BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT"

Transkripsi

1 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi diasumsikan terintegralkan lokal dan terdiri dari dua komponen, yaitu suatu komponen periodik (siklik) dengan periode (diketahui) dan suatu komponen tren yang berupa fungsi pangkat. Dengan kata lain untuk sebarang titik, fungsi intensitas dapat dituliskan sebagai berikut : dengan adalah fungsi periodik dengan periode, menyatakan kemiringan tren dimana dan (diketahui) merupakan bilangan nyata sebarang dimana. Kita tidak mengasumsikan suatu bentuk parametrik dari kecuali bahwa adalah fungsi periodik, sehingga untuk semua titik dan seluruh, dengan adalah himpunan bilangan bulat, dapat dituliskan sebagai berikut Misalkan untuk suatu, kita hanya memiliki sebuah realisasi dari proses Poisson yang terdefinisi pada suatu ruang peluang dengan fungsi intensitas seperti pada yang diamati pada interval terbatas. Untuk setiap bilangan nyata dan untuk suatu bilangan bulat positif, diperoleh fungsi sebaran dari waktu tunggu berikut

2 30 dimana Karena memenuhi maka diperoleh Misalkan dimana untuk setiap bilangan nyata, maka menunjukkan bilangan bulat terbesar yang kurang dari atau sama dengan. Maka untuk setiap didapatkan dengan. Dimisalkan merupakan intensitas global dari. Maka untuk setiap dapat ditulis sebagai berikut Untuk setiap bilangan nyata dan untuk setiap bilangan bulat positif, diperoleh fungsi kepekatan dari waktu tunggu, berikut

3 31 Berdasarkan dan, diperoleh penduga fungsi sebaran dan fungsi kepekatan waktu tunggu secara berturut-turut dengan menggunakan data amatan, yaitu suatu proses Poisson yang diamati pada diberikan sebagai berikut dengan dengan penduga seperti pada sebagai berikut : dengan adalah bilangan bulat terbesar yang lebih kecil atau sama dengan, yaitu, penduga seperti pada sebagai berikut : untuk dan dan penduga seperti pada sebagai berikut :

4 32 dimana adalah barisan bilangan nyata positif yang konvergen menuju nol, yaitu untuk. Berikutnya, diformulasikan penduga sebagai berikut : dengan. 4.2 Beberapa Lema Teknis Berikut ini disajikan beberapa lema teknis. Prinsip-prinsip yang diperoleh melalui keempat lema berikut ini digunakan sebagai salah satu alat untuk membuktikan kekonsistenan penduga dari fungsi sebaran dan fungsi kepekatan waktu tunggu. Lema 4.1 Misalkan dan adalah barisan-barisan peubah acak, serta dan adalah konstanta bilangan nyata. Jika dan untuk, maka Bukti : untuk Misalkan dan untuk, dengan menggunakan Definisi L.12 dan misalkan diberikan, maka Berdasarkan Definisi L.12, diperoleh

5 33 sehingga Dengan kata lain, terbukti bahwa untuk Lema 4.2 Misalkan dan adalah barisan-barisan peubah acak, serta dan adalah konstanta bilangan nyata. Jika dan untuk, maka Bukti : untuk Misalkan dan untuk, dengan menggunakan Definisi L.12 dan misalkan diberikan, maka Berdasarkan Definisi L.12, diperoleh sehingga Dengan kata lain, terbukti bahwa untuk

6 34 Lema 4.3 Misalkan dan adalah barisan-barisan peubah acak, serta dan adalah konstanta bilangan nyata. Jika dan untuk, maka Bukti :, untuk. Diasumsikan bahwa dan untuk, dengan menggunakan Definisi L.12 dan misalkan diberikan, maka Perhatikan ruas kanan dari. Berdasarkan diperoleh, sehingga artinya Berikutnya, berdasarkan diperoleh, sehingga artinya Berikutnya, dengan mensubstitusikan hasil yang diperoleh dari, sehingga diperoleh hubungan berikut : ke

7 35 Kemudian, untuk, diperoleh sebagai berikut : Berdasarkan hasil yang diperoleh pada, diperoleh sebagai berikut artinya terbukti bahwa, untuk. Lema 4.4 Misalkan adalah barisan-barisan peubah acak, dan adalah konstanta bilangan nyata. Jika dan adalah fungsi kontinu, maka, untuk. Bukti : Diasumsikan, artinya untuk Akan dibuktikan bahwa, untuk. Artinya, Perhatikan, karena adalah fungsi kontinu, diberikan, ada, sehingga sehingga, Berdasarkan, diperoleh sebagai berikut : Jadi terbukti bahwa, untuk.

8 36 Corollary 4.1 Jika fungsi intensitas memenuhi dan terintegralkan lokal, maka untuk setiap bilangan nyata, diperoleh untuk. Bukti : Perhatikan bahwa, dapat pula dinyatakan seperti berikut Dengan kata lain, akan dibuktikan bahwa merupakan penduga konsisten dari. Berdasarkan dan, diperoleh hubungan berikut : untuk. Berikutnya, untuk membuktikan, dapat ditunjukkan dengan membuktikan Lema 4.5, serta menggunakan prinsip Lema 4.1, Teorema 3.1 dan Teorema 3.3 sebagai berikut : Lema 4.5 Jika fungsi intensitas memenuhi dan terintegralkan lokal, maka untuk setiap bilangan nyata, diperoleh untuk. Bukti : Melalui Lema 4.5, akan dibuktikan bahwa konsisten dari, untuk. Langkah pertama, dengan menggunakan sebagai berikut merupakan penduga, diperoleh nilai harapannya

9 37 Untuk persamaan pertama dari ruas kanan integral sebagai berikut kita dapat mengganti batas Karena fungsi intensitas memenuhi dan terintegralkan lokal, sehingga persamaan di atas dapat dituliskan sebagai berikut Perhatikan komponen pertama dengan menggunakan diperoleh dengan menggunakan pada persamaan di atas, diperoleh

10 38 untuk. Berikutnya, perhatikan komponen kedua berikut

11 39 Langkah berikutnya, dengan mensubstitusikan persamaan di atas dan pada diperoleh untuk. Perhatikan kembali persamaan kedua dari ruas kanan dengan menggunakan diperoleh sebagai berikut, kemudian untuk. Selanjutnya, dengan mensubstitusikan dan pada maka diperoleh untuk Langkah berikutnya, dengan memisalkan diperoleh sebagai berikut

12 40 dengan Perhatikan, Karena merupakan proses Poisson, maka sehingga persamaan di atas ditulis menjadi Karena fungsi intensitas memenuhi dan terintegralkan lokal, jadi persamaan di atas dituliskan sebagai berikut

13 41 Berdasarkan, diperoleh komponen pertama sebagai berikut Berdasarkan kuantitas yang diperlukan, sehingga dalam tiga kasus berikut : dapat dibedakan Untuk kasus Untuk

14 42 Untuk Berikutnya, untuk komponen kedua diperoleh Perhatikan salah satu komponen ruas kanan pada ekspansi Taylor, diperoleh bahwa, dengan menggunakan Karena untuk, maka perilaku sama dengan. Persamaan di atas dapat ditulis menjadi

15 43 Berdasarkan, persamaan di atas dapat ditulis menjadi

16 44 Selanjutnya, dengan mensubstitusikan ke, diperoleh hubungan berikut Berdasarkan kuantitas yang diperlukan, maka dalam tiga kasus berikut : dapat dibedakan Untuk kasus Untuk kasus

17 45 Untuk kasus Berdasarkan hasil yang didapatkan dari langkah-langkah sebelumnya, diperoleh ruas kanan sebagai berikut : Untuk kasus Untuk kasus

18 46 Untuk kasus berikut, Kemudian, kita lanjutkan untuk memperoleh nilai ragam dari sebagai Berdasarkan persamaan di atas dapat dituliskan menjadi Selanjutnya, dengan menggunakan ketaksamaan Chaucy Schwarz, maka diperoleh sebagai berikut berdasarkan kuantitas yang diperlukan, maka dibedakan dalam tiga kasus, yaitu : Pertama, kasus Untuk, karena dan berakibat dan, sehingga.

19 47 Kedua, kasus Untuk, karena dan berakibat dan, sehingga. Ketiga, kasus Untuk, karena dan berakibat dan, sehingga. Berdasarkan dan, diperoleh Selanjutnya, dengan menggabungkan hasil yang diperoleh dari dan ke diperoleh yang dibedakan menjadi tiga kasus berikut, yaitu : Untuk kasus Untuk kasus

20 48 Untuk kasus Langkah berikutnya, untuk membuktikan Lema 4.5, dengan menggunakan diperoleh Berdasarkan dan diperoleh Selanjutnya, akan dibuktikan bahwa adalah penduga konsisten bagi, yaitu bahwa untuk setiap berlaku Ruas kiri persamaan di atas dapat ditulis sebagai berikut Berdasarkan ketaksamaan segitiga, maka menjadi Selanjutnya, berdasarkan, maka ada sehingga untuk setiap. Kemudian, dengan mensubstitusikan ke, diperoleh

21 49 Berikutnya, dengan melihat hubungan antara dan diperoleh Berdasarkan pertaksamaan Chebyshev, diperoleh Perhatikan, dengan melihat hubungan dan diperoleh bahwa Artinya, Lema 4.5 terbukti. Perhatikan, dengan menggunakan Lema 4.5, Teorema 3.1, Teorema 3.3 dan prinsip Lema 4.1 untuk membuktikan Corollary 4.1, sehingga diperoleh untuk. Terbukti bahwa merupakan penduga konsisten dari, 4.3 Kekonsistenan Penduga dari Fungsi Sebaran Waktu Tunggu dari Proses Poisson Periodik dengan Tren Fungsi Pangkat Pada teorema berikut dibuktikan kekonsistenan penduga dari fungsi sebaran waktu tunggu, jika panjang interval pengamatan menuju tak hingga. Pengkajian terhadap teorema ini penting dilakukan untuk menjawab salah satu masalah utama dalam penelitian ini. Teorema 4.1 Jika fungsi intensitas memenuhi dan terintegralkan lokal, maka untuk setiap bilangan nyata dan untuk setiap bilangan bulat positif diperoleh untuk

22 50 Bukti : Berdasarkan dan, maka diperoleh

23 51 Perhatikan, salah satu komponen pertama ruas kanan dari berikut : Kemudian, dengan menggunakan deret Taylor pada ruas kanan, diperoleh

24 52 Berdasarkan Corollary 4.1, diperoleh, untuk. Selanjutnya, dengan menggunakan prinsip Lema 4.4, diperoleh untuk, karena merupakan fungsi kontinu. Kemudian, dengan menggunakan prinsip Lema 4.3 dan melihat hubungan yang ditunjukkan pada langkah di atas, diperoleh untuk. Berikutnya, perhatikan salah satu komponen kedua ruas kanan dari berikut : Berdasarkan langkah yang diperoleh melalui Induksi Matematika pada untuk semua, ditunjukkan bahwa. Langkah pertama, basis induksi : Untuk, diperoleh

25 53 (berdasarkan Corollary 4.1). Langkah kedua, hipotesis induksi : Diasumsikan benar bahwa. Langkah ketiga, langkah induksi : Akan ditunjukkan bahwa Perhatikan, dengan menggunakan hasil yang diperoleh dari langkah pertama dan langkah kedua, maka persamaan di atas menjadi Karena langkah pertama sampai langkah ketiga diperlihatkan benar, sehingga terbukti bahwa untuk semua Selanjutnya, dengan mensubstitusikan pada, diperoleh hubungan berikut : Berdasarkan hasil yang diperoleh pada dan, maka diperoleh

26 54 Berdasarkan hubungan yang diperoleh dari dan ditunjukkan bahwa, dengan kata lain Teorema 4.1 terbukti. 4.4 Kekonsistenan Penduga dari Fungsi Kepekatan Waktu Tunggu dari Proses Poisson Periodik dengan Tren Fungsi Pangkat Pada teorema berikut dibuktikan kekonsistenan penduga dari fungsi kepekatan waktu tunggu, jika panjang interval pengamatan menuju tak hingga. Pengkajian terhadap teorema ini penting dilakukan untuk menjawab salah satu masalah utama dalam penelitian ini. Teorema 4.2 Jika fungsi intensitas memenuhi dan terintegralkan lokal, serta maka untuk setiap bilangan nyata dan bilangan bulat positif, diperoleh untuk asalkan merupakan titik Lebesgue dari. Bukti : untuk, dapat pula dinyatakan sebagai untuk.

27 55 Berdasarkan dan pada persamaan di atas, diperoleh Telah ditunjukkan dari langkah sebelumnya, bahwa untuk dan untuk. Berdasarkan langkah-langkah yang diperoleh sebelumnya, dapat ditunjukkan sebagai berikut Menurut Teorema 3.2, diperoleh bahwa Menurut Teorema 3.1, diperoleh bahwa untuk. untuk. Selanjutnya, dengan menggunakan prinsip Lema 4.4 terhadap Corollary 4.1, diperoleh hasil seperti berikut :, untuk, maka, untuk, karena merupakan fungsi kontinu. Berdasarkan hasil yang diperoleh seperti pada, dimana diperoleh hubungan, dibuktikan bahwa untuk (proses pembuktian dapat ditunjukkan dengan menggunakan induksi matematika, seperti pembuktian sebelumnya). Berikutnya, dengan menggunakan prinsip Lema 4.1, diperoleh bahwa Selanjutnya, dengan menggunakan prinsip Lema 4.3 terhadap hasil yang diperoleh dari langkah-langkah di atas, maka untuk. Teorema 4.2 terbukti.

28 Hasil Simulasi Di sini diperlihatkan cara menentukan penduga untuk fungsi sebaran waktu tunggu kejadian pertama dan kejadian kedua dengan menggunakan data bangkitan dengan fungsi intensitas dan Data dibangkitkan pada interval untuk dengan, dan. Kemudian dengan menggunakan pemrograman dapat diperoleh gambar grafik fungsi sebaran dan penduganya untuk waktu tunggu kejadian pertama yaitu ketika, dan kejadian kedua ketika, sebagai berikut : Untuk FungsiSebaran FungsiSebaran z z Gambar 1 Gambar 2 Grafik dan, ketika Grafik dan, ketika pada (0,10), dengan dan grid pada (0,10), dengan dan grid 0.05.

29 57 FungsiSebaran z z Gambar 3 Gambar 4 Grafik dan, ketika Grafik dan, ketika pada (0,10), dengan dan grid pada (0,10), dengan dan grid FungsiSebaran FungsiSebaran FungsiSebaran z z Gambar 5 Gambar 6 Grafik dan, ketika Grafik dan, ketika pada (0,10), dengan dan grid pada (0,10), dengan dan grid 0.05.

30 58 Untuk FungsiSebaran z z Gambar 7 Gambar 8 Grafik dan, ketika Grafik dan, ketika pada (0,10), dengan dan grid pada (0,10), dengan dan grid FungsiSebaran FungsiSebaran FungsiSebaran z z Gambar 9 Gambar 10 Grafik dan, ketika Grafik dan, ketika pada (0,10), dengan dan grid pada (0,10), dengan dan grid 0.05.

31 59 FungsiSebaran FungsiSebaran z z Gambar 11 Gambar 12 Grafik dan, ketika Grafik dan, ketika pada (0,10), dengan dan grid pada (0,10), dengan dan grid Berdasarkan gambar di atas, terlihat bahwa suatu penduga bagi fungsi sebaran kejadian pertama dan kejadian kedua akan mendekati sebaran yang sebenarnya jika semakin besar panjang interval pengamatan. Hal ini sesuai dengan Teorema 4.1, yaitu akan konvergen ke Untuk pangkat diperoleh pola dugaan yang lebih dekat terhadap pola fungsi sebarannya dibandingkan pangkat.

BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 9 BAB 3 REVIEW PENDUGAAN FUNGSI INTENSITAS LOKAL DAN GLOBAL DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Perumusan Masalah Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas diasumsikan terintegralkan lokal

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

(T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT (T.8) SEBARAN ATIMTOTIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Ro fah Nur Rachmawati Universitas Bina Nusantara Jl. K.H. Syahdan No. 9 Palmerah Jakarta Barat 11480 rrachmawati@binus.edu

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 3 BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu ruang state. Jika

Lebih terperinci

Lampiran A. Beberapa Definisi dan Lema Teknis

Lampiran A. Beberapa Definisi dan Lema Teknis LAMPIRAN 33 Lampiran A. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Definisi A.1 (Ruang contoh dan kejadian) Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya

Lebih terperinci

PENDAHULUAN LANDASAN TEORI

PENDAHULUAN LANDASAN TEORI 1 PENDAHULUAN Latar Belakang Dalam kehidupan sehari-hari, banyak permasalahan yang dapat dimodelkan dengan proses stokastik. Proses stokastik dapat dibedakan menjadi dua yaitu proses stokastik dengan waktu

Lebih terperinci

BAB IV REDUKSI BIAS PADA PENDUGAAN

BAB IV REDUKSI BIAS PADA PENDUGAAN BAB IV REDUKSI BIAS PADA PENDUGAAN 4.1. Asimtotik Orde-2 Berdasarkan hasil simulasi pada Helmers dan Mangku (2007) kasus kernel seragam, aproksimasi asimtotik orde pertama pada ragam dan bias, gagal memprediksikan

Lebih terperinci

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( )

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( ) LAMPIRAN 21 Lampiran 1 (Pembuktian Lema 2.1 Lema 2.1 (Eksistensi Fungsi Intensitas global Jika ([ ] adalah proses Poisson periodik dengan fungsi intensitas, maka ([ ] pada Definisi 2.28 ada dan nilainya

Lebih terperinci

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan diketahui

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL

PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL PENDUGAAN FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT MENGGUNAKAN METODE TIPE KERNEL Ro fah Nur Rachmawati Jurusan Matematika, Fakultas Sains dan Teknologi, Binus University Jl.

Lebih terperinci

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT Ro fah Nur Rachmawati Mathematics & Statistics Department, School of Computer Science, Binus

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan

Lebih terperinci

BAB IV SIMULASI PEMBANDINGAN PERILAKU PENDUGA FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK DENGAN BANDWIDTH OPTIMAL DAN BANDWIDTH OPTIMAL ASIMTOTIK

BAB IV SIMULASI PEMBANDINGAN PERILAKU PENDUGA FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK DENGAN BANDWIDTH OPTIMAL DAN BANDWIDTH OPTIMAL ASIMTOTIK BAB IV SIMULASI PEMBANDINGAN PERILAKU PENDUGA FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK DENGAN BANDWIDTH OPTIMAL DAN BANDWIDTH OPTIMAL ASIMTOTIK Pada bagian ini dilakukan simulasi untuk membandingkan

Lebih terperinci

SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT RO FAH NUR RACHMAWATI

SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT RO FAH NUR RACHMAWATI SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT RO FAH NUR RACHMAWATI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2010 PERNYATAAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH

KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH KEKONSISTENAN PENDUGA FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK DENGAN TREN LINEAR TITA ROBIAH AL ADAWIYAH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya tidak dapat diprediksi dengan tepat tetapi kita

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK PERKALIAN FUNGSI PERIODIK DENGAN TREN LINEAR DARI SUATU PROSES POISSON NON-HOMOGEN LIA YULIAWATI SEKOLAH PASCASARJANA INSTITUT PERTANIAN

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T } adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu

Lebih terperinci

UNIVERSITAS PENDIDIKAN INDONESIA

UNIVERSITAS PENDIDIKAN INDONESIA Ruang Norm Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA Definisi. Misalkan suatu ruang vektor atas. Norm pada didefinisikan sebagai fungsi. : yang memenuhi N1. 0 N2. 0 0 N3.,, N4.,, Kita dapat

Lebih terperinci

ABSTRACT JOKO DWI SURAWU. Keywords:

ABSTRACT JOKO DWI SURAWU. Keywords: ABSTRACT JOKO DWI SURAWU. Asymptotic Distribution of an Estimator for Periodic Component of Intensity Function of a Periodic Poisson Process in the Presence of Linear Trend. Supervised by I WAYAN MANGKU

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik, adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh Ω ke suatu ruang states. Jadi,

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

KAJIAN BANDWIDTH OPTIMAL PADA PENDUGAAN FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK SURASNO

KAJIAN BANDWIDTH OPTIMAL PADA PENDUGAAN FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK SURASNO KAJIAN BANDWIDTH OPTIMAL PADA PENDUGAAN FUNGSI INTENSITAS LOKAL PROSES POISSON PERIODIK SURASNO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan

Lebih terperinci

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal adanya

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi semua fungsi yang terintegralkan Lebesgue, 1. Sebagaimana telah dirumuskan

Lebih terperinci

LAMPIRAN. Kajadian adalah suatu himpunan bagian dari ruang contoh Ω. (Grimmett dan Stirzaker, 2001) Definisi A.3 (Medan-σ)

LAMPIRAN. Kajadian adalah suatu himpunan bagian dari ruang contoh Ω. (Grimmett dan Stirzaker, 2001) Definisi A.3 (Medan-σ) LAMPIRAN 55 56 LAMPIRAN Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian, dan Peluang Berbagai macam kejadian diperoleh melalui pengamatan dari serangkaian percobaan yang dilakukan

Lebih terperinci

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal

Lebih terperinci

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh BAB III INTEGRAL LEBESGUE Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh fungsi-fungsi terukur dan memenuhi sifat yang berkaitan dengan integral Lebesgue. Kajian mengenai keterukuran suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Proses Poisson Periodik Definisi 2.1 (Proses stokastik) Proses stokastik X = {X(t), t T} adalah suatu himpunan dari peubah acak yang memetakan suatu ruang contoh ke suatu

Lebih terperinci

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga,

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga, DERET TAK HINGGA Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan Definisi Deret tak hingga,, konvergen dan mempunyai jumlah S, apabila barisan jumlah jumlah parsial konvergen menuju S.

Lebih terperinci

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan mengenai teori-teori yang mendukung dalam menentukan momen, kumulan, dan fungsi karakteristik dari distribusi log-logistik (α,β). 2.1 Distribusi Log-Logistik

Lebih terperinci

SIFAT-SIFAT STATISTIKA TIKA ORDE-2 FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR DAN MODIFIKASINYA NENENG MILA MARLIANA

SIFAT-SIFAT STATISTIKA TIKA ORDE-2 FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR DAN MODIFIKASINYA NENENG MILA MARLIANA SIFAT-SIFAT STATISTIKA TIKA ORDE-2 PENDUGA TIPE KERNEL L BAGI K KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR DAN MODIFIKASINYA NENENG MILA MARLIANA SEKOLAH PASCASARJANASARJANA

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang

Lebih terperinci

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR. Oleh: LIA NURLIANA

KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR. Oleh: LIA NURLIANA KEKONSISTENAN PENDUGA FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR Oleh: LIA NURLIANA PROGRAM STUDI MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Distribusi Logistik Distribusi logistik merupakan distribusi yang memiliki fungsi kepekatan peluang kontinu. Bentuk kurva distribusi logistik adalah simetris dan uni modal. Bentuk

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 1, 2007 Diberikan sebuah fungsi yang terdefinisi pada interval (a, b) kecuali mungkin di

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN FUNGSI PANGKAT PROSES POISSON NON-HOMOGEN WINDIANI ERLIANA

PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN FUNGSI PANGKAT PROSES POISSON NON-HOMOGEN WINDIANI ERLIANA PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN FUNGSI PANGKAT PROSES POISSON NON-HOMOGEN WINDIANI ERLIANA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log

II. TINJAUAN PUSTAKA. Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log II. TINJAUAN PUSTAKA Dalam mengkaji penelitian Karakteristik Penduga Parameter Distribusi Log Normal Menggunakan Metode Generalized Moment digunakan beberapa definisi, dan teorema yang berkaitan dengan

Lebih terperinci

Sistem Bilangan Ri l

Sistem Bilangan Ri l Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH SIMULASI (KB) KODE / SKS : KK / 3 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH SIMULASI (KB) KODE / SKS : KK / 3 SKS KODE / SKS : KK-01333 / 3 SKS 1 Pengertian dan tujuan 1. Klasifikasi Model 1 Simulasi. Perbedaan penyelesaian problem Dapat menjelaskan klasifikasi model dari matematis secara analitis dan numeris suatu

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM 1.11 Chebyshev s Inequality DISTRIBUTIONS OF RANDOM VARIABLE (Ketaksamaan Chebyshev) A. Pendahuluan DISTRIBUSI VARIABEL RANDOM Konsep atau rumus yang berhubungan dengan Ketaksamaan Chebyshev Ekspektasi

Lebih terperinci

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14 Deret Binomial Ayundyah Kesumawati Prodi Statistika FMIPA-UII June 25, 2015 Ayundyah (UII) Deret Binomial June 25, 2015 1 / 14 Pendahuluan Deret Binomial Kita telah mengenal Rumus Binomial. Untuk bilangan

Lebih terperinci

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi

TURUNAN. Ide awal turunan: Garis singgung. Kemiringan garis singgung di titik P: lim. Definisi TURUNAN Ide awal turunan: Garis singgung Tali busur c +, f c + Garis singgung c, f c c P h c+h f c + f c Kemiringan garis singgung di titik P: f c + f c lim Definisi Turunan fungsi f adalah fungsi lain

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

SEBARAN ASIMTOTIK PENDUGA TURUNAN N PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

SEBARAN ASIMTOTIK PENDUGA TURUNAN N PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR SEBARAN ASIMTOTIK PENDUGA TURUNANN PERTAMA DAN KEDUA DARI KOMPONE EN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR SALIWATI SEKOLAH PASCASARJANAA INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

5.1 Fungsi periodik, fungsi genap, fungsi ganjil

5.1 Fungsi periodik, fungsi genap, fungsi ganjil Bab 5 DERET FOURIER Pada Bab sebelumnya kita telah membahas deret Taylor. Syarat fungsi agar dapat diekspansi ke dalam deret Taylor adalah fungsi tersebut harus terdiferensial pada setiap tingkat. Untuk

Lebih terperinci

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205

Lebih terperinci

Defenisi 15 (Kejadian) Kejadian adalah suatu himpunan bagian dari Nang contoh a. (Grimmett dan Stirzaker 2001)

Defenisi 15 (Kejadian) Kejadian adalah suatu himpunan bagian dari Nang contoh a. (Grimmett dan Stirzaker 2001) Lampiran: Beberapa Definisi dan Lema Teknis Ruang contoh, kejadian dan peluang Berbagai macam pengamatan diperoleh melalui penggulangan percobaan yang dilakukan dalam kondisi yang sama. Dalarn banyak kasus,

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

PENDUGAAN FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR PADA PROSES POISSON NON-HOMOGEN SALMUN K.

PENDUGAAN FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR PADA PROSES POISSON NON-HOMOGEN SALMUN K. PENDUGAAN FUNGSI INTENSITAS BERBENTUK EKSPONENSIAL DARI FUNGSI PERIODIK DITAMBAH TREN LINEAR PADA PROSES POISSON NON-HOMOGEN SALMUN K. NASIB SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN

Lebih terperinci

BAB 1. PENDAHULUAN KALKULUS

BAB 1. PENDAHULUAN KALKULUS BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan

Lebih terperinci

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional BAB III PECAHAN KONTINU dan PIANO A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional Sekarang akan dibahas tentang pecahan kontinu tak hingga yang diawali dengan barisan tak hingga bilangan bulat mendefinisikan

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 21 Beberapa Pengertian Definisi 1 [Ruang Contoh] Ruang contoh adalah himpunan semua hasil yang mungkin dari suatu percobaan acak, dan dinotasikan dengan (Grimmet dan Stirzaker,1992)

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk:

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk: DERET TAK HINGGA Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk: u k = u 1 + u 2 + u 3 + + u k + Bilangan-bilangan u 1, u 2, u 3, disebut suku-suku dalam deret tersebut.

Lebih terperinci

Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 wcaturiyati@yahoo.com 2 himmawatipl@yahoo.com Abstrak

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

RANCANGAN KURIKULUM PROGRAM DOKTOR STATISTIKA (STK) DALAM KERANGKA KUALIFIKASI NASIONAL INDONESIA (KKNI)

RANCANGAN KURIKULUM PROGRAM DOKTOR STATISTIKA (STK) DALAM KERANGKA KUALIFIKASI NASIONAL INDONESIA (KKNI) RANCANGAN KURIKULUM PROGRAM DOKTOR STATISTIKA (STK) DALAM KERANGKA KUALIFIKASI NASIONAL INDONESIA (KKNI) PROGRAM DOKTOR STATISTIKA DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN IPA 2 0 1 2 I. Deskripsi

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

Sistem Bilangan Riil. Pendahuluan

Sistem Bilangan Riil. Pendahuluan Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

PENDUGAAN FUNGSI SEBARAN DALAM MODEL NONPARAMETRIK RONI WIJAYA

PENDUGAAN FUNGSI SEBARAN DALAM MODEL NONPARAMETRIK RONI WIJAYA PENDUGAAN FUNGSI SEBARAN DALAM MODEL NONPARAMETRIK RONI WIJAYA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2013 PERNYATAAN MENGENAI SKRIPSI DAN SUMBER

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY 3.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang Ω,,. Misalkan ; adalah rantai Markov dengan state berhingga

Lebih terperinci

II. TINJAUAN PUSTAKA. Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi

II. TINJAUAN PUSTAKA. Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi II. TINJAUAN PUSTAKA 2.1 Distribusi Normal Umum Menurut Herrhyanto & Gantini (2009), peubah acak X dikatakan berdistribusi normal umum, jika dan hanya jika fungsi densitasnya berbentuk: ; Penulisan notasi

Lebih terperinci

PERTIDAKSAMAAN PECAHAN

PERTIDAKSAMAAN PECAHAN PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

MENENTUKAN NILAI EKSTREM SUKU BANYAK TERTENTU DENGAN PERTIDAKSAMAAN RATA-RATA

MENENTUKAN NILAI EKSTREM SUKU BANYAK TERTENTU DENGAN PERTIDAKSAMAAN RATA-RATA MENENTUKAN NILAI EKSTREM SUKU BANYAK TERTENTU DENGAN PERTIDAKSAMAAN RATA-RATA Kasiyah M. Junus Fakultas Ilmu Komputer, Universitas Indonesia, Depok 16424, Indonesia E-mail: kasiyah@cs.ui.ac.id Abstrak

Lebih terperinci

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian penulis. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari generalized Weibull

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 12, 2011 Teorema 11 pada Bab 3 memberi kita cara untuk menyelidiki kekonvergenan sebuah barisan tanpa harus mengetahui

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari distribusi generalized lambda

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengantar Pada bab ini akan diuraikan beberapa landasan teori untuk menunjang penulisan skripsi ini. Uraian ini terdiri dari beberapa bagian yang akan dipaparkan secara terperinci

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. November 19, 2007 Secara geometris, f kontinu di suatu titik berarti bahwa grafiknya tidak terputus

Lebih terperinci