BAB I PENDAHULUAN Latar Belakang Masalah
|
|
|
- Indra Pranata
- 8 tahun lalu
- Tontonan:
Transkripsi
1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Aljabar max-plus adalah himpunan R Ω = R { } yang dilengkapi dengan operasi dan yaitu untuk setiap a,b R Ω, a b = max(a,b) dan a b = a + b. Aljabar max-plus menjadi penting karena dapat digunakan untuk memodelkan sistem nonlinear dalam aljabar konvensional menjadi sistem yang linear sehingga sistem tersebut dapat diselesaikan dengan lebih mudah. Selain itu, karena terdapat beberapa kesamaan sifat antara operasi dasar dalam aljabar maxplus dengan operasi dasar dalam aljabar konvensional maka beberapa konsep yang terdapat dalam aljabar konvensional dapat berlaku di dalam aljabar max-plus. Beberapa konsep tersebut antara lain teorema Cayley-Hamilton dan aturan Cramer yang telah diteliti oleh Olsder-Roos [1988]. Dengan demikian, beberapa teknik yang dipakai di dalam aljabar konvensional juga memungkinkan dapat digunakan dalam aljabar max-plus. Salah satu teknik tersebut adalah perhitungan dekomposisi dari suatu matriks, misalnya dekomposisi-qr dan dekomposisi nilai singular yang telah diteliti oleh De Shutter-De Moor [2002]. Akan tetapi penurunan konsepkonsep tersebut tidak dapat dilakukan secara langsung ke dalam aljabar max-plus karena struktur aljabar max-plus yang merupakan dioid komutatif. Di dalam aljabar max-plus tidak semua elemennya mempunyai invers terhadap operasi, yaitu jika a R Ω maka tidak selalu dapat ditemukan elemen b R Ω sedemikian hinggaa b = Ω = b a. Permasalahan tersebut dapat diselesaikan dengan membentuk struktur baru yang lebih luas daripada aljabar max-plus. Struktur tersebut dikenal dengan S max, yaitu semacam bentuk simetrisasi dari aljabar max-plus. Namun demikian, karena operasi bersifat idempoten yaitu untuk setiap a R Ω, a a = a maka tidak dapat dilakukan proses simetrisasi seperti 1
2 2 biasa. Oleh karena itu diadopsi metode pembentukan himpunan Z dari N yaitu dengan mencari keseimbangan antara elemen-elemennya bukan untuk mendapatkan elemen-elemen inversnya. Proses perluasan darir max dimulai dengan membentuk himpunanp Ω yaitu himpunan pasangan (a,b) R max R max dengan operasi dan. Struktur (R 2 Ω,, ) disebut sebagai pasangan aljabar. Selanjutnya struktur tersebut dilengkapi dengan relasi ekuivalensi R sehingga terbentuk kelas-kelas ekuivalensi. Himpunan kelas-kelas ekuivalensi tersebut yang kemudian membentuk himpunans. Dekomposisi nilai singular memegang peranan penting dalam aljabar konvensional,misalnya digunakan dalam proses pemberian tanda air citra yang telah diteliti oleh Basaruddin dkk [2007] dan penentuan solusi sistem persamaan linear Ax = b. Oleh karena itu dimungkinkan juga bahwa dekomposisi nilai singular di dalam aljabar max-plus tersimetri mempunyai peranan yang sama penting dengan dekomposisi nilai singular dalam aljabar konvensional. Selanjutnya pembentukan struktur aljabar S max bertujuan agar aljabar max-plus (R Ω,, ) berkorespondensi dengan (B + e,+, ) dan struktur aljabar max-plus tersimetri (S, S, S ) berkorespondensi dengan(b e,+, ). Bentuk korespondensi antara(r Ω,, ) dan (B + e,+, ) dinyatakan oleh pemetaan injektif dengan ketentuan setiap x R Ω dipetakan ke fungsi f x B + e yang didefinisikan dengan f x (s) = µe xs untuk setiap s,µ R + 0. Demikian pula halnya dengan bentuk korespondensi antara (S, S, S ) dan (B e,+, ). Berdasarkan definisi pembentukan himpunan B + e dan B e diperoleh hubungan bahwa B + e B e. Selain itu, diperoleh pula hubungan bahwa R Ω S sama seperti hubungan yang terdapat antara himpunan bilangan asli N dan himpunan bilangan bulat Z. Dengan adanya korespondensi dari struktur-struktur tersebut maka pembuktian eksistensi dekomposisi nilai singular dalam aljabar max-plus tersimetri dapat dilakukan dengan mengadopsi pembuktian eksistensi dekomposisi nilai singular dalam aljabar konvensional.
3 Rumusan Masalah Rumusan masalah yang ingin dipelajari dalam penulisan tesis ini adalah: 1. Konsep-konsep dalam aljabar maks-plus beserta sifat-sifat dan operasi matriks dalam aljabar maks-plus. 2. Proses perluasan aljabar maks-plus tersimetri dari aljabar maks-plus. 3. Hubungan antara deret fungsi eksponensial dengan aljabar max-plus simetri. 4. Penentuan dekomposisi nilai singular dalam aljabar maks-plus simetri Tujuan dan Manfaat Penelitian Tujuan dari penyusunan proposal tesis ini adalah untuk mengetahui proses perluasan struktur aljabar max-plus dan sifat-sifat yang terdapat dalam struktur hasil perluasan tersebut. Selanjutnya mempelajari eksistensi dekomposisi nilai singular di dalam aljabar max-plus tersimetri. Terakhir, untuk menyusun contoh penghitungan dekomposisi nilai singular dari suatu matriks dengan entri-entrinya berada di dalams Tinjauan Pustaka Dalam penelitian ini diperlukan beberapa buku dan artikel sebagai bahan referensi. Dasar teori mengenai aljabar max-plus beserta sifat-sifatnya dipelajari dari buku karangan Bacceli dkk(2001) dan De Schutter(1996). Bagian tentang aljabar max-plus tersimetri diambil dari buku karangan Bacceli dkk(2001) dan De Schutter(1996) serta artikel ilmiah yang ditulis oleh De Schutter-De Moor(2002). Bagian tentang Weierstrass M-Test yang digunakan untuk menunjukkan kekonvergenan fungsi-fungsi anggota lapangans e diambil dari buku karangan Rudin(1984), sedangkan bagian mengenai dekomposisi nilai singular dalam aljabar konvensional diambil dari buku karangan Lay(2006). Selanjutnya proses penelitian mengacu pada artikel yang ditulis oleh De Schutter-De Moor(2002).
4 Metode Penelitian Konsep mendasar yang dipelajari terlebih dahulu adalah konsep dekomposisi nilai singular dalam aljabar konvensional, Weierstrass M-Test, dan aljabar maks-plus besertaa sifat-sifat operasi di dalamnya. Metode atau langkah-langkah yang dilakukan dalam penelitian ini, pertama mempelajari proses perluasan aljabar maks-plus tersimetri beserta sifat-sifat di dalamnya. Selanjutnya mempelajari hubungan antara aljabar konvensional dengan aljabar max-plus tersimetri. Terakhir, penulis menyelidiki tentang eksistensi dekomposisi nilai singular di dalam aljabar max-plus tersimetri serta menyusun contoh penghitungan dekomposisi tersebut Sistematika Penulisan Pada penulisan tesis ini, penulis menggunakan sistematika sebagai berikut. BAB I PENDAHULUAN Pada bab ini dibahas mengenai latar belakang, tujuan dan manfaat penelitian, tinjauan pustaka, metodelogi penelitian, dan sistematika penulisan. BAB II DASAR TEORI Pada bab ini dibahas mengenai teori-teori yang digunakan sebagai dasar penelitian. BAB III ALJABAR MAX-PLUS DAN ALJABAR MAX-PLUS TERSIMETRI Bab ini memuat penjelasan mengenai konsep-konsep di dalam aljabar max-plus serta di dalam perluasan aljabar max-plus, Weierstrass M-Test, serta dekoomposisi nilai singular dalam aljabar konvensional. BAB IV DEKOMPOSISI NILAI SINGULAR DALAM ALJABAR MAX-PLUS TERSIMETRI Dalam bab ini berisi inti dari penelitian yang dilakukan, yaitu membahas eksistensi dekomposisi nilai singular di dalam aljabar max-plus tersimetri dan menyusun contoh penghitungan dekomposisi nilai singular dari suatu matriks atas aljabar maxplus tersimetri.
5 5 BAB V KESIMPULAN Berisi kesimpulan yang diperoleh darimateri-materi yang telah dibahas pada babbab sebelumnya.
BAB I PENDAHULUAN. aljabar max-plus bersifat assosiatif, komutatif, dan distributif.
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Aljabar max-plus adalah himpunan R := R { } dilengkapi dengan operasi a b := max(a,b) dan a b := a + b. Elemen identitas penjumlahan dan perkalian berturut-turut
BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas
BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian
PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA SISI DALAM ALJABAR MAX-PLUS BILANGAN FUZZY
PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA SISI DALAM ALJABAR MAX-PLUS BILANGAN FUZZY Any Muanalifah August 9, 2010 Latar Belakang Latar Belakang Teori himpunan fuzzy berkembang pesat saat ini. Banyak sekali
BAB 3 ALJABAR MAX-PLUS. beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut
BAB 3 ALJABAR MAX-PLUS Sebelum membahas Aljabar Max-Plus, akan diuraikan terlebih dahulu beberapa sifat khusus yang selanjutnya akan dibuktikan bahwa sifat-sifat tersebut dipenuhi oleh suatu Aljabar Max-Plus.
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem kejadian diskrit (Discrete-Event System) merupakan suatu sistem yang state space nya berbentuk diskret, sistem yang keadaannya berubah hanya pada waktu
1 P E N D A H U L U A N
1 P E N D A H U L U A N 1.1.Himpunan Himpunan (set) adalah kumpulan objek-objek yang terdefenisi dengan baik (well defined). Artinya bahwa untuk sebarang objek x yang diberikan, maka kita selalu akan dapat
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem kejadian diskrit (SKD) adalah nama klasifikasi masalah tentang sistem dengan sumber daya berhingga yang digunakan oleh beberapa pengguna untuk mencapai
Simetrisasi Aljabar Max Plus
Simetrisasi Aljabar Max Plus 1, 2 Lutfina Sahroni 1, Fitria 2, Yeni Susanti 3 Mahasiswa S1 Matematika FMIPA UGM 3 Jurusan Matematika FMIPA UGM Abstrak : Aljabar max plus merupakan aljabar yang dilengkapi
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN Pada bab ini dibahas mengenai latar belakang masalah, rumusan masalah, maksud dan tujuan, tinjauan pustaka, metodologi penelitian, serta diakhiri dengan sistematika penulisan. 1.1 Latar
Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup
BAB 3 DASAR DASAR GRUP Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup Tujuan Instruksional Khusus : Setelah diberikan
BAB II TINJAUAN PUSTAKA
5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang
SISTEM LINEAR DALAM ALJABAR MAKS-PLUS
PROSIDING ISBN : 978-979-16353-9-4 SISTEM LINEAR DALAM ALJABAR MAKS-PLUS Anita Nur Muslimah 1, Siswanto 2, Purnami Widyaningsih 3 A-1 Jurusan Matematika FMIPA UNS 1 [email protected], 2 [email protected],
G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.
2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sistem kejadian dinamik diskrit (discrete-event dynamic system) merupakan sistem yang keadaannya berubah hanya pada titik waktu diskrit untuk menanggapi terjadinya
Struktur Aljabar I. Pada bab ini disajikan tentang pengertian. grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep
GRUP Bab ini merupakan awal dari bagian pertama materi utama perkuliahan Struktur Aljabar I. Pada bab ini disajikan tentang pengertian grup, sifat-sifat dasar grup, ordo grup dan elemennya, dan konsep
STRUKTUR ALJABAR. Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif.
STRUKTUR ALJABAR SEMIGRUP Sistem aljabar (S, ) merupakan semigrup, jika 1. Himpunan S tertutup terhadap operasi. 2. Operasi bersifat asosiatif. Contoh 1 (Z, +) merupakan sebuah semigrup. Contoh 2 Misalkan
II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan
II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan autokomutator yang akan digunakan dalam penelitian. Pada bagian pertama ini akan dibahas tentang teori
II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar
II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang
BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +
5 BAB II KERANGKA TEORITIS 2.1 Struktur Aljabar Struktur aljabar adalah salah satu mata kuliah dalam jurusan matematika yang mempelajari tentang himpunan (sets), proposisi, kuantor, relasi, fungsi, bilangan,
PERMANEN DAN DOMINAN SUATU MATRIKS ATAS ALJABAR MAX-PLUS INTERVAL
PERMANEN DAN DOMINAN SUATU MATRIKS ATAS ALJABAR MAX-PLUS INTERVAL Siswanto Jurusan Matematika FMIPA UNS [email protected] Abstrak Misalkan R himpunan bilangan real. Aljabar Max-Plus adalah himpunan
BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari.
BAB III Standard Kompetensi 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring menggunakannya dalam kehidupan sehari-hari. Kompetensi Dasar: Mahasiswa diharapkan dapat 3.1 Menyebutkan definisi
II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam
II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan teori grup dan teori ring yang akan digunakan dalam penelitian. Pada bagian pertama akan dibahas mengenai teori grup. 2.1 Grup Dalam struktur aljabar, himpunan
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada abad ke-19, Teori Representasi secara umum dipelajari sebagai bagian dari Teori Grup. Himpunan semua endomorfisma invertibel dari ruang vektor V atas
SISTEM BILANGAN BULAT
SISTEM BILANGAN BULAT A. Bilangan bulat Pengertian Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Berlawanan dengan bilangan bulat adalah bilangan riil
SISTEM MAKS-LINEAR DUA SISI ATAS ALJABAR MAKS-PLUS 1. PENDAHULUAN
SISTEM MAKS-LINEAR DUA SISI ATAS ALJABAR MAKS-PLUS Kiki Aprilia, Siswanto, dan Titin Sri Martini Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret ABSTRAK.
II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di
II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung proses penelitian. 2.1 Teori Grup Definisi 2.1.1 Operasi Biner Suatu operasi biner pada suatu himpunan adalah
ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan
ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,
SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum
Bab I. Sekilas Tentang Konsep Dasar Grup antonius cp 2 1. Tertutup, yakni jika diambil sebarang dua elemen dalam G maka hasil operasinya juga akan merupakan elemen G dan hasil tersebut adalah tunggal.
BAB 3 FUNGSI. f : x y
. Hubungan Relasi dengan Fungsi FUNGSI Relasi dari himpunan P ke himpunan Q disebut fungsi atau pemetaan, jika dan hanya jika tiap unsur pada himpunan P berpasangan tepat hanya dengan sebuah unsur pada
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam pengelompokan aljabar ring, lapangan merupakan kejadian sangat khusus dari ring karena tidak hanya memiliki invers penjumlahan tetapi juga invers perkalian
SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu.
SILABUS NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : X STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep operasi bilangan real. KODE KOMPETENSI : ALOKASI WAKTU : 57 x 45 Kompetensi
BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI
BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bab ini dibahas penelitian-penelitian tentang aljabar maks-plus yang telah dilakukan dan teori-teori yang menunjang penelitian masalah nilai eigen dan vektor eigen yang diperumum
BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi
BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor
HALAMAN PENGESAHAN PROPOSAL PENELITIAN DOSEN YUNOR
HALAMAN PENGESAHAN PROPOSAL PENELITIAN DOSEN YUNOR. Judul Penelitian : Identifikasi Sifat-Sifat Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Max-Plus..Ketua Pelaksana : a. Nama : Musthofa, M.Sc b.
Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers
Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar
Invers Tergeneralisasi Matriks atas Z p
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Invers Tergeneralisasi Matriks atas Z p Evi Yuliza 1 1 Fakultas MIPA Universitas Sriwijaya evibc3@yahoocom PM A-1 - Abstrak Sebuah matriks
KARAKTERISASI PENYELESAIAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR SUPERTROPICAL
TESIS SM 142501 KARAKTERISASI PENYELESAIAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR SUPERTROPICAL Dian Yuliati NRP. 1214 201 002 DOSEN PEMBIMBING Dr. Subiono, M.S. PROGRAM MAGISTER JURUSAN MATEMATIKA FAKULTAS
BAB II TINJAUAN PUSTAKA. jelas. Ada tiga cara untuk menyatakan himpunan, yaitu: a. dengan mendaftar anggota-anggotanya;
BAB II TINJAUAN PUSTAKA A. Himpunan 1. Pengertian Himpunan Himpunan merupakan konsep mendasar yang terdapat dalam ilmu matematika. Himpunan adalah kumpulan obyek yang didefinisikan secara jelas. Ada tiga
KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS. 1. Pendahuluan
KETERCAPAIAN DARI RUANG EIGEN MATRIKS ATAS ALJABAR MAKS-PLUS Tri Anggoro Putro, Siswanto, Supriyadi Wibowo Program Studi Matematika FMIPA UNS Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas
STRUKTUR ALJABAR 1. Winita Sulandari FMIPA UNS
STRUKTUR ALJABAR 1 Winita Sulandari FMIPA UNS Pengantar Struktur Aljabar Sistem Matematika terdiri dari Satu atau beberapa himpunan Satu atau beberapa operasi yg bekerja pada himpunan di atas Operasi-operasi
NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com
1 NAMA : KELAS : 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan
MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716
MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,
SISTEM LINEAR DALAM ALJABAR MAKS-PLUS
SISTEM LINEAR DALAM ALJABAR MAKS-PLUS oleh ANITA NUR MUSLIMAH M01009009 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika JURUSAN MATEMATIKA FAKULTAS
Antonius C. Prihandoko
Antonius C. Prihandoko Didanai oleh Proyek DIA-BERMUTU 2009 PROGRAM STUDI PENDIDIKAN MATEMATIKA Jurusan Pendidikan MIPA Fakultas Keguruan Dan Ilmu Pendidikan Universitas Jember Prakata Puji syukur ke hadirat
Aljabar Linier Elementer. Kuliah 1 dan 2
Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut
MENENTUKAN EIGEN PROBLEM ALJABAR MAX-PLUS
MENENTUKAN EIGEN PROBLEM ALJABAR MAX-PLUS SKRIPSI Diajukan Kepada Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Kalijaga Yogyakarta untuk Memenuhi Sebagian Syarat Memperoleh Gelar Sarjana
Matematika Logika Aljabar Boolean
Pertemuan ke-3 Matematika Logika Aljabar Boolean Oleh : Mellia Liyanthy TEKNIK INFORMATIKA UNIVERSITAS PASUNDAN TAHUN AJARAN 2011/2012 Definisi Aljabar Boolean merupakan aljabar yang terdiri atas : suatu
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bab ini berisi tinjauan pustaka dan kerangka pemikiran. Tinjauan pustaka berisi penelitian-penelitan yang dilaksanakan dan digunakan sebagai dasar dilaksanakannya penelitian
BAB 6 RING (GELANGGANG) BAHAN AJAR STRUKTUR ALJABAR, BY FADLI
BAB 6 RING (GELANGGANG) Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat suatu Ring, Integral Domain dan Field Tujuan Instruksional
BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi
1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang
UNIVERSITAS GADJAH MADA. Bahan Ajar:
UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN
ANALISIS EIGENPROBLEM MATRIKS SIRKULAN DALAM ALJABAR MAX-PLUS
ANALISIS EIGENPROBLEM MATRIKS SIRKULAN DALAM ALJABAR MAX-PLUS Maria Ulfa Subiono 2 dan Mahmud Yunus 3 Institut Teknologi Sepuluh Nopember Surabaya 23 e-mail: [email protected] [email protected]
PENGANTAR PADA TEORI GRUP DAN RING
Handout MK Aljabar Abstract PENGANTAR PADA TEORI GRUP DAN RING Disusun oleh : Drs. Antonius Cahya Prihandoko, M.App.Sc, Ph.D e-mail: [email protected] Staf Pengajar Pada Program Studi Sistem
MATRIKS A = ; B = ; C = ; D = ( 5 )
MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.
Aljabar Linier Elementer. Kuliah 7
Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan
BAB II TEORI KODING DAN TEORI INVARIAN
BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan
MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR
MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika oleh DEVI SAFITRI 10654004470 FAKULTAS
MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 =
NAMA : KELAS : 1 2 MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital
BEBERAPA FUNGSI KHUSUS
BEBERAPA FUNGSI KHUSUS ). Fungsi Konstan ). Fungsi Identitas 3). Fungsi Modulus 4). Fungsi Genap dan Fungsi Ganjil Fungsi genap jika f(x) = f(x), dan Fungsi ganjil jika f(x) = f(x) 5). Fungsi Tangga dan
BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks
1.1 LATAR BELAKANG BAB I PENDAHULUAN Teori matriks merupakan salah satu cabang ilmu aljabar linier yang menjadi pembahasan penting dalam ilmu matematika. Sejalan dengan perkembangan ilmu pengetahuan, aplikasi
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Suatu matriks A C m n dikatakan memiliki faktorisasi LU jika matriks tersebut dapat dinyatakan sebagai A = LU dengan L C m m matriks invertibel segitiga bawah
R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit
BAB I RUANG EKTOR UMUM Dalam bab ini akan dipelajari tentang konsep ruang vektor umum, sub ruang vektor dan sifat-sifatnya. Pada pembicaraan ini, para mahasiswa dianggap sudah mengenal konsep dan sifat
MODUL ATAS RING MATRIKS ( ) Arindia Dwi Kurnia Universitas Jenderal Soedirman Ari Wardayani Universitas Jenderal Soedirman
Prosiding Seminar Nasional Matematika dan Terapannya 2016 p-issn : 2550-0384; e-issn : 2550-0392 MODUL ATAS RING MATRIKS Arindia Dwi Kurnia Universitas Jenderal Soedirman [email protected] Ari
Matematika Teknik INVERS MATRIKS
INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien
Karakteristik Operator Positif Pada Ruang Hilbert
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 05 A - 4 Karakteristik Operator Positif Pada Ruang Hilbert Gunawan Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Purwokerto gunoge@gmailcom
Soal Ujian Komprehensif
Soal Ujian Komprehensif Bahan ujian komprehensif memuat konsep-konsep penting pada bidang: Kalkulus, dan Matriks / Aljabar Linear. Logika, Soal ujian disediakan secara terbuka, dapat diperoleh setiap saat
GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA
GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA 07934028 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ANDALAS PADANG 2011 ABSTRAK Misalkan
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem
Soal-soal Latihan Pra UTS MATDAS. 1. Periksalah apakah argumen berikut valid secara logis atau tidak? p q q. ( p)
Soal-soal Latihan Pra UTS MATDAS 1. Periksalah apakah argumen berikut valid secara logis atau tidak? p q p q q ( p) p 2. Periksalah apakah argumen berikut valid secara logis atau tidak? r s r t t r s 3.
BAB II TINJAUAN PUSTAKA
6 BAB II TINJAUAN PUSTAKA A. Fungsi Definisi A.1 Diberikan A dan B adalah dua himpunan yang tidak kosong. Suatu cara atau aturan yang memasangkan atau mengaitkan setiap elemen dari himpunan A dengan tepat
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA Pada bagian ini dipaparkan dasar-dasar yang akan digunakan pada bagian pembahasan dari skripsi ini. Tinjauan yang dilakukan dengan memaparkan definisi mengenai himpunan fuzzy, struktur
PENENTUAN WAKTU KEDATANGAN PESAWAT DI BANDAR UDARA HUSEIN SASTRANEGARA BANDUNG DENGAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR MAKS-PLUS
PENENTUAN WAKTU KEDATANGAN PESAWAT DI BANDAR UDARA HUSEIN SASTRANEGARA BANDUNG DENGAN SISTEM PERSAMAAN LINEAR ATAS ALJABAR MAKS-PLUS Casilda Reva Kartika, Siswanto, dan Sutrima Program Studi Matematika
PENGERTIAN RING. A. Pendahuluan
Pertemuan 13 PENGERTIAN RING A. Pendahuluan Target yang diharapkan dalam pertemuan ke 13 ini (pertemuan pertama tentang teori ring) adalah mahasiswa dapat : a. membedakan suatu struktur aljabar merupakan
TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh
II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,
MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR
MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR 7.1 Matriks DEFINISI Susunan bilangan (fungsi) berbentuk persegi panjang yang ditutup dengan tanda kurung. Bilangan (fungsi) disebut entri-entri matriks.
Perluasan Teorema Cayley-Hamilton pada Matriks
Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan
BAB I PENDAHULUAN Latar Belakang Permasalahan
BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Dalam matematika analisis dikenal teori ukuran. Salah satunya ukuran Lebesgue. Royden (1968) menjelaskan bahwa ukuran Lebesgue merupakan perumuman dari
FUNGSI KOMPOSISI DAN FUNGSI INVERS
FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap
TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS
TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta
BAB VIII HIMPUNAN BILANGAN RASIONAL
8.1 Pendahuluan BAB VIII HIMPUNAN BILANGAN RASIONAL Pada sistem bilangan bulat, bentuk persamaan yang melibatkan perkalian belum tentu memiliki solusi. Keadaan ini juga ditemui pada kasus pembagian sebuah
POLINOMIAL ATAS ALJABAR MAX-PLUS INTERVAL
POLINOMIAL ATAS ALJABAR MAX-PLUS INTERVAL A-4 Harry Nugroho 1, Effa Marta R 2, Ari Wardayani 3 1,2,3 Program Studi Matematika Universitas Jenderal Soedirman 1 [email protected] 2 marta_effa, 3
BAB VIII HIMPUNAN BILANGAN RASIONAL
8.1 Pendahuluan BAB VIII HIMPUNAN BILANGAN RASIONAL Pada sistem bilangan bulat, bentuk persamaan yang melibatkan perkalian belum tentu memiliki solusi. Keadaan ini juga ditemui pada kasus pembagian sebuah
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN Pada bab ini dibahas mengenai latar belakang masalah, rumusan masalah, maksud dan tujuan, tinjauan pustaka, metodologi penelitian serta diakhiri dengan sistematika penulisan. 1.1. Latar
I. Aljabar Himpunan Handout Analisis Riil I (PAM 351)
I. Aljabar Himpunan Aljabar Himpunan Dalam bab ini kita akan menyajikan latar belakang yang diperlukan untuk mempelajari analisis riil. Dua alat utama analisis riil, yakni aljabar himpunan dan fungsi,
Matematika Teknik I: Matriks, Inverse, dan Determinan. Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015
Matematika Teknik I: Matriks, Inverse, dan Determinan Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015 Dadang Amir Hamzah (STT) Matematika Teknik I Semester 3, 2015 1 / 33 Outline 1 Matriks Dadang
Part III DETERMINAN. Oleh: Yeni Susanti
Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)
OPERASI BINER. Yus Mochamad Cholily Program Studi Pendidikan Matematika Universitas Muhammadiyah Malang
OPERASI BINER Yus Mochamad Cholily Program Studi Pendidikan Matematika Universitas Muhammadiyah Malang email:[email protected] March 4, 2013 1 Daftar Isi 1 Tujuan 3 2 Relasi 3 3 Fungsi 4 4 Operasi Biner
Semi Modul Interval [0,1] Atas Semi Ring Matriks Fuzzy Persegi
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Semi Modul Interval [0,1] Atas Semi Ring Matriks Fuzzy Persegi Subjudul (jika diperlukan) [TNR14, spasi 1] Suroto, Ari Wardayani Jurusan Matematika
Grup Permutasi dan Grup Siklis. Winita Sulandari
Grup Permutasi dan Grup Siklis Winita Sulandari Grup Permutasi Suatu Permutasi dari suatu himpunan berhingga S yang tidak kosong, dinyatakan sebagai suatu pemetaan bijektif dari himpunan S pada dirinya
BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu
BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang
STRUKTUR ALJABAR II. Materi : 1. Ring 2. Sub Ring, Ideal, Ring Faktor 3. Daerah Integral, dan Field.
STRUKTUR ALJABAR II Materi : 1. Ring 2. Sub Ring, Ideal, Ring Faktor 3. Daerah Integral, dan Field RING (GELANGGANG) Ring adalah himpunan G yang tidak kosong dan berlaku dua oprasi biner (penjumlahan dan
2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com
2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut
Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif
Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif Joko Harianto 1, Nana Fitria 2, Puguh Wahyu Prasetyo 3, Vika Yugi Kurniawan 4 Jurusan Matematika, Universitas Gadjah Mada, Yogyakarta Indonesia
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan
TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,
II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema
