dicari secara acak dan

Lebih terperinci

BILANGAN ACAK (RANDOM NUMBER)

BILANGAN ACAK (RANDOM NUMBER) BILANGAN ACAK (RANDOM NUMBER) Disajikan oleh: Bernardus Budi Hartono Web : http://pakhartono.wordpress.com/ E-mail: pakhartono at gmail dot com budihartono at acm dot org Teknik Informatika [Gasal 2009

Lebih terperinci

PEMBANGKIT BILANGAN ACAK (Random Number Generator)

PEMBANGKIT BILANGAN ACAK (Random Number Generator) PEMBANGKIT BILANGAN ACAK (Random Number Generator) Mata Kuliah Pemodelan & Simulasi Jurusan Teknik Informatika Universitas Komputer Indonesia 1 2 Random Number Generator (1) Cara memperoleh : ZAMAN DAHULU,

Lebih terperinci

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus :

BILANGAN ACAK. Metode untuk mendapatkan bilangan acak : 1. Metode Kongruen Campuran Rumus : BILANGAN ACAK Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu : Bilangan acak harus mempunyai distribusi serba sama (uniform) Beberapa bilangan acak

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Teori antrian pertama kali dikemukakan oleh A.K.Erlang, yang menggambarkan model antrian untuk menentukan jumlah optimal dari fasilitas telepon switching yang digunakan untuk melayani

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI. adalah linear congruent method (LCM). Bahasa Pemrograman yang digunakan

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI. adalah linear congruent method (LCM). Bahasa Pemrograman yang digunakan BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Wardani dan Djuniadi melakukan penelitian tentang pembangkitkan bilangan acak untuk menentukan soal ujian dalam aplikasi. Metode yang digunakan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH SIMULASI (KB) KODE / SKS : KK / 3 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH SIMULASI (KB) KODE / SKS : KK / 3 SKS KODE / SKS : KK-01333 / 3 SKS 1 Pengertian dan tujuan 1. Klasifikasi Model 1 Simulasi. Perbedaan penyelesaian problem Dapat menjelaskan klasifikasi model dari matematis secara analitis dan numeris suatu

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi

Mata Kuliah Pemodelan & Simulasi Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN. Perancangan game mencocokkan gambar ini dibuat agar dapat berjalan

BAB III ANALISIS DAN PERANCANGAN. Perancangan game mencocokkan gambar ini dibuat agar dapat berjalan BAB III ANALISIS DAN PERANCANGAN III.1. Analisa Sistem Perancangan game mencocokkan gambar ini dibuat agar dapat berjalan pada sistem yang beroperasi pada perangkat komputer, game yang dikembangkan adalah

Lebih terperinci

Percobaan Perancangan Fungsi Pembangkit Bilangan Acak Semu serta Analisisnya

Percobaan Perancangan Fungsi Pembangkit Bilangan Acak Semu serta Analisisnya Percobaan Perancangan Fungsi Pembangkit Bilangan Acak Semu serta Analisisnya Athia Saelan (13508029) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Bab IV Simulasi Metode Monte Carlo Mengatasi Masalah dalam Distribusi Data

Bab IV Simulasi Metode Monte Carlo Mengatasi Masalah dalam Distribusi Data 24 Bab IV Simulasi Metode Monte Carlo Mengatasi Masalah dalam Distribusi Data IV.1 Mengenal Metode Monte Carlo Distribusi probabilitas digunakan dalam menganalisis sampel data. Sebagaimana kita ketahui,

Lebih terperinci

BAB IV APLIKASI JARAK MAHALANOBIS

BAB IV APLIKASI JARAK MAHALANOBIS BAB IV Aplikasi Jarak Mahalanobis 42 BAB IV APLIKASI JARAK MAHALANOBIS 4.1 Pendeteksian Outlier k Teknologi pendeteksian outlier dengan menggunakan jarak Mahalanobis merupakan teknologi paling awal dalam

Lebih terperinci

PERANCANGAN SIMULASI PENGACAKAN SOAL TRYOUT UNTUK MEMBENTUK PAKET SOAL UJIAN NASIONAL MENGGUNAKAN LINEAR CONGRUENT METHOD (LCM)

PERANCANGAN SIMULASI PENGACAKAN SOAL TRYOUT UNTUK MEMBENTUK PAKET SOAL UJIAN NASIONAL MENGGUNAKAN LINEAR CONGRUENT METHOD (LCM) PERANCANGAN SIMULASI PENGACAKAN SOAL TRYOUT UNTUK MEMBENTUK PAKET SOAL UJIAN NASIONAL MENGGUNAKAN LINEAR CONGRUENT METHOD (LCM) Darma Perwira Hasibuan (0911467) Mahasiswa Jurusan Teknik Informatika, STMIK

Lebih terperinci

BAB III PROSES POISSON MAJEMUK

BAB III PROSES POISSON MAJEMUK BAB III PROSES POISSON MAJEMUK Pada bab ini membahas tentang proses stokastik, proses Poisson dan proses Poisson majemuk yang akan diaplikasikan pada bab selanjutnya. 3.1 Proses Stokastik Koleksi atau

Lebih terperinci

MODUL 1. Command History Window ini berfungsi untuk menyimpan perintah-perintah apa saja yang sebelumnya dilakukan oleh pengguna terhadap matlab.

MODUL 1. Command History Window ini berfungsi untuk menyimpan perintah-perintah apa saja yang sebelumnya dilakukan oleh pengguna terhadap matlab. MODUL 1 1. Pahuluan Matlab merupakan bahasa pemrograman yang hadir dengan fungsi dan karakteristik yang berbeda dengan bahasa pemrograman lain yang sudah ada lebih dahulu seperti Delphi, Basic maupun C++.

Lebih terperinci

PembangkitVariabelRandom

PembangkitVariabelRandom PembangkitVariabelandom Slide: Tri Harsono 1 1. Pembangkitvariabelrandom diskrit variabel random: adalah nilai suatu variabel random yg mempunyai distribusitertentuutkmengambilvariabelrandom dari beberapa

Lebih terperinci

Sampling dengan Simulasi Komputer

Sampling dengan Simulasi Komputer Modul Sampling dengan Simulasi Komputer PENDAHULUAN Sutawanir Darwis M etode statistika merupakan alat untuk menyelesaikan masalah apabila solusi analitik tidak mungkin diperoleh. Dengan metode statistika

Lebih terperinci

Jurnal Ilmiah : MEDIA INFORMASI ANALISA DAN SISTEM (MEANS) ISSN :

Jurnal Ilmiah : MEDIA INFORMASI ANALISA DAN SISTEM (MEANS) ISSN : Jurnal Ilmiah : MEDIA INFORMASI ANALISA DAN SISTEM (MEANS) Media Informasi Analisa dan Sistem (MEANS) berisi artikel-artikel ilmiah yang meliputi kajian di bidang Ilmu Komputer seperti Sistem Informasi,

Lebih terperinci

#12 SIMULASI MONTE CARLO

#12 SIMULASI MONTE CARLO #12 SIMULASI MONTE CARLO 12.1. Konsep Simulasi Metode evaluasi secara analitis sangat dimungkinkan untuk sistem dengan konfigurasi yang sederhana. Untuk sistem yang kompleks, Bridges [1974] menyarankan

Lebih terperinci

Dasar-dasar Simulasi

Dasar-dasar Simulasi Bab 3: Dasar-dasar Simulasi PEMODELAN DAN SIMULASI SISTEM M O N I C A A. K A P P I A N T A R I - 2 0 0 9 Sumber: Harrell, C., B.K. Ghosh and R.O. Bowden, Jr., Simulation Using Promodel, 2 nd ed., McGraw-

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

Bab IV Simulasi dan Pembahasan

Bab IV Simulasi dan Pembahasan Bab IV Simulasi dan Pembahasan IV.1 Gambaran Umum Simulasi Untuk menganalisis program pemodelan network flow analysis yang telah dirancang maka perlu dilakukan simulasi program tersebut. Dalam penelitian

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

BAB II LANDASAN TEORI. digunakan untuk mendukung penyusunan laporan tugas akhir. Landasan teori

BAB II LANDASAN TEORI. digunakan untuk mendukung penyusunan laporan tugas akhir. Landasan teori BAB II LANDASAN TEORI Dalam bab ini akan dijelaskan berbagai macam landasan teori yang digunakan untuk mendukung penyusunan laporan tugas akhir. Landasan teori yang dibahas meliputi permasalahan-permasalahan

Lebih terperinci

PEMODELAN BILANGAN ACAK DAN PEMBANGKITANNYA. Pemodelan & Simulasi

PEMODELAN BILANGAN ACAK DAN PEMBANGKITANNYA. Pemodelan & Simulasi PEMODELAN BILANGAN ACAK DAN PEMBANGKITANNYA Pemodelan & Simulasi Bilangan Acak Bilangan acak adalah bilangan yang kemunculannya terjadi secara acak. Bilangan acak ini penting untuk keperluan simulasi.

Lebih terperinci

Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu

Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu Cara memperoleh data: Zaman dahulu, dgn cara : Melempar dadu Mengocok kartu Zaman modern (>1940), dgn cara membentuk bilangan acak secara numerik/aritmatik (menggunakan komputer), disebut Pseudo Random

Lebih terperinci

BAB III ANALISA MASALAH DAN RANCANGAN PROGRAM

BAB III ANALISA MASALAH DAN RANCANGAN PROGRAM BAB III ANALISA MASALAH DAN RANCANGAN PROGRAM III.1. Analisa Masalah Evaluasi hasil belajar dalam konteks pembelajaran sering kali disebut juga dengan evaluasi keluaran (output). Pelaksanaannya selalu

Lebih terperinci

PEMBANGKIT BILANGAN ACAK

PEMBANGKIT BILANGAN ACAK PEMBANGKIT BILANGAN ACAK Mata Kuliah Pemodelan & Simulasi Pertemuan Ke- 7 Riani L. JurusanTeknik Informatika Universitas Komputer Indonesia 1 CARA MEMPEROLEH : Pembangkit Bilangan Acak (Random Number Generator)

Lebih terperinci

BAB V PENUTUP ( ( ) )

BAB V PENUTUP ( ( ) ) BAB V PENUTUP 5.1 Kesimpulan Penentuan harga opsi Asia menggunakan rata-rata Aritmatik melalui Simulasi Monte Carlo dapat dinyatakan sebagai berikut. ( ( ) ) ( ( ) ) dimana merupakan harga opsi Call Asia

Lebih terperinci

METODE MONTE CARLO. Pemodelan & Simulasi TM11

METODE MONTE CARLO. Pemodelan & Simulasi TM11 METODE MONTE CARLO Pemodelan & Simulasi TM11 Metode Monte Carlo Metoda Monte Carlo telah digunakan sejak abad ke-18 oleh Comte de Buffon yang mengembangkan eskperimen untuk memperoleh rasio antara diameter

Lebih terperinci

BAB I PENDAHULUAN. Keterampilan membaca sangat diperlukan oleh semua orang yang

BAB I PENDAHULUAN. Keterampilan membaca sangat diperlukan oleh semua orang yang BAB I PENDAHULUAN I.1. Latar belakang Keterampilan membaca sangat diperlukan oleh semua orang yang berbudaya. Membaca merupakan alat untuk mencari ilmu pengetahuan dari bacaan, membaca mengandung aneka

Lebih terperinci

STK 572 Manajemen Data Statistik

STK 572 Manajemen Data Statistik STK 572 Manajemen Data Statistik Pertemuan 12 Tim Dosen: Dr. Farit Muhammad Affendi Dr. Agus M Soleh Pembangkitan Bilangan Acak Dr. Agus M Soleh agusms@apps.ipb.ac.id 2 Pendahuluan Pembangkitan bil. acak

Lebih terperinci

BAB II TINJAUAN PUSTAKA. komoditas, model pergerakan harga komoditas, rantai Markov, simulasi Standard

BAB II TINJAUAN PUSTAKA. komoditas, model pergerakan harga komoditas, rantai Markov, simulasi Standard BAB II TINJAUAN PUSTAKA Pada bab ini akan dibahas beberapa tinjauan mengenai teori yang diperlukan dalam pembahasan bab-bab selanjutnya antara lain tentang kontrak berjangka komoditas, model pergerakan

Lebih terperinci

MODIFIKASI METODE LINEAR CONGRUENTIAL GENERATOR UNTUK OPTIMALISASI HASIL ACAK

MODIFIKASI METODE LINEAR CONGRUENTIAL GENERATOR UNTUK OPTIMALISASI HASIL ACAK MODIFIKASI METODE LINEAR CONGRUENTIAL GENERATOR UNTUK OPTIMALISASI HASIL ACAK I Made Divya Biantara 1), I Made Sudana 2), Alfa Faridh Suni, Suryono 3), Arimaz Hangga 4) 1,2,3,4) Jurusan Teknik Elektro,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau BAB II TINJAUAN PUSTAKA 2.1 Proses Stokastik Menurut Gross (2008), proses stokastik adalah himpunan variabel acak Semua kemungkinan nilai yang dapat terjadi pada variabel acak X(t) disebut ruang keadaan

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

Studi dan Implementasi Integrasi Monte Carlo

Studi dan Implementasi Integrasi Monte Carlo Studi dan Implementasi Integrasi Monte Carlo Firdi Mulia - 13507045 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

MODUL I PENGENALAN MATLAB

MODUL I PENGENALAN MATLAB MODUL I PENGENALAN MATLAB 1. Apa Matlab itu? Matlab merupakan bahasa pemrograman dengan kemampuan tinggi dalam bidang komputasi. Matlab memiliki kemampuan mengintegrasikan komputasi, visualisasi, dan pemrograman.

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Kontinyu 1. Adam Hendra Brata Probabilitas dan Statistika Distribusi Peluang Kontinyu 1 Adam Hendra Brata Variabel Acak Kontinyu - Variabel Acak Kontinyu Suatu variabel yang memiliki nilai pecahan didalam range tertentu Distribusi

Lebih terperinci

Analisis Model dan Simulasi. Hanna Lestari, M.Eng

Analisis Model dan Simulasi. Hanna Lestari, M.Eng Analisis Model dan Simulasi Hanna Lestari, M.Eng Simulasi dan Pemodelan Klasifikasi Model preskriptif deskriptif diskret kontinu probabilistik deterministik statik dinamik loop terbuka - tertutup Simulasi

Lebih terperinci

FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING

FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN BAB I PENDAHULUAN (kata pengantar) 1.1 Latar Belakang 1.2 Tujuan Penulisan

Lebih terperinci

FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING

FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING FORMAT LAPORAN MODUL V DISTRIBUSI SAMPLING ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN BAB I PENDAHULUAN (kata pengantar) 1.1 Latar Belakang 1.2 Tujuan Penulisan

Lebih terperinci

PENERAPAN ALGORITMA STEEPEST ASCENT HILL CLIMBING DAN LINEAR CONGRUENT METHOD (LCM) DALAM GAME SLIDE PUZZLE PENGENALAN SEMBILAN SUNAN BERBASIS ANDROID

PENERAPAN ALGORITMA STEEPEST ASCENT HILL CLIMBING DAN LINEAR CONGRUENT METHOD (LCM) DALAM GAME SLIDE PUZZLE PENGENALAN SEMBILAN SUNAN BERBASIS ANDROID Seminar Nasional APTIKOM (SEMNASTIKOM), FaveHotel Jayapura, 3 November 2017 PENERAPAN ALGORITMA STEEPEST ASCENT HILL CLIMBING DAN LINEAR CONGRUENT METHOD (LCM) DALAM GAME SLIDE PUZZLE PENGENALAN SEMBILAN

Lebih terperinci

PERCOBAAN 1 PENGENALAN MATLAB UNTUK STATISTIK

PERCOBAAN 1 PENGENALAN MATLAB UNTUK STATISTIK PERCOBAAN 1 PENGENALAN MATLAB UNTUK STATISTIK 1.1. Tujuan : Setelah melaksanakan praktikum ini mahasiswa diharapkan mampu : Memakai beberapa jenis fungsi khusus di Matlab untuk statistik Membuat pemrograman

Lebih terperinci

PERANCANGAN SISTEM APLIKASI UNDIAN BERHADIAH PADA PT. PS MAJU BERSAMA MENGGUNAKAN LINEAR CONGRUENT METHOD (LCM)

PERANCANGAN SISTEM APLIKASI UNDIAN BERHADIAH PADA PT. PS MAJU BERSAMA MENGGUNAKAN LINEAR CONGRUENT METHOD (LCM) PERANCANGAN SISTEM APLIKASI UNDIAN BERHADIAH PADA PT. PS MAJU BERSAMA MENGGUNAKAN LINEAR CONGRUENT METHOD (LCM) Maskur Muda Batubara (1011209) Mahasiswa Jurusan Teknik Informatika, STMIK Budidarma Medan

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu

FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu FUNGSI FUNGSI Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B. Jika f adalah fungsi dari A ke

Lebih terperinci

Modul 2 Kontrol Program. Tujuan Memahami logika alur program Mampu menggunakan sintaks kontrol program dalam pemrograman

Modul 2 Kontrol Program. Tujuan Memahami logika alur program Mampu menggunakan sintaks kontrol program dalam pemrograman Modul 2 Kontrol Program Tujuan Memahami logika alur program Mampu menggunakan sintaks kontrol program dalam pemrograman Teori dasar dan Praktikum Matlab bisa berlaku seperti bahasa pemrograman C ataupun

Lebih terperinci

SIMULASI: Deterministik dan Monte Carlo

SIMULASI: Deterministik dan Monte Carlo SIMULASI: Deterministik dan Monte Carlo Tjipto Juwono, Ph.D. April 2017 TJ (SU) SIMULASI: Deterministik dan Monte Carlo April 2017 1 / 14 Apa itu yang dimaksud dengan simulasi? Apabila semua data diperoleh

Lebih terperinci

DISTRIBUSI VARIABEL RANDOM

DISTRIBUSI VARIABEL RANDOM DISTRIBUSI VARIABEL RANDM Distribusi Variabel Diskrit Distribusi variabel diskrit adalah salah satu variabel acak yang diasumsikan memiliki bilangan terbatas dari nilai-nilai yang berbeda. Contoh : Waktu

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Fungsi Convex

Bab 2. Landasan Teori. 2.1 Fungsi Convex Bab 2 Landasan Teori Salah satu hal yang menarik dari topik tugas akhir ini adalah penggunaan sebuah ilmu dari dunia insurance (teori comonotonic) ke dunia matematika keuangan. Oleh karena itu untuk memahaminya

Lebih terperinci

BAB III SIMULASI SISTEM ANTRIAN M/M/1. paket data. Adapun kinerja yang akan dibahas adalah rata-rata jumlah paket dalam

BAB III SIMULASI SISTEM ANTRIAN M/M/1. paket data. Adapun kinerja yang akan dibahas adalah rata-rata jumlah paket dalam BAB III SIMULASI SISTEM ANTRIAN M/M/1 3.1 Model Antrian M/M/1 Model antrian yang dibahas dalam tugas akhir ini adalah model antrian M/M/1. Sistem antrian ini diasumsikan digunakan pada simpul jaringan

Lebih terperinci

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA KOMPUTER JAKARTA STIK SATUAN ACARA PERKULIAHAN Mata : TEKNIK SIMULASI Kode Mata : MI - 15222 Jurusan / Jenjang : D3 TEKNIK KOMPUTER Tujuan Instruksional Umum : Agar mahasiswa

Lebih terperinci

BAB V IMPLEMENTASI SIMULASI MONTE CARLO UNTUK PENILAIAN OPSI PUT AMERIKA

BAB V IMPLEMENTASI SIMULASI MONTE CARLO UNTUK PENILAIAN OPSI PUT AMERIKA BAB V IMPLEMENTASI SIMULASI MONTE CARLO UNTUK PENILAIAN OPSI PUT AMERIKA 5.1 Harga Saham ( ( )) Seperti yang telah diketahui sebelumnya bahwa opsi Amerika dapat dieksekusi kapan saja saat dimulainya kontrak

Lebih terperinci

Simulasi Monte Carlo

Simulasi Monte Carlo Simulasi Monte Carlo Simulasi Monte Carlo Simulasi monte carlo melibatkan penggunaan angka acak untuk memodelkan sistem, dimana waktu tidak memegang peranan yang substantif (model statis) Pembangkitan

Lebih terperinci

Journal of Informatics and Technology, Vol 1, No 4, Tahun 2012, p 1-8

Journal of Informatics and Technology, Vol 1, No 4, Tahun 2012, p 1-8 PREDIKSI PENDAPATAN PEMERINTAH INDONESIA MENGGUNAKAN SIMULASI MONTE CARLO Afry Rachmat, Sukmawati Nur Endah, Aris Sugiharto Program Studi Teknik Informatika, Universitas Diponegoro afry.rachmat27@gmail.com,

Lebih terperinci

BAGIAN 1 SINTAK DASAR MATLAB

BAGIAN 1 SINTAK DASAR MATLAB BAGIAN 1 SINTAK DASAR MATLAB Pada bagian 1 ini, akan diuraikan tentang bagaimana mendefinisikan data, operasi data dan teknik mengakses data pada Matlab. Untuk lebih memahami, pembaca sebaiknya mecobanya

Lebih terperinci

Aplikasi Teori Bilangan Bulat dalam Pembangkitan Bilangan Acak Semu

Aplikasi Teori Bilangan Bulat dalam Pembangkitan Bilangan Acak Semu Aplikasi Teori Bilangan Bulat dalam Pembangkitan Bilangan Acak Semu Ferdian Thung 13507127 Program Studi Teknik Informatika ITB, Jalan Ganesha 10 Bandung, Jawa Barat, email: if17127@students.if.itb.ac.id

Lebih terperinci

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM III.1. Analisis Masalah Proses analisa sistem merupakan langkah kedua pada pengembangan sistem. Analisa sistem dilakukan untuk memahami informasi-informasi

Lebih terperinci

I.1 TUJUAN MEMPELAJARI SIMULASI I.2.CARA MEMPELAJARI SISTEM

I.1 TUJUAN MEMPELAJARI SIMULASI I.2.CARA MEMPELAJARI SISTEM I.1 TUJUAN MEMPELAJARI SIMULASI Melalui kuliah ini diharapkan kita dapat mempelajari suatu sistem dengan memanfaatkan komputer untuk meniru (to simulate) perilaku sistem tersebut. I.2.CARA MEMPELAJARI

Lebih terperinci

SIMULASI PENGENDALIAN PERSEDIAN GAS MENGGUNAKAN METODE MONTE CARLO DAN POLA LCM ( Studi Kasus di PT.PKM Group Cabang Batam )

SIMULASI PENGENDALIAN PERSEDIAN GAS MENGGUNAKAN METODE MONTE CARLO DAN POLA LCM ( Studi Kasus di PT.PKM Group Cabang Batam ) SIMULASI PENGENDALIAN PERSEDIAN GAS MENGGUNAKAN METODE MONTE CARLO DAN POLA LCM ( Studi Kasus di PT.PKM Group Cabang Batam ) Okta Veza Program Studi Teknik Informatika Sekolah Tinggi Teknik Ibnu Sina Batam

Lebih terperinci

Perbandingan dan Analisis True Random Number Generation terhadap Pseudorandom Number Generation dalam Berbagai Bidang

Perbandingan dan Analisis True Random Number Generation terhadap Pseudorandom Number Generation dalam Berbagai Bidang Perbandingan dan Analisis True Random Number Generation terhadap Pseudorandom Number Generation dalam Berbagai Bidang Kevin Leonardo Handoyo/13509019 Program Studi Teknik Informatika Sekolah Teknik Elektro

Lebih terperinci

BAB III Algoritma Pelabelan Total Sisi-Ajaib Super

BAB III Algoritma Pelabelan Total Sisi-Ajaib Super BAB III Algoritma Pelabelan Total Sisi-Ajaib Super 3.1 Algoritma dan penjelasannya Proses pengkonstruksian suatu pelabelan total sisi-ajaib super pada S m n untuk n 3 dan m 0 pada tugas akhir ini, dilakukan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik, adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu ruang states. Jadi,

Lebih terperinci

PERANCANGAN APLIKASI KUIS WAWASAN KEBANGSAAN MENGGUNAKAN METODE LINEAR CONGRUENT METHODS (LCM)

PERANCANGAN APLIKASI KUIS WAWASAN KEBANGSAAN MENGGUNAKAN METODE LINEAR CONGRUENT METHODS (LCM) PERANCANGAN APLIKASI KUIS WAWASAN KEBANGSAAN MENGGUNAKAN METODE LINEAR CONGRUENT METHODS (LCM) SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.) Pada Program

Lebih terperinci

PEMBANGKIT BILANGAN RANDOM RANDON NUMBER GENERATOR (RNG)

PEMBANGKIT BILANGAN RANDOM RANDON NUMBER GENERATOR (RNG) PEMBANGKIT BILANGAN RANDOM RANDON NUMBER GENERATOR (RNG) Pembangkit Bilangan Random Pembangkit bilangan random adalah suatu algoritma yang digunakan untuk menghasilkan urutan-urutan (sequence) dari angka-angka

Lebih terperinci

Pendiskritan Pembangkit Bilangan Acak Peta Logistik Menggunakan Fungsi Trigonometri Osilasi Tinggi

Pendiskritan Pembangkit Bilangan Acak Peta Logistik Menggunakan Fungsi Trigonometri Osilasi Tinggi Pendiskritan Pembangkit Bilangan Acak Peta Logistik Menggunakan Fungsi Trigonometri Osilasi Tinggi Achmad Dimas Noorcahyo - 13508076 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26 Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

Algoritma Evolusi Real-Coded GA (RCGA)

Algoritma Evolusi Real-Coded GA (RCGA) Algoritma Evolusi Real-Coded GA (RCGA) Imam Cholissodin imam.cholissodin@gmail.com Pokok Bahasan 1. Siklus RCGA 2. Alternatif Operator Reproduksi pada Pengkodean Real 3. Alternatif Operator Seleksi 4.

Lebih terperinci

BAB IV PEMBAHASAN. Sebelum melakukan analisis dengan penerapan simulasi Monte Carlo dan VaR,

BAB IV PEMBAHASAN. Sebelum melakukan analisis dengan penerapan simulasi Monte Carlo dan VaR, BAB IV PEMBAHASAN IV.1 Analisa Harga Saham BBCA Sebelum melakukan analisis dengan penerapan simulasi Monte Carlo dan VaR, penulis akan menganalisa pergerakan harga saham BBCA. Data yang diperlukan dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Pengertian Distribusi Eksponensial Distribusi eksponensial adalah distribusi yang paling penting dan paling sederhana kegagalan mesin penghitung otomatis dan kegagalan komponen

Lebih terperinci

SATIN Sains dan Teknologi Informasi

SATIN Sains dan Teknologi Informasi SATIN Sains dan Teknologi Informasi, Vol. 2, No. 2, Desember 2016 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Simulasi Monte Carlo dan Animasi Operasinya

Lebih terperinci

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan

Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan Manusia itu seperti pensil Pensil setiap hari diraut sehingga yang tersisa tinggal catatan yang dituliskannya. Manusia setiap hari diraut oleh rautan umur hingga habis, dan yang tersisa tinggal catatan

Lebih terperinci

Modul 14. PENELITIAN OPERASIONAL I MODEL SIMULASI. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI

Modul 14. PENELITIAN OPERASIONAL I MODEL SIMULASI. Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI . PENELITIAN OPERASIONAL I MODEL SIMULASI Oleh : Eliyani PROGRAM KELAS KARYAWAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA JAKARTA 007 MODEL SIMULASI PENDAHULUAN

Lebih terperinci

SIMULASI ANTRIAN PELAYANAN BONGKAR MUAT KAPAL

SIMULASI ANTRIAN PELAYANAN BONGKAR MUAT KAPAL SEMINAR TUGAS AKHIR SIMULASI ANTRIAN PELAYANAN BONGKAR MUAT KAPAL (STUDI KASUS TERMINAL MIRAH PELABUHAN TANJUNG PERAK SURABAYA) Oleh : Risky Abadi 1203.109.004 Latar Belakang Pelabuhan Tanjung Perak sebagai

Lebih terperinci

BAB 3 PEMBAHASAN. Contoh 1:

BAB 3 PEMBAHASAN. Contoh 1: BAB 3 PEMBAHASAN 3.1 Pengolahan Data Seperti yang telah dijelaskan sebelumnya, rantai markov atau proses markov akan digunakan untuk menganalisa data yang diperoleh dalam penelitian ini. Contoh kasus yang

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : SIMULASI & PERMODELAN ( S1 / TEKNIK INFORMATIKA) KODE / SKS : KK / 3 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : SIMULASI & PERMODELAN ( S1 / TEKNIK INFORMATIKA) KODE / SKS : KK / 3 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : SIMULASI PERMODELAN ( S1 / TEKNIK INFORMATIKA) KODE / SKS : KK-043241 / 3 SKS Minggu Ke Pokok Bahasan dan TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajaran

Lebih terperinci

PEMILIHAN KEBIJAKAN SISTEM PENGGANTIAN SPARE PART PADA PERUSAHAAN CONSUMER GOOD DENGAN MENGGUNAKAN METODE SIMULASI

PEMILIHAN KEBIJAKAN SISTEM PENGGANTIAN SPARE PART PADA PERUSAHAAN CONSUMER GOOD DENGAN MENGGUNAKAN METODE SIMULASI PEMILIHAN KEBIJAKAN SISTEM PENGGANTIAN SPARE PART PADA PERUSAHAAN CONSUMER GOOD DENGAN MENGGUNAKAN METODE SIMULASI Asep dan Abdulah Shahab Program Studi Magister Manajemen Teknologi Institut Teknologi

Lebih terperinci

Materi Kuliah Matematika Komputasi FUNGSI

Materi Kuliah Matematika Komputasi FUNGSI Materi Kuliah Matematika Komputasi FUNGSI Misalkan A dan B himpunan. FUNGSI Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA No. LSKD/EKO/DEL221/01 Revisi : 02 Tgl : 27/11/2012 Hal 1 dari 14 1. Kompetensi Setelah melakukan praktik, mahasiswa diharapkan memiliki kompetensi: dapat memahami script files dan struktur pengaturan

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : SIMULASI DAN PERMODELAN Kode Mata : MI 1302 Jurusan / Jenjang : S1 SISTEM KOMPUTER Tujuan Instruksional Umum :

Lebih terperinci

MATERI KULIAH 25 NOVEMBER DESEMBER 2015 Sri Istiyari Uswatun Chasanah G Struktur aliran atau bagan program kontrol.

MATERI KULIAH 25 NOVEMBER DESEMBER 2015 Sri Istiyari Uswatun Chasanah G Struktur aliran atau bagan program kontrol. MATERI KULIAH 25 NOVEMBER 2015 10 DESEMBER 2015 Sri Istiyari Uswatun Chasanah G551150341 Selama kita belajar Scilab, kita sudah mengetahui sedikit tentang bahasa pemrograman Scilab, seperti membuat beberapa

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

MODUL PRAKTIKUM. MODUL I - VIII Modul penuntun dan bahan praktikum matakuliah algoritma dan pemograman

MODUL PRAKTIKUM. MODUL I - VIII Modul penuntun dan bahan praktikum matakuliah algoritma dan pemograman I - VIII Modul penuntun dan bahan praktikum matakuliah algoritma dan pemograman Jurusan Teknik Informatika Fakultas Teknik Universitas Maritim Raja Ali Haji ALGORITMA DAN PEMOGRAMAN I. ALGORITMA II. BAHASA

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR

BAB IV PEMBAHASAN. 4.1 Proses Pencabangan model DTMC SIR BAB IV PEMBAHASAN 4.1 Proses Pencabangan model DTMC SIR Proses pencabangan suatu individu terinfeksi berbentuk seperti diagram pohon dan diasumsikan bahwa semua individu terinfeksi adalah saling independent

Lebih terperinci

Strategi Menggunakan Algoritma Genetika

Strategi Menggunakan Algoritma Genetika Strategi Menggunakan Algoritma Genetika Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS 2003 Agenda Memahami permasalahan apa yang membutuhkan algoritma genetika Strategi mendefinisikan Individu

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dalam pembicaraan statistik, jawaban yang diinginkan adalah jawaban untuk ruang lingkup yang lebih luas, yakni populasi. Tetapi objek dari studi ini menggunakan sampel

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisa Perkemangan game dari skala kecil maupun besar sangat bervariasi yang dapat dimainkan oleh siapa saja tanpa memandang umur, dari anak-anak hingga orang dewasa.

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Pertemuan 6 Fungsi Fungsi Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B. Jika f adalah fungsi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

BAB III MODEL REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON

BAB III MODEL REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON BAB III MODEL REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA MODEL REGRESI POISSON 3.1 Regresi Poisson Regresi Poisson merupakan salah satu model regresi dengan variabel responnya tidak berasal

Lebih terperinci