BAB I PENDAHULUAN Latar Belakang Permasalahan

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN Latar Belakang Permasalahan"

Transkripsi

1 BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Dalam matematika analisis dikenal teori ukuran. Salah satunya ukuran Lebesgue. Royden (1968) menjelaskan bahwa ukuran Lebesgue merupakan perumuman dari konsep panjang interval kepada beberapa himpunan dalam r yang lebih umum seperti panjang himpunan terbuka sebagai jumlahan panjang interval yang mendekomposisinya. Dalam teori ukuran Lebesgue di r berhasil dibuktikan bahwa ukuran luar Lebesgue suatu interval adalah panjang interval itu sendiri. Ukuran Lebesgue ternyata masih tetap bisa dikembangkan ke r n. Cohn (1980) mejelaskan bahwa sifat-sifat ukuran Lebesgue di r masih berlaku di r n, namun seiring majunya ilmu pengetahuan dan teknologi, para ilmuwan menemukan beberapa objek di r n yang memerlukan ketelitian alat ukur lebih dari sekedar ukuran Lebesgue. Salah satunya adalah kurva di r n. Kurva di r n jika diliput oleh sekumpulan rectangle maka selalu dapat ditemukan liput rectangle yang lain yang jumlahan volumenya lebih kecil dari jumlahan volume rectangle sebelumnya. Akibatnya ukuran luar Lebesgue kurva di r n selalu bernilai 0. Objek lainnya adalah fraktal. Falconer (2003) menjelaskan bahwa banyak fenomena fraktal ditemukan dalam pemodelan matematika, seperti data kecepatan angin, data tingkatan-tingkatan reservoir, data populasi dan harga stok suatu pasar yang diperhatikan dalam waktu yang sangat lama.

2 Pemodelan tersebut lebih banyak muncul dalam bentuk kurva-kurva fraktal. Dijelaskan juga bahwa fenomena fraktal juga sering muncul pada sistem dinamika, teori ergodika dan teori bifurkasi. r n Evans dan Gariepy (1992) menjelaskan bahwa salah satu ukuran di yang lain adalah ukuran Hausdorff yang definisinya dibangun tidak berdasarkan panjang interval tetapi berdasarkan diameter suatu himpunan. Dijelaskan pula segmen garis dan persegi di r 3 Hausdorff berukuran dengan nilai ukurannya adalah panjang segmen garis dan persegi tersebut. Lebih jauh Folland (1999) menjelaskan bahwa ukuran Hausdorff invarian terhadap isometri. Ukuran Hausdorff ternyata dapat menjawab permasalahanpermasalahan yang telah disebutkan di atas. Falconer (2003) menjelaskan bahwa ukuran Hausdorff suatu kurva yang panjangnya berhingga tidak lain adalah panjang kurva itu sendiri. Evans dan Gariepy (1992) menjelaskan bahwa untuk setiap nn dapat ditemukan suatu konstanta tertentu sehingga ukuran luar Lebesgue suatu himpunan sama dengan hasil perkalian ukuran luar Hausdorff-nya dengan konstanta tersebut. Teorema ini secara tidak langsung menyatakan bahwa ukuran Hausdorff merupakan perumuman dari ukuran Lebesgue. Evans dan Gariepy (1992) menjelaskan bahwa untuk membuktikan eksistensi konstanta tersebut, diperlukan teorema penting yang menjelaskan hubungan antara ukuran luar Lebesgue suatu himpunan dengan diameternya. Teorema tersebut dinamakan pertidaksamaan isodiametrik. Pertidaksamaan isodiametrik adalah sebagai berikut; Untuk setiap Er n berlaku L n* (E) (n) E dengan E adalah diameter E, L n* 2 (E) adalah ukuran luar Lebesgue E dan ( n) dengan n n adalah fungsi gamma. n n

3 Pertidaksamaan isodiametrik menyatakan bahwa dapat ditemukan suatu bilangan real positif sehingga ukuran Lebesgue suatu himpunan dalam r n tidak lebih dari panjang diameter himpunan yang dikali dengan bilangan real positip tersebut. Dijelaskan pula bahwa untuk membuktikan pertidaksamaan isodiametrik tidak trivial. Diperlukan konsep volume bola di r n, konsep fungsi gamma, teori produk ukuran, konsep simetrisasi Steiner dan teorema Fubini untuk membuktikan teorema tersebut. Evans dan Gariepy (1992) menjelaskan jika diberikan A r n terhadap P a adalah himpunan 1 a S a (A) = b ta : t (1) H ( A g ) bpa a Ag 0 yang tegaklurus a, b H 1 (A) ukuran Hausdorff A. dan ar n. Simetrisasi Steiner A b, dengan P a adalah bidang datar a g b adalah garis lurus melalui b dengan arah a, dan Secara Geometris, Simetrisasi Steiner suatu himpunan diiulstrasikan sebagai himpunan lain yang berbentuk simetris dan mempunyai luasan yang sama dengan himpunan tersebut. Berdasarkan hal tersebut dirumuskan masalah penelitian ini yaitu mencari relasi antara ukuran Lebesgue dengan ukuran Hausdorff menggunakan pertidaksamaan isodiametrik dan mengaplikasikan pertidaksamaan isodiametrik untuk mengatasi masalah ukuran Lebesgue yang sudah diterangkan di atas Tujuan dan Manfaat Penelitian Berdasarkan perumusan masalah pada subbab 1.1, tujuan penelitian tesis ini dibagi menjadi lima bagian: 1. Membahas ukuran Hausdorff dan sifat-sifatnya.

4 2. Membahas simetrisasi Steiner yang akan digunakan untuk membuktikan pertidaksamaan isodiametrik. 3. Membahas dan membuktikan pertidaksamaan isodiametrik. 4. Mengaplikasikan pertidaksamaan isodiametrik dalam mencari relasi antara ukuran Lebesgue dan ukuran Hausdorff. 5. Mencari solusi ukuran Lebesgue di r n pada kurva yang selalu bernilai 0 dengan menggunaan ukuran Hausdorff, sehingga ukuran kurva di r n adalah panjang kurva itu sendiri. Penelitian ini bermanfaat untuk memberikan insipirasi berupa topiktopik yang lebih spesifik untuk diteliti lebih lanjut. Salah satunya adalah berhasil dibuktikan bahwa ukuran Lebesgue adalah ukuran Radon. Ukuran Radon mempunyai sifat yang sangat istimewa, yaitu untuk setiap himpunan bagian r n selalu dapat ditemukan himpunan terukur yang ukurannya sama dengan ukuran luar himpunan tersebut. Hal ini menginsipirasi untuk meneliti sifat ukuran Lebesgue dan perannya sebagai ukuran Radon Tinjauan Pustaka Dalam teori himpunan, terdapat suatu konsep keluarga himpunan yang sifat-sifatnya berkaitan erat dengan teori ukuran. Keluarga himpunan tersebut adalah aljabar dan aljabar. Folland (1999), Royden(1968) dan Roussas (1997) menjelaskan konsep aljabar dan aljabar. Roussas juga menjelaskan bahwa sebarang subset 2 r selalu mempunyai aljabar dan aljabar terkecil yang memuatnya. Royden (1968) membahas teori ukuran Lebegue di r. Dibahas juga teori ukuran ukuran Lebegue di r n yang dijelaskan oleh Folland (1999), Falconer(2003) dan Cohn(1980). Kemudian teori ukuran di sebarang ruang ukuran dibahas oleh Folland (1999), Evans dan Gariepy (1992). Untuk menyelidiki karakteristik ukuran Lebesgue lebih lanjut, dibahas pula teorema liput Vitali. Teorema ini dijelaskan oleh Evans dan Gariepy

5 (1992). Salah satu konsep ukuran lainnya adalah konsep ukuran Hausdorff. Folland (1999), Falconer (2003), Lertchoosakul (2012), Evans dan Gariepy (1992) membahas teori ukuran Hausdorff di r n. Evans dan Gariepy (1992) membahas tentang Simetrisasi Steiner. Dijelaskan pula bahwa diameter Simetrisasi Steiner sebarang himpunan dalam r n selalu tidak lebih besar dari diameter himpunan tersebut. Dibahas pula teorema eksistensi konstanta yaitu untuk setiap Er n berlaku L n* (E) = (n) H n 2 (E) dengan ( x) untuk setiap x s x bilangan real nonnegatif dan adalah fungsi gamma. Untuk membuktikan teorema eksistensi konstanta. Evans dan Gariepy (1992) membahas pertidaksamaan isodiametrik, yaitu untuk setiap E r n n berlaku L n* (E) (n) E dengan E adalah diameter E. Untuk membuktikan Pertidaksamaan Isodiametrik, dibahas x volume bola (dengan jarak Euclid standar) dalam r n. Trench (1999) membahas tentang fungsi differensiabel dan konsep integral Riemann, sementara Gipple (2014) dalam papernya menjelaskan konsep volume bola. Pertidaksamaan isodiametrik diaplikasikan dalam beberapa permasalahan. Aplikasi pertidaksamaan isodiametrik untuk mencari relasi antara ukuran Lebesgue dengan ukuran Hausdorff dibahas oleh Evans dan Gariepy (1992). Permasalahan lain adalah membuktikan ukuran Hausdorff dan ukuran Lebesgue adalah ukuran Radon juga dibahas oleh Evans dan Gariepy (1992). Aplikasi pada pengukuran panjang kurva dibahas oleh Falconer (2003) dan Corral (2008).

6 1.4. Metodologi Penelitian Penelitian ini menggunakan metode studi literatur. Pada penelitian ini difokuskan untuk membahas pertidaksamaan isodiametrik dan membuktikan teorema-teorema yang diperlukan untuk mempermudah pembuktian pertidaksamaan isodiametrik. Kemudian pertidaksamaan isodiametrik digunakan untuk mencari hubungan antara ukuran Lebesgue dengan ukuran Hausdorff. Tahap pertama penelitian ini adalah membahas teori ukuran Lebesgue. Selanjutnya dibahas konsep ukuran Lebesgue di r n. Kemudian dibahas konsep ukuran Lebesgue di r n dipandang sebagai hasil dari produk ukuran Lebesgue di r. Kemudian dibahas ukuran Hausdorff di r n. Selanjutnya dibahas pula beberapa hal mengenai ruang ukuran umum. Tahap kedua dari penelitian ini adalah membahas teorema-teorema yang diperlukan untuk membuktikan pertidaksamaan isodiametrik. Teorema pertama adalah teorema yang membahas tentang hubungan antara volume bola di r n dengan diameter bola. Dibahas juga beberapa jenis rotasi pada r n Simetrisasi Steiner. yang merupakan suatu isometri. Kemudian dibahas konsep Tahap ketiga dari penelitian ini adalah membuktikan pertidaksamaan isodiametrik dan mengaplikasikannya dalam membuktikan teorema eksistensi konstanta, yaitu untuk setiap Er n berlaku L n* (E) = (n) x H n 2 (E) dengan ( x) untuk setiap x bilangan real nonnegatif s x dan adalah fungsi gamma. Kemudian membuktikan bahwa ukuran Lebesgue invariant terhadap isometri dan membuktikan bahwa ukuran Hausdorff dan ukuran Lebesgue adalah ukuran Radon. Selanjutnya membahas ukuran suatu kurva di r n.

7 1.5. Sistematika Penulisan Tesis akan dibagi jadi lima bab. Pada BAB I berisi tentang latar belakang masalah, rumusan masalah yang diteliti atau dibahas, tujuan dan mafaat penelitian, dan tinjauan pustaka. Pada BAB II berisi tentang pembahasan teori yang dijadikan sebagai dasar dalam penelitian, yaitu teori ukuran Lebesgue di r dan ukuran Lebesgue di r n. Pada BAB III berisi tentang hasil penelitian mengenai ukuran Hausdorff di r n, produk ukuran Lebesgue, teorema Fubini, teorema liput Vitali dan ruang ukuran umum. Pada BAB IV berisi tentang rumus volume bola di r n dan ukuran Lebesguenya. simetrisasi Steiner, pertidaksamaan isodiametrik dan hubungan antara ukuran Lebesgue dengan ukuran Hausdorff. Pada BAB V berisi tentang kesimpulan hasil penelitan.

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Aplikasi geometri fraktal tersebar di berbagai bidang, beberapa di antaranya adalah pada teori bilangan (number theory), pertumbuhan fraktal (fractal growth),

Lebih terperinci

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh BAB III INTEGRAL LEBESGUE Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh fungsi-fungsi terukur dan memenuhi sifat yang berkaitan dengan integral Lebesgue. Kajian mengenai keterukuran suatu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Analisis merupakan salah satu cabang matematika yang mempelajari antara lain barisan, limit, deret, kekontinuan, kekonvergenan, integral, dan yang lainnya.

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu matematika merupakan ilmu dasar yang digunakan di berbagai bidang. Teori titik tetap merupakan salah satu cabang dalam ilmu matematika, khususnya matematika

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi semua fungsi yang terintegralkan Lebesgue, 1. Sebagaimana telah dirumuskan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu landasan di dalam pengembangan matematika karena mempunyai peran yang cukup mendasar dalam aplikasi berbagai cabang

Lebih terperinci

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR MATERI A. Persamaan dan Pertidaksamaan Nilai Mutlak A. PERSAMAAN DAN PERTIDAKSAMAAN YANG MEMUAT NILAI MUTLAK Dalam matematika, sesuatu yang nilainya selalu positif

Lebih terperinci

BAB I PENDAHULUAN. Salah satu kajian menarik dalam analisis adalah teori himpunan.

BAB I PENDAHULUAN. Salah satu kajian menarik dalam analisis adalah teori himpunan. BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu kajian menarik dalam analisis adalah teori himpunan. Himpunan merupakan konsep dasar dari semua cabang matematika bahkan sudah diperkenalkan dalam pendidikan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konsep ruang metrik merupakan salah satu konsep dasar dalam matematika analisis. Selama bertahun-tahun, para peneliti mencoba mengembangkan konsep ruang metrik.

Lebih terperinci

BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU

BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60 Abstract. Let g [0 ] [0] is piecewise continuous monotone

Lebih terperinci

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu Matematika merupakan salah satu cabang ilmu yang berperan penting dalam berbagai bidang. Salah satu cabang ilmu matematika yang banyak diperbincangkan

Lebih terperinci

0,1, Holder s continue function in rank of and. 0,1, fungsi kontinu Holder berpangkat-,

0,1, Holder s continue function in rank of and. 0,1, fungsi kontinu Holder berpangkat-, JMP : Volume 4 Nomor 1, Juni 2012, hal 233-240 HUBUNGAN ANTARA NILAI KRITIS DERIVATI- DENGAN DIMENSI- DARI SUATU KURVA Supriyadi Wibowo Jurusan Matematika MIPA UNS Surakarta Email supriyadi_w@yahoocoid

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Perumusan Masalah Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas diasumsikan terintegralkan lokal

Lebih terperinci

BAB IV REDUKSI BIAS PADA PENDUGAAN

BAB IV REDUKSI BIAS PADA PENDUGAAN BAB IV REDUKSI BIAS PADA PENDUGAAN 4.1. Asimtotik Orde-2 Berdasarkan hasil simulasi pada Helmers dan Mangku (2007) kasus kernel seragam, aproksimasi asimtotik orde pertama pada ragam dan bias, gagal memprediksikan

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

SOLUSI PERSAMAAN DIFFERENSIAL

SOLUSI PERSAMAAN DIFFERENSIAL SOLUSI PERSAMAAN DIFFERENSIAL PENGERTIAN SOLUSI. Solusi dari suatu persamaan differensial adalah persamaan yang memuat variabelvariabel dari persamaan differensial dan memenuhi persamaan differensial yang

Lebih terperinci

Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid

Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid Bab 2 Daerah Euclid Pada bab ini akan dijelaskan mengenai daerah Euclid beserta struktur lain yang terkait nya. Beberapa struktur aljabar tersebut selanjutnya akan digunakan untuk melihat struktur gelanggang

Lebih terperinci

Himpunan dari Bilangan-Bilangan

Himpunan dari Bilangan-Bilangan Program Studi Pendidikan Matematika STKIP YPM Bangko October 22, 2014 1 Khususnya dalam analisis, maka yang teristimewa penting adalah himpunan dari bilangan-bilangan riil, yang dinyatakan dengan R. Himpunan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang dan Permasalahan

BAB I PENDAHULUAN Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Dalam ilmu matematika, khususnya dalam bidang analisis dikenal berbagai macam ruang, salah satunya adalah ruang metrik. Ruang metrik merupakan suatu

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

SILABUS MATAKULIAH TEORI INTEGRAL (MAA 525)

SILABUS MATAKULIAH TEORI INTEGRAL (MAA 525) SILABUS MATAKULIAH TEORI INTEGRAL (MAA 525) JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UPI BANDUNG 200 A. IDENTITAS MATAKULIH. Nama Matakuliah : Teori Integral 2. Kode Matakuliah : MAA 525 3. Program : Pendidikan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem dinamik merupakan formalisasi Matematika untuk menggambarkan konsep-konsep ilmiah dari proses deterministik yang bergantung terhadap waktu (Kuznetsov,

Lebih terperinci

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri BAB II KAJIAN TEORI Analisis kekonvergenan pada barisan fungsi, apakah barisan fungsi itu? Apakah berbeda dengan barisan pada umumnya? Tentunya sebelum membahas mengenai barisan fungsi, apa saja jenis

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Himpunan fuzzy pertama kali diperkenalkan oleh Zadeh (1965). Himpunan fuzzy adalah suatu himpunan yang setiap anggotannya memiliki derajat keanggotaan. Derajat keanggotaan

Lebih terperinci

b = (X T X) 1 X T Y.

b = (X T X) 1 X T Y. BAB I PENDAHULUAN 1.1. Latar Belakang Invers Moore Penrose pada ring dengan elemen satuan yang dilengkapi involusi disampaikan oleh Koliha dan Patricio (2002). Dijelaskan bahwa jika elemen suatu ring yang

Lebih terperinci

BAB V KESIMPULAN DAN MASALAH TERBUKA

BAB V KESIMPULAN DAN MASALAH TERBUKA BAB V KESIMPULAN DAN MASALAH TERBUKA Kesimpulan Pada penelitian disertasi ini diperoleh terminologi baru dari invers Moore Penrose pada ring R dengan elemen satuan yang dilengkapi involusi " ", yaitu bahwa

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Konsep integral sering digunakan untuk menentukan luas daerah di bawah kurva. Selain itu, integral juga sering digunakan untuk mencari penyelesaian dari suatu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Integral tipe Stieltjes merupakan salah satu topik yang banyak dipelajari dalam matematika analisis. Beberapa di antaranya adalah integral Riemann-Stieltjes,

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

FUNGSI CANTOR KAJIAN TEORI ABSTRAK 2.1 HIMPUNAN KOMPAK 2.2 HIMPUNAN COUNTABLE 2.3 HIMPUNAN TERUKUR I. PENDAHULUAN

FUNGSI CANTOR KAJIAN TEORI ABSTRAK 2.1 HIMPUNAN KOMPAK 2.2 HIMPUNAN COUNTABLE 2.3 HIMPUNAN TERUKUR I. PENDAHULUAN FUNGSI CANTOR Kisti Nur Aliyah 1, Manuharawati 2, 1 Fakultas Matematika dan Ilmu Pengetahuan Alam,Universitas Negeri Surabaya Kampus Ketintang 60231,Surabaya email : chist_kiss@yahoocoid 1, manuhara1@yahoocoid

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

INTEGRAL RIEMANN-LEBESGUE

INTEGRAL RIEMANN-LEBESGUE INTEGRAL RIEMANN-LEBESGUE Ikram Hamid Program Studi Pendidikan Matematika Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam FKIP Universitas Khairun ABSTRACT In this paper, we discuss a Riemann-type

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem kejadian diskrit (SKD) adalah nama klasifikasi masalah tentang sistem dengan sumber daya berhingga yang digunakan oleh beberapa pengguna untuk mencapai

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

5. Sifat Kelengkapan Bilangan Real

5. Sifat Kelengkapan Bilangan Real 5. Sifat Kelengkapan Bilangan Real Sifat aljabar dan sifat urutan bilangan real telah dibahas sebelumnya. Selanjutnya, akan dijelaskan sifat kelengkapan bilangan real. Bilangan rasional ℚ juga memenuhi

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan Ilmu pengetahuan merupakan hal yang mengalami perkembangan secara terus-menerus. Diantaranya teori integral yaitu ilmu bidang matematika analisis yang

Lebih terperinci

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear K13 Kelas matematika PEMINATAN SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan

Lebih terperinci

A. MENYELESAIKAN PERSAMAAN KUADRAT

A. MENYELESAIKAN PERSAMAAN KUADRAT A. MENYELESAIKAN PERSAMAAN KUADRAT STANDAR KOMPETENSI Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat KOMPETENSI DASAR Menggunakan sifat dan aturan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Ditinjau dari bidang ilmu pengetahuan, teori persamaan diferensial merupakan suatu cabang analisis matematika yang banyak dipakai dalam kehidupan nyata,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Aljabar max-plus adalah himpunan R Ω = R { } yang dilengkapi dengan operasi dan yaitu untuk setiap a,b R Ω, a b = max(a,b) dan a b = a + b. Aljabar max-plus

Lebih terperinci

yang Dibangun oleh Ukuran Bernilai Proyeksi

yang Dibangun oleh Ukuran Bernilai Proyeksi SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Integral pada A - 3 yang Dibangun oleh Ukuran Bernilai Proyeksi Arta Ekayanti dan Ch. Rini Indrati. FMIPA Universitas Gadjah Mada arta_ekayanti@ymail.com

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0

Lebih terperinci

KONSTRUKSI, SIFAT DAN DIMENSI HIMPUNAN CANTOR MIDDLE THIRD. Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang Jurusan Matematika FMIPA UNDIP

KONSTRUKSI, SIFAT DAN DIMENSI HIMPUNAN CANTOR MIDDLE THIRD. Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang Jurusan Matematika FMIPA UNDIP KONSTRUKSI, SIFAT DAN DIMENSI HIMPUNAN CANTOR MIDDLE THIRD Khoiroh Alfiana, Siti Khabibah, Robertus Heri S.U,, Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang Jurusan Matematika

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Teori titik tetap merupakan salah satu hasil penelitian dalam bidang matematika analisis yang memiliki cukup banyak aplikasi. Salah satu aplikasi teori tersebut

Lebih terperinci

BAB I INTEGRAL TAK TENTU

BAB I INTEGRAL TAK TENTU BAB I INTEGRAL TAK TENTU TUJUAN PEMBELAJARAN: 1. Setelah mempelajari materi ini mahasiswa dapat menentukan pengertian integral sebagai anti turunan. 2. Setelah mempelajari materi ini mahasiswa dapat menyelesaikan

Lebih terperinci

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3

Lebih terperinci

Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika

Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika PENGANTAR KALKULUS Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. SETIAWAN, M. Pd. Widyaiswara PPPG Matematika Yogyakarta

Lebih terperinci

KISI-KISI UJIAN SEKOLAH BERSTANDAR NASIONAL SEKOLAH MENENGAH PERTAMA / MADRASAH TSANAWIYAH TAHUN PELAJARAN 2017/2018. memahami

KISI-KISI UJIAN SEKOLAH BERSTANDAR NASIONAL SEKOLAH MENENGAH PERTAMA / MADRASAH TSANAWIYAH TAHUN PELAJARAN 2017/2018. memahami LAMPIRAN 2 KISI-KISI USBN SMP KISI-KISI UJIAN SEKOLAH BERSTANDAR NASIONAL SEKOLAH MENENGAH PERTAMA / MADRASAH TSANAWIYAH TAHUN PELAJARAN 2017/2018 Mata Pelajaran : Matematika Jenjang : SMP/MTs Kurikulum

Lebih terperinci

matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN

matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN K-1 Kelas X matematika WAJIB PERTIDAKSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan linear

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 58 62 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE SISKA NURMALA SARI Program Studi Matematika, Fakultas

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Ring polinomial adalah himpunan semua fungsi dari himpunan semua bilangan bulat nonnegatif ke ring R dengan elemen identitas dan dilengkapi dengan operasi penjumlahan

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA

REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA REFLEKSIVITAS PADA RUANG ORLICZ DENGAN KEKONVERGENAN RATA-RATA Mila Apriliani Utari, Encum Sumiaty, Sumanang Muchtar Departemen Pendidikan Matematika FPMIPA Universitas Pendidikan Indonesia *Coresponding

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

PENYELESAIAN INTEGRAL DIMENSI-n DENGAN MENGGUNAKAN TEOREMA FUBINI

PENYELESAIAN INTEGRAL DIMENSI-n DENGAN MENGGUNAKAN TEOREMA FUBINI PENYELESAIAN INTEGRAL DIMENSI-n DENGAN MENGGUNAKAN TEOREMA FUBINI SKRIPSI Diajukan untuk Memenuhi Sebagian dari Syarat untuk Memperoleh Gelar Sarjana Pendidikan S-1 Program Studi Pendidikan Matematika

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

SILABUS SMA/MA. Sumber Belajar. Alokasi Waktu

SILABUS SMA/MA. Sumber Belajar. Alokasi Waktu SILABUS SMA/MA Mata Pelajaran Kelas : Wajib : XI Kompetensi Inti KI 1: Menghayati dan mengamalkan ajaran agama dianutnya. KI 2: Menghayati dan mengamalkan perilaku jujur, disiplin, tanggungjawab, peduli

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Berkembangnya jaman yang semakin maju dan modern turut dipengaruhi oleh perkembangan ilmu pengetahuan yang dimiliki manusia. Hal tersebut dapat dilihat secara nyata

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI TIPE A Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor Ujian dan data lainnya pada Lembar Jawab Komputer

Lebih terperinci

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa 0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :

Lebih terperinci

KISI-KISI UJIAN SEKOLAH

KISI-KISI UJIAN SEKOLAH KISI-KISI UJIAN SEKOLAH Matematika SEKOLAH MENENGAH PERTAMA DAERAH KHUSUS IBUKOTA (DKI) JAKARTA TAHUN PELAJARAN 2012-2013 KISI KISI PENULISAN SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2012-2013 Jenjang : SMP

Lebih terperinci

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1 An-2 1. PENDAHULUAN Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS Abstrak Tujuan dari tulisan ini adalah membahas tentang integral Lebesgue

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

BAB III PERLUASAN INTEGRAL

BAB III PERLUASAN INTEGRAL BAB III PERLUASAN INTEGRAL Pembahasan pada bab ini termuat pada ruang lingkup perluasan uniter atas suatu ring komutatif. Jika adalah suatu ring, maka yang dimaksud adalah suatu ring yang komutatif dan

Lebih terperinci

MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR

MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh DEVI SAFITRI 10654004470 FAKULTAS

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang

Lebih terperinci

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2. integral 13.1 PENGERTIAN INTEGRAL Untuk itu, coba tentukan turunan fungsi berikut. Perhatikan bahwa fungsi ini memiliki bentuk umum 6 2. Jadi, turunan fungsi = 2 =2 3. Setiap fungsi ini memiliki turunan

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR ANALISIS REAL 1. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR ANALISIS REAL 1 DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 1 KATA PENGANTAR

Lebih terperinci

BAB III HIMPUNAN. 2) Mahasiswa dapat menyebutkan relasi antara dua himpunan. 3) Mahasiswa dapat menentukan hasil operasi dari dua himpunan

BAB III HIMPUNAN. 2) Mahasiswa dapat menyebutkan relasi antara dua himpunan. 3) Mahasiswa dapat menentukan hasil operasi dari dua himpunan BAB III HIMPUNAN Tujuan Instruksional Umum Mahasiswa memahami pengertian himpunan, relasi antara himpunan, operasi himpunan, aljabar himpunan, pergandaan himpunan, serta himpunan kuasa. Tujuan Instruksional

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik

Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Oleh : Iswanti 1, Soeparna Darmawijaya 2 Iswanti, Jurusan Teknik Elektro, Politeknik Negeri Semarang, Semarang, Jawa

Lebih terperinci

KONSTRUKSI INTEGRAL MENGGUNAKAN FUNGSI SEDERHANA δ PADA [, ] Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang, 50275

KONSTRUKSI INTEGRAL MENGGUNAKAN FUNGSI SEDERHANA δ PADA [, ] Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang, 50275 KONSTRUKSI INTEGRAL MENGGUNAKAN FUNGSI SEDERHANA δ PADA [,] Abdul Aziz 1, YD. Sumanto 2 1,2 Departemen Matematika, Fakultas Sains dan Matematika, Universitas Diponegoro Jl. Prof. H. Soedarto, S.H., Tembalang,

Lebih terperinci

Himpunan dan Fungsi. Modul 1 PENDAHULUAN

Himpunan dan Fungsi. Modul 1 PENDAHULUAN Modul 1 Himpunan dan Fungsi Dr Rizky Rosjanuardi P PENDAHULUAN ada modul ini dibahas konsep himpunan dan fungsi Pada Kegiatan Belajar 1 dibahas konsep-konsep dasar dan sifat dari himpunan, sedangkan pada

Lebih terperinci

KALKULUS 1 UNTUK MAHASISWA CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA

KALKULUS 1 UNTUK MAHASISWA CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA KALKULUS UNTUK MAHASISWA 9 CALON GURU MATEMATIKA OLEH: DADANG JUANDI, DKK PROGRAM STUDI PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA BAB I PENDAHULUAN. Sistem Bilangan Real Dalam Uraian

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ilmu matematika merupakan suatu ilmu dasar yang terus berkembang dan banyak digunakan dalam berbagai bidang. Salah satu cabang ilmu matematika yang mengalami

Lebih terperinci

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1 FOURIER Oktober 2014, Vol. 3, No. 2, 117 132 KONSEP FUNGSI SEMIKONTINU Malahayati 1 1 Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Jl. Marsda Adisucipto No. 1 Yogyakarta 55281

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian

BAB I PENDAHULUAN. 1.1 Latar Belakang Penelitian BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Alam semesta memiliki beragam fenomena dan kejadian alam yang sebagian besar masih menjadi misteri bagi umat manusia. Secara garis besar, ilmu fisika bermaksud

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO PENYELESAIAN SOAL UJIAN AKHIR SEMESTER GENAP TA 2012/2013 Mata Ujian : Analisis Real 1 Tipe Soal : Reguler Dosen : Dr. Julan HERNADI Waktu : 90 menit

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika dilengkapi dengan suatu norma., maka dikenal bahwa suatu ruang vektor bernorma. Kemudian

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu bidang ilmu yang sangat berperan dalam kehidupan sehari-hari. Banyak permasalahan dalam kehidupan sehari-hari yang akan lebih

Lebih terperinci

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/1 matematika K e l a s XI LIMIT ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Dapat mendeskripsikan konsep it fungsi aljabar dengan

Lebih terperinci

Modul 6 berisi pengertian integral garis (kurva), sifat-sifat dan penerapannya. Pengintegralan sepanjang kurva, kita harus memperhatikan arah kurva,

Modul 6 berisi pengertian integral garis (kurva), sifat-sifat dan penerapannya. Pengintegralan sepanjang kurva, kita harus memperhatikan arah kurva, ix T Tinjauan Mata Kuliah ujuan mempelajari mata kuliah ini adalah agar Anda memiliki kemampuan dalam menjelaskan aljabar vektor, turunan dan integral fungsi vektor, serta mampu menerapkannya dalam geometri

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

PENYELESAIAN INTEGRAL DIMENSI-n MENGGUNAKAN TEOREMA TONELLI

PENYELESAIAN INTEGRAL DIMENSI-n MENGGUNAKAN TEOREMA TONELLI PENYELESAIAN INTEGRAL DIMENSI-n MENGGUNAKAN TEOREMA TONELLI SKRIPSI Diajukan untuk Memenuhi Sebagian Syarat Mencapai Gelar Sarjana S-1 Oleh : NURWIYATI 0901060149 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci