Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ukuran: px
Mulai penontonan dengan halaman:

Download "Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga"

Transkripsi

1 Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar

2 Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang daerah asalnya adalah himpunan bilangan bulat positif dan daerah hasilnya adalah himpunan bilangan real. dapat dinotasikan sebagai a n. Akar

3 Definisi Definisi 1. Barisan a n dikatakan konvergen menuju L, dan ditulis sebagai lim a n = L n Jika untuk tiap bilangan positif ε terdapat sebuah bilangan positif N yang bersesuaian, sedemikian rupa sehingga n N a n L < ε Barisan yang tidak konvergen menuju bilangan terhingga L sebarang dikatakan divergen atau menyebar. Akar

4 Teorema Sifat-Sifat Limit Pada Barisan Misalkan a n dan b n adalah barisan-barisan konvergen dan k adalah konstanta. Maka: 1. lim n k = k 2. lim n ka n = klim n a n 3. lim n (a n ± b n ) = lim n a n ± Lim n b n 4. lim n (a n.b n ) = lim n a n.lim n b n 5. lim n lim n a n lim n b n, asalkan lim n b n 0 Akar

5 Akar Ekspresi matematika yang berbentuk atau dalam notasi a 1 + a 2 + a 3 + a disebut deret tak terhingga dan bilangan real a k disebut suku ke k deret tersebut. Prakteknya, kita tidak mungkin melakukan penjumlahan dengan banyak suku tak berhingga, namun hanya mengambil berhingga banyak suku sebagai aproksimasinya. Secara induktif, jumlah beberapa suku pertama deret membentuk suatu barisan (S n : n N). a k

6 Ilustrasi Perhatikan S 1 = a 1 S 2 = a 1 + a 2 = 2 S 3 = a 1 + a 2 + a 3 =. a k 3 a k S n = a 1 + a 2 + a a n = n a k Akar

7 Barisan (S n ) disebut jumlah parsial ke n deret. Deret a k dikatakan konvergen dengan jumlah S jika barisan (S n ) konvergen ke S, yaitu: S = a k := lim S n = lim n n n Jika barisan (S n ) tidak konvergen maka deret divergen. a k disebut Akar

8 Sebelum masuk pada pendalaman teori lebih lanjut, perhatikan pengaruh suku-suku (a k ). Agar deret konvergen maka suku-suku ini haruslah menuju nol, ini merupakan syarat perlu bagi suatu deret konvergen. Tetapi sebaliknya, jika a k tidak menuju nol maka deret dipastikan divergen. Bayangkan apa yang terjadi kalau kita menjumlahkan tak terhingga banyak bilangan tak nol meskipun nilainya super kecil, tentulah hasilnya tak terhingga atau divergen. Akar

9 Akar Deret Konvergen Contoh Tunjukkan bahwa deret 1 2 k konvergen. Perhatikan jumlahan parsial berikut S 1 = = 1 2 S 2 = = 3 4 S 3 = = 7 8. S n = n = n

10 Berdasarkan definisi jumlah deret tak terhingga diperoleh: lim S n = lim (1 12 ) n n n = 1 Akar

11 Akar Deret Divergen Kita tunjukkan deret Σ ( 1)k divergen. Diperhatikan bahwa deret ini dapat diekspansi sebagai berikut Σ ( 1)k = sehingga jumlah parsialnya diperoleh { 1 jika n ganjil S n := 0 jika n genap karena S n tidak mempunyai limit (divergen) maka disimpulkan deret Σ ( 1)k juga divergen.

12 Akar Deret Teleskoping Kita tunjukkan deret konvergen. 1 k 2 + k

13 Akar Dengan menggunakan pecahan parsial kita dapat menyajikan a k = 1 k 2 + k = 1 k(k + 1) = 1 k + 1 k + 1 Jadi, jumlah parsial n sukunya dapat disajikan sebagai berikut n 1 n ( 1 S n = k 2 + k = k + 1 ) k + 1 ( = 1 1 ) ( ) ( ) 4 ( 1 = ) ( ) = 1 1 n + 1 ( ( 1 n 1 n n 1 n + 1 ) 1 n + 1 )

14 Jadi, jumlah deret adalah S n = n ( 1 k 2 + k = lim 1 1 ) n n + 1 Pada deret teleskoping ini, sebagian besar suku-sukunya saling menghilangkan kecuali suku awal dan suku akhirnya sehingga rumus jumlah parsial S n mempunyai bentuk yang sederhana. Akar

15 Akar Deret Geometri Deret geometri mempunyai bentuk umum ar k 1 := a + ar + ar 2 + ar dengan a disebut suku pertama dan r disebut rasio. Diperhatikan jumlah parsial deret geometri ini S n := a + ar + ar 2 + ar ar n 1 Selanjutnya, dengan mengalikan kedua ruas dengan r, diperoleh rs n = ar + ar 2 + ar ar n 1 + ar n Bila kedua kesamaan ini dikurangkan maka akan diperoleh: S n rs n = a ar n (1 r)s n = a(1 r n ) S n = a(1 r n ) (1 r)

16 Sekarang kita amati nilai S n untuk n ). Bila r = 1 maka S n tidak terdefinisi karena muncul pembagian dengan nol. Jika r > 1 maka suku r n dan (1 r n ) sehingga S n tidak konvergen. Demikian juga bila r < 1 maka S n tidak konvergen. Sekarang, bila 1 < r < 1 maka r n 0 sehingga lim S a(1 r n ) a(1 0) n = lim = lim n n (1 r) n (1 r) = a (1 r) Jadi deret geometri konvergen jika r < 1 dengan jumlah S = a (1 r) Akar

17 Latihan kan bentuk jumlah parsial S n sehingga tidak memuat lambang Σ lagi. Bila deret ini konvergen, hitunglah jumlahnya 1. k=2 2. k=0 ( 1 k ( ) 1 k (k + 1)(k + 2) ) Akar

18 Dua pertanyaan yang berkaitan dengan deret tak berhingga a k adalah 1 Apakah deret konvergen 2 Bila konvergen, berapakah jumlahnya. Kecuali deret-deret khusus seperti yang telah diberikan sebelumnya, untuk mengetahui kekonvergenan suatu deret bukanlah pekerjaan yang mudah. Bahkan, deret yang sudah dipastikan konvergen tidaklah terlalu mudah untuk mendapatkan jumlahnya. Pendekatan numerik biasanya digunakan untuk menentukan jumlah deret secara aproksimasi. Namun, ada kasus dimana visualisasi numerik tidak dapat memerikan gambaran apapun tentang kekonvergenan deret tak berhingga. Akar

19 Sebagai contoh, perhatikan contoh berikut Contoh Diberikan deret Selidikilah kekonvergenan deret ini. Untuk melihat secara intuitif dan visualisasi jumlah deret ini, kita perhatikan jumlah parsial ke n 1 k S n := n Komputasi numerik memberikan data sebagai berikut: S 10 = 2, 9290, S 100 = 5, 1874, S 1000 = 7, 4855 Akar

20 Terlihat bahwa kenaikan jumlah parsialnya sangat lambat sehingga berdasarkan data ini seolah-olah jumlah deret akan menuju bilangan tertentu atau konvergen. Akar Dilihat dari polanya, suku-suku pada deret ini yaitu a k = 1 k semakin mengecil dan menuju nol. Walaupun demikian, belumlah menjamin bahwa jumlahnya konvergen ke bilangan real tertentu.

21 Akar Penyelesaian Diperhatikan S = = 1 = 1 ( ) ( ) > ( ) ( ) = = ( ) 2 = Karena S > ( ) dan ruas kanannya menuju maka disimpulkan deret ini divergen.

22 Deret yang mempunyai suku-suku positif menjadi bahasan pada uji integral ini. integral ini menggunakan ide dimana suatu integral didefinisikan melalui bentuk jumlahan. Memang, kedua notasi Σ dan ini mempunyai kaitan yang erat. Teorema Jika a k = f (k) dimana f (x) fungsi positif, kontinu dan turun pada x 1 maka kedua ekspresi berikut a k dan 1 f (x)dx sama-sama konvergen atau sama-sama divergen Akar

23 Bukti Perhatikan ilustrasi grafik berikut ini Figure: Jumlah Atas dan Bawah Luas Persegipanjang Akar

24 Akar Luas persegipanjang pada gambar di atas adalah L1 = A1, L2 = A2,..., LN = A n 1 Luas persegipanjang pada gambar dibawah adalah A1 = a1, A2 = a2,..., AN = an Luas daerah yang dibatasi oleh kurva y = f (x) dari x = 1 sampai dengan x = n adalah I n = n 1 f (x)dx Dari ketiga luasan tersebut berlaku hubungan A1 + A2 + A An I n L1 + L2 + L Ln a 2 + a 3 + a a n I n a 1 + a 2 + a 3 + a a n 1

25 Jadi, S n a 1 I n S n a n (1) Misalkan integral 1 f (x)dx < (konvergen), maka berdasarkan persamaan di atas didapatkan dan S = 1 f (x)dx := lim n I n lim n S n a 1 a k := lim n S n 1 f (x)dx + a 1 < Akar

26 Sebaliknya, jika deret a k konvergen maka lim n a n = 0 dan berdasarkan (3.1) diperoleh 1 f (x)dx := lim n I n lim n (S n a n ) = S 0 < Selanjutnya, kedivergenan kedua ekspresi ini juga didasarkan pada ketidaksamaan (3.1) dan dapat dilakukan dengan cara yang sama seperti diatas. Akar

27 Contoh Lakukan uji integral untuk melihat bahwa deret S = 1 k divergen. Penyelesaian Diambil f (x) := 1 x, x 1. Fungsi f (x) kontinu, positif dan turun pada x 1 dan f (k) = 1 k. Selanjutnya, 1 f (x)dx = 1 1 x dx = lnx 1 = ln ln1 = (divergen) Deret S = 1 k disebut Deret Harmonik. Lebih umum, deret harmonik diperumum menjadi Deret-p, Akar

28 Contoh Tentukan harga p agar deret-p berikut S = konvergen. Penyelesaian 1 k p Diambil f (x) = 1 x p, x 1. Fungsi f (x) kontinu, positif, turun pada x 1 dan f (k) = 1 k. Telah diperoleh pada Bab Integral p Tak Wajar bahwa x p dx = p 1, p > 1 divergen, p 1 Oleh karena itu deret S = 1 k p konvergen untuk p > 1 Akar

29 Jika diperhatikan pada integral diatas maka Integral dimulai dari x = 1. Dalam kasus batas ini lebih dari 1 maka teorema ini tetap berlaku. Untk kasus ini kita harus menentukan nilai b > 1 sehingga fungsi f (x) positif, kontinu dan turun untuk x > b. Secara sederhana hasil ini dikaitkan pada kenyataan bahwa kekonvergenan suatu deret tidak ditentukan oleh sejumlah berhingga suku-suku awal tapi ditentukan oleh takberhingga banyak suku-suku dibelakangnya. Akar

30 Contoh lah kekonvergenan deret berikut Σ k, dan jika ek/5 konvergen hitunglah jumlahnya secara aproksimasi. Penyelesaian Bila diambil fungsi f (x) = x maka fungsi ini positif dan e x/5 kontinu untuk x > 0. Tetapi sifat turunnya belum dapat dipastikan. Akar

31 Diperhatikan grafiknya pada gambar berikut Figure: Grafik Fungsi f(x) Akar

32 Berdasarkan gambar tersebut, fungsi f (x) = pada awalnya e x/5 naik kemudian turun terus. Untuk memastikan titik dimana fungsi mulai turun, digunakan materi pada kalkulus elementer, f turun jika dan hanya jika f (x) < 0. ( ) 1 f (x) = e x/5 x 5 e x/5 < 0 e x/5 (1 x/5) < 0 x Akar

33 Karena e x/5 0 maka diperoleh harga nolnya, (1 x/5) = 0 x = 5. jadi fungsi f (x) turun untuk x > 5. Selanjutnya, kekonvergenan deret diperiksa dengan menghitung integral tak wajar. 5 xe x/5 dx Dengan menggunakan definisi integral tak wajar, dan teknik integrasi parsial diperoleh Akar

34 Akar 5 T xe x/5 dx = lim xd( 5e x/5 ) T 5 ( = lim 5xe x/5 T 5 T = lim T ( 5xe x/5 25e x/5 ) T 5 5 ) 5e x/5 dx = lim T ( 5Te T /5 25e T /5 + 25e e 1 ) T + 5 = 5 lim + lim 50 T T e = 5 lim T e T / et /5 e = e < Karena integral tak wajat ini konvergen maka disimpulkan deret di atas juga konvergen

35 ada dua macam uji komparasi, yaitu uji komparasi langsung dan uji limit komparasi Ide pada uji ini adalah membandingkan suatu deret dengan deret lain yang konvergen, juga dengan deret lain yang divergen. Akar

36 Misalkan ada dua deret tak berhingga a k dan b k dengan 0 a k b k untuk setiap k N, N suatu bilangan asli. i. Jika deret b k konvergen maka deret a k konvergen ii. Jika deret a k divergen maka deret b k divergen Akar

37 Bukti i. Karena b k konvergen maka b k <. Selanjutnya a k = N 1 a k + a k N 1 a k + yang berarti deret a k konvergen b k < (2) Akar

38 Akar ii. Karena a k divergen dan a k 0 maka a k = sehingga a k = k=n Akhirnya didapat, b k = N 1 b k + N 1 a k a k = (3) b k k=n = N 1 N 1 yang berarti deret b k divergen b k + a k (4) k=n b k + = (5)

39 Untuk menggunakan uji ini dibutuhkan deret lain sebagai pembanding. pekerjaan memilih deret yangtepat yang akan digunakan sebagai bahan perbandingan tidaklah sederhana, sangat bergantung dari pengalaman. Namun dua deret penting yaitu deret p dan deret geometri sering digunakan sebagai deret pembanding. Contoh lah kekonvergenan deret k (k + 2)2 k Akar

40 Penyelesaian a k = k (k + 2)2 k = k k + 2 ( ) 1 k 2 ( ) 1 k 2 ( ) 1 k m Diambil b k =. Diperhatikan bahwa ( ) 1 k 2 2 merupakan deret geometri yang konvergen sebab r = 1/2. jadi, deret k juga konvergen. Dengan menggunakan (k + 2)2k pendekatan numerik diperoleh jumlah deret secara aproksimasi adalah 0,4548 (Silahkan cek) Akar

41 Latihan Gunakan uji integral untuk mengetahui kekonvergenan deret di bawah ini. Bila konvergen, tentukan nilai untuk aproksimasi jumlahnya 1. k=2 2. k=2 1 (2 + 3k) 2. lnk k. Akar

42 Akar Limit Misalkan a k > 0 dan b k > 0 untuk k cukup besar, diambil a k I := lim k b k Jika 0 < L < maka kedua deret a k dan b k sama-sama konvergen atau sama-sama divergen. Untuk melakukan uji ini dalam menguji kekonvergenan deret a k dilakukan prosedur sebagai berikut: 1. Temukan deret b k yang sudah diketahui sifat kekonvergenannya, dan bentuk suku-sukunya b k mirip dengan a k a k 2. Hitunglah limit L = lim k, pastikan nilainya positif. b k 3. Sifat kekonvergenan deret a k akan sama dengan deret b k

43 Akar Dalam kasus dimana L = 0 maka pengujian dengan alat ini dinyatakan gagal, sehingga harus dilakukan dengan uji yang lain. Latihan Lakukan uji komparasi limit untuk mengetahui sifat kekonvergenan deret, nila konvergen, hitunglah jumlahnya secara aproksimasi a. b. 3k + 2 k(3k 5) 1 k k c. 1 2k + 3 d. 1 kk 2

44 Akar Secara intuitif, deret a k dengan suku-suku positif akan konvergen jika kekonvergenan barisan a k ke nol cukup cepat. Bandingkan kedua deret ini 1 k dan 1 k 2 Telah diketahui bahwa deret pertama divergen sedangkan deret kedua konvergen. Faktanya, kekonvergenan barisan 1 k 2 menuju nol lebih cepat dari barisan 1 k. Selain daripada itu, untuk mengukur kecepatan konvergensi ini dapat diperhatikan pola rasio a k+1 /a k untuk k cukup besar. Ide ini merupakan dasar pembentukan uji rasio, seperti pada teorema berikut ini

45 Akar Teorema Diberikan deret a k dengan a k > 0, dan dihitung L = lim k a k+1 a k diperoleh hasil pengujian sebagai berikut: 1 Jika L < 1 maka deret a k konvergen 2 Jika L > 1 atau L = maka deret a k divergen 3 L = 1 maka pengujian gagal (tidak dapat diambil kesimpulan) Contoh Dengan menggunakan uji rasio, ujilah kekonvergenan deret berikut k k k!

46 Penyelesaian Karena a k = kk k! k k L = lim k k! = lim k = lim k = lim k maka diperoleh (k + 1) k+1 (k + 1)! k k k! (k + 1) k k k (k + 1) k+1 k k = lim k (k + 1)! k! (k + 1) k = lim k k k ( k ) k = e 2, 7183 Akar

47 Latihan Dengan menggunakan uji rasio, ujilah kekonvergenan deret berikut k 2 2 k Akar

48 Akar Akar Pada bahasan sebelumnya kita dapatkan bahwa lim k a k = 0 belumlah menjamin bahwa deret konvergen, karena dapat saja deret tersebut divergen. Pada uji akar ini akan dilihat kekonvergenan deret melalui suku-suku k a k. Teorema Diberikan deret a k dengan a k 0 dan dihitung L = lim k k ak diperoleh hasil pengujian sebagai berikut: 1 Jika L < 1 maka deret a k konvergen 2 Jika L > 1 atau L = maka deret a k divergen 3 L = 1 maka pengujian gagal (tidak dapat diambil kesimpulan)

49 Latihan Gunakan uji akar untuk mengetahui apakah deret ( ) k 2 k konvergen. Bila konvergen, aproksimasikan jumlahnya. Akar

50 Pemilihan uji merupakan masalah tersendiri yang juga membutuhkan pengalaman agar tepat memilih uji mana yang akan dipakai. Namun, dari beberapa contoh sebelumnya, uji rasio lebih cocok digunakan pada deret yang suku-sukunya memuat eksponen dan faktorial. Sedangkan uji akar lebih cocok untuk deret dengan suku-suku memaut pangkat k. Akar

51 Latihan Gunakan uji rasio atau uji akar untuk mengetahui kekonvergenan deret dibawah ini, jika konvergen hitung nilainya. a. b. c. ) k ( k 3k + 1 ( k 5 ) ( k! 2 k k! ) Akar

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Uji Deret Positif. Ayundyah. Uji Integral. Uji Komparasi. Uji Rasio.

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Uji Deret Positif. Ayundyah. Uji Integral. Uji Komparasi. Uji Rasio. Uji Uji Deret Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Uji Deret Uji Deret yang mempunyai suku-suku positif menjadi bahasan pada uji integral ini. Uji integral ini menggunakan ide dimana suatu

Lebih terperinci

Modul KALKULUS MULTIVARIABEL II

Modul KALKULUS MULTIVARIABEL II Modul KALKULUS MULTIVARIABEL II Oleh Ayundyah Kesumawati, S.Si., M.Si. (Program Studi Statistika) FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 26 Daftar Isi Daftar Isi iv Daftar

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga,

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga, DERET TAK HINGGA Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan Definisi Deret tak hingga,, konvergen dan mempunyai jumlah S, apabila barisan jumlah jumlah parsial konvergen menuju S.

Lebih terperinci

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk:

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk: DERET TAK HINGGA Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk: u k = u 1 + u 2 + u 3 + + u k + Bilangan-bilangan u 1, u 2, u 3, disebut suku-suku dalam deret tersebut.

Lebih terperinci

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Ringkasan Kalkulus 2, Untuk dipakai di ITB Deret Tak Hingga Pada bagian ini akan dibicarakan penjumlahan berbentuk a +a 2 + +a n + dengan a n R Sebelumnya akan dibahas terlebih dahulu pengertian barisan

Lebih terperinci

MODUL RESPONSI MAM 4222 KALKULUS IV

MODUL RESPONSI MAM 4222 KALKULUS IV MODUL RESPONSI MAM 4222 KALKULUS IV Mata Kuliah Wajib 2 sks untuk mahasiswa Program Studi Matematika Oleh Dr. WURYANSARI MUHARINI KUSUMAWINAHYU, M.Si. PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14 Deret Binomial Ayundyah Kesumawati Prodi Statistika FMIPA-UII June 25, 2015 Ayundyah (UII) Deret Binomial June 25, 2015 1 / 14 Pendahuluan Deret Binomial Kita telah mengenal Rumus Binomial. Untuk bilangan

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN LIMIT DAN KEKONTINUAN Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 37 Topik Bahasan 1 Limit Fungsi 2 Hukum Limit 3 Kekontinuan Fungsi (Departemen

Lebih terperinci

MA1201 KALKULUS 2A Do maths and you see the world

MA1201 KALKULUS 2A Do maths and you see the world Catatan Kuliah MA20 KALKULUS 2A Do maths and you see the world disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 203 Catatan kuliah ini ditulis

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

BARISAN BILANGAN REAL

BARISAN BILANGAN REAL BAB 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut pola tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS 2 Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 200 Pengantar Kalkulus & 2 merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut "pola" tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut "pola" tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ -LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ agustina.mipa@unej.ac.id Konsep Limit Fungsi mendasari pembentukan kalkulus dierensial dan integral. Konsep ini

Lebih terperinci

BAB 5 Bilangan Berpangkat dan Bentuk Akar

BAB 5 Bilangan Berpangkat dan Bentuk Akar BAB 5 Bilangan Berpangkat dan Bentuk Akar Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu: Kompetensi Dasar : 1. Mengidentifikasi sifat-sifat bilangan berpangkat dan bentuk akar 2. Melakukan operasi

Lebih terperinci

BAB IV REDUKSI BIAS PADA PENDUGAAN

BAB IV REDUKSI BIAS PADA PENDUGAAN BAB IV REDUKSI BIAS PADA PENDUGAAN 4.1. Asimtotik Orde-2 Berdasarkan hasil simulasi pada Helmers dan Mangku (2007) kasus kernel seragam, aproksimasi asimtotik orde pertama pada ragam dan bias, gagal memprediksikan

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 12, 2011 Teorema 11 pada Bab 3 memberi kita cara untuk menyelidiki kekonvergenan sebuah barisan tanpa harus mengetahui

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNH2B4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT 1 REVIEW KALKULUS & KONSEP ERROR Fungsi Misalkan A adalah himpunan bilangan. Fungsi f dengan domain A adalah sebuah aturan

Lebih terperinci

SATUAN ACARA PERKULIAHAN ( KALKULUS II ) Pengesahan. Nama Dokumen : SATUAN ACARA PERKULIAHAN KALKULUS II

SATUAN ACARA PERKULIAHAN ( KALKULUS II ) Pengesahan. Nama Dokumen : SATUAN ACARA PERKULIAHAN KALKULUS II Pengesahan Nama Dokumen : KALKULUS II No Dokumen : No ISO 91:28/IWA 2 1dari 6 Diajukan oleh Imelda Saluza, S.Si.,M.Sc (Dosen Pengampu) Diperiksa oleh Ir. Dedi Hermanto, MT (GPM) Disetujui oleh Lastri Widya

Lebih terperinci

4 DIFERENSIAL. 4.1 Pengertian derivatif

4 DIFERENSIAL. 4.1 Pengertian derivatif Diferensial merupakan topik yang cukup 'baru' dalam matematika. Dimulai sekitar tahun 1630 an oleh Fermat ketika menghadapi masalah menentukan garis singgung kurva, dan juga masalah menentukan maksimum

Lebih terperinci

Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII

Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII Keonvergenan Kesumawati Prodi Statistia FMIPA-UII June 23, 2015 Keonvergenan Pendahuluan Kalau sebelumnya, suu suu pada deret ta berujung berupa bilangan real maa ali ini ita embangan suu suunya dalam

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan, kekonvergenan

Lebih terperinci

BARISAN DAN DERET. Matematika Dasar

BARISAN DAN DERET. Matematika Dasar BARISAN DAN DERET 8.1 BARISAN BILANGAN A. Mengenal pengertian barisan suatu bilangan Perhatikan ilustrasi berikut! Seorang karyawan pada awalnya memperoleh gaji sebesar Rp.600.000,00. Selanjutnya, setiap

Lebih terperinci

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m)

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m) BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konvergensi barisan bilangan real mempunyai banyak peranan dan aplikasi yang cukup penting pada beberapa bidang matematika, antara lain pada teori optimisasi,

Lebih terperinci

Dwi Lestari, M.Sc: Konvergensi Deret 1. KONVERGENSI DERET

Dwi Lestari, M.Sc: Konvergensi Deret   1. KONVERGENSI DERET 1. KONVERGENSI DERET Suatu barisan disebut konvergen jika terdapat bilangan Z yang setiap lingkungannya memuat semua. Jika bilangan Z itu ada maka dapat ditulis: lim sehingga dapat dikatakan bahwa barisan

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun dari berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional

BAB III. PECAHAN KONTINU dan PIANO. A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional BAB III PECAHAN KONTINU dan PIANO A. Pecahan Kontinu Tak Hingga dan Bilangan Irrasional Sekarang akan dibahas tentang pecahan kontinu tak hingga yang diawali dengan barisan tak hingga bilangan bulat mendefinisikan

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 29, 2011 Dalam kisah Zeno tentang perlombaan lari antara Achilles dan seekor kura-kura, ketika Achilles mencapai

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka Contoh 5 Buktikan jika c > 0 maka c c Analisis Pendahuluan Akan dicari bilangan δ > 0 sedemikian sehingga apabila c < ε untuk setiap ε > 0. 0 < c < δ berlaku Perhatikan: c ( c)( c) c c c c c c c Dapat

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil

Lebih terperinci

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen MATEMATIKA BISNIS Modul ke: DERET Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Barisan (sequence) adalah suatu susunan bilangan yang dibentuk menurut

Lebih terperinci

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1 Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel tak bebas, dan derivatif-derivatif

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Perumusan Masalah Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas diasumsikan terintegralkan lokal

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

CATATAN KULIAH ANALISIS REAL LANJUT

CATATAN KULIAH ANALISIS REAL LANJUT CATATAN KULIAH ANALISIS REAL LANJUT May 26, 203 A Lecture Note Acknowledgement of Sources For all ideas taken from other sources (books, articles, internet), the source of the ideas is mentioned in the

Lebih terperinci

PERBANDINGAN DAN KARAKTERISTIK BEBERAPA TES KONVERGENSI PADA DERET TAK HINGGA

PERBANDINGAN DAN KARAKTERISTIK BEBERAPA TES KONVERGENSI PADA DERET TAK HINGGA Eksakta Vol 8 No Oktober 07 http://eksaktappjunpacid E-ISSN : 549-7464 P-ISSN : 4-374 PERBANDINGAN DAN KARAKTERISTIK BEBERAPA TES KONVERGENSI PADA DERET TAK HINGGA Prodi Matematika Jurusan Matematika FMIPA

Lebih terperinci

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR

BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 3 BAB IV SEBARAN ASIMTOTIK PENDUGA TURUNAN PERTAMA DAN KEDUA DARI KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN LINEAR 4.. Sebaran asimtotik dari,, Teorema 4. ( Normalitas Asimtotik

Lebih terperinci

BAB I TEOREMA TEOREMA LIMIT BARISAN

BAB I TEOREMA TEOREMA LIMIT BARISAN BAB I TEOREMA TEOREMA LIMIT BARISAN Definisi : Barisan bilangan real X = (x n ) dikatakan terbatas jika ada bilangan real M > 0 sedemikian sehingga x n M untuk semua n N. Catatan : X = (x n ) terbatas

Lebih terperinci

5.1 Fungsi periodik, fungsi genap, fungsi ganjil

5.1 Fungsi periodik, fungsi genap, fungsi ganjil Bab 5 DERET FOURIER Pada Bab sebelumnya kita telah membahas deret Taylor. Syarat fungsi agar dapat diekspansi ke dalam deret Taylor adalah fungsi tersebut harus terdiferensial pada setiap tingkat. Untuk

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran Kurikulum 6/1 matematika K e l a s XI LIMIT ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Dapat mendeskripsikan konsep it fungsi aljabar dengan

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI SISTEM BILANGAN REAL. Sifat Aljabar Bilangan Real......................2 Sifat Urutan Bilangan Real..................... 6.3 Nilai Mutlak dan Jarak Pada Bilangan Real.............4 Supremum

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deret Taylor Deret Taylor dinamai berdasarkan seorang matematikawan Inggris, Brook Taylor (1685-1731) dan deret Maclaurin dinamai berdasarkan matematikawan Skotlandia, Colin

Lebih terperinci

FUNGSI-FUNGSI INVERS

FUNGSI-FUNGSI INVERS FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3.2 Himpunan Buka dan Himpunan Tutup Titik limit dari suatu himpunan tidak harus merupakan anggota himpunan tersebut. Pada interval

Lebih terperinci

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun

Lebih terperinci

BARISAN DAN DERET MATERI PENDAMPING OLIMPIADE MATEMATIKA MA/SMA

BARISAN DAN DERET MATERI PENDAMPING OLIMPIADE MATEMATIKA MA/SMA BARISAN DAN DERET MATERI PENDAMPING OLIMPIADE MATEMATIKA MA/SMA I. SISTEM BILANGAN REAL DAN OPERASINYA II. NOTASI SIGMA III. BARISAN BILANGAN IV. DERET BILANGAN V. INDUKSI MATEMATIKA DISUSUN OLEH : AHAMD

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3. Topologi Garis Bilangan Real 3.1 Teori Limit Limit, supremum, dan infimum Titik limit 3.2 Himpunan Buka dan Himpunan Tutup 3.3

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN

MATRIKS SATUAN ACARA PERKULIAHAN MATRIKS SATUAN ACARA PERKULIAHAN Mata Kuliah Jurusan SKS Kode M. Kuliah : Kalkulus IA : Teknik Elektro : 2 SKS : KD-0420 Minggu ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan Sasaran Belajar Cara Pengajaran

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

BILANGAN BERPANGKAT. Jika a bilangan real dan n bilangan bulat positif, maka a n adalah

BILANGAN BERPANGKAT. Jika a bilangan real dan n bilangan bulat positif, maka a n adalah BILANGAN BERPANGKAT Jika a bilangan real dan n bilangan bulat positif, maka a n adalah perkalian a sebanyak n faktor. Bilangan berpangkat, a disebut bilangan pokok dan n disebut pangkat atau eksponen.

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh II. TINJAUAN PUSTAKA 2.1 Ruang Metrik Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh aksioma-aksioma tertentu. Ruang metrik merupakan hal yang fundamental dalam analisis fungsional,

Lebih terperinci

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan mengaplikasikan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal

Lebih terperinci

Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n!

Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n! Analisa Numerik Teknik Sipil 1 PENDAHULUAN 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah Dalam matematika, dikenal adanya fungsi transenden (fungsi eksponen, logaritma natural, invers dan sebagainya),

Lebih terperinci

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik

16. BARISAN FUNGSI. 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik 16. BARISAN FUNGSI 16.1 Barisan Fungsi dan Kekonvergenan Titik Demi Titik Bila pada bab-bab sebelumnya kita membahas fungsi sebagai sebuah objek individual, maka pada bab ini dan selanjutnya kita akan

Lebih terperinci

SRI REDJEKI KALKULUS I

SRI REDJEKI KALKULUS I SRI REDJEKI KALKULUS I KLASIFIKASI BILANGAN RIIL n Bilangan yang paling sederhana adalah bilangan asli : n 1, 2, 3, 4, 5,. n n Bilangan asli membentuk himpunan bagian dari klas himpunan bilangan yang lebih

Lebih terperinci

Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.

Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika Dasar Disusun Oleh : Pak Anang (http://pak-anang.blogspot.com) Kumpulan

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret BAGIAN PERTAMA Bilangan Real, Barisan, Deret 2 Hendra Gunawan Pengantar Analisis Real 3 0. BILANGAN REAL 0. Bilangan Real sebagai Bentuk Desimal Dalam buku ini pembaca diasumsikan telah mengenal dengan

Lebih terperinci

URAIAN POKOK-POKOK PERKULIAHAN

URAIAN POKOK-POKOK PERKULIAHAN Pertemuan ke-: 10, 11, dan 12 Penyusun : Kosim Rukmana Materi: Barisan Bilangan Real 7. Barisan dan Limit Barisan 6. Teorema Limit Barisan 7. Barisan Monoton URAIAN POKOK-POKOK PERKULIAHAN 7. Barisan dan

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS Dalam bab ini akan kita bahas pengertian tentang sub barisan dari barisan bilangan real, yang lebih umum dibandingkan ekor suatu barisan, serta dapat

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

BAB I INTEGRAL TAK TENTU

BAB I INTEGRAL TAK TENTU BAB I INTEGRAL TAK TENTU TUJUAN PEMBELAJARAN: 1. Setelah mempelajari materi ini mahasiswa dapat menentukan pengertian integral sebagai anti turunan. 2. Setelah mempelajari materi ini mahasiswa dapat menyelesaikan

Lebih terperinci

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU SILABUS Mata Pelajaran : Matematika Satuan Pendidikan : SMA Ungguan BPPT Darus Sholah Jember kelas : XII IPA Semester : Ganjil Jumlah Pertemuan : 44 x 35 menit (22 pertemuan) STANDAR 1. Menggunakan konsep

Lebih terperinci

MATEMATIKA 2. DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG

MATEMATIKA 2. DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG MATEMATIKA DERET Series ASEP MUHAMAD SAMSUDIN, S.T.,M.T. DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO SEMARANG BARISAN VS DERET BARISAN (Sequences) Himpunan besaran u 1, u, u 3, yang

Lebih terperinci

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

MAKALAH BARISAN DAN DERET TAK HINGGA. Diajukan Untuk Memenuhi Tugas. Mata Kuliah Kapita Selekta Matematika SMA DOSEN PENGAMPU :

MAKALAH BARISAN DAN DERET TAK HINGGA. Diajukan Untuk Memenuhi Tugas. Mata Kuliah Kapita Selekta Matematika SMA DOSEN PENGAMPU : MAKALAH BARISAN DAN DERET TAK HINGGA Diajukan Untuk Memenuhi Tugas Mata Kuliah Kapita Selekta Matematika SMA DOSEN PENGAMPU : AMALIA ITSNA YUNITA, S.Si, M.Pd. Disusun Oleh:. Siti Khumaidatuz Zahro (7046309).

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............

Lebih terperinci

BAB 3 LIMIT DAN KEKONTINUAN FUNGSI

BAB 3 LIMIT DAN KEKONTINUAN FUNGSI Diktat Kuliah TK Matematika BAB LIMIT DAN KEKONTINUAN FUNGSI Limit Fungsi Pengantar Limit Tinjau fungsi yang didefinisikan oleh f ( ) Perhatikan bahwa fungsi ini tidak terdefinisi pada = karena memiliki

Lebih terperinci

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada

Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada 5 TURUNAN JUMLAH PERTEMUAN : 4 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami konsep dasar turunan fungsi dan menggunakan turunan fungsi pada permasalahan yang ada Materi : 5.1 Pendahuluan Ide awal adanya

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 536 Oleh : Fendi Alfi Fauzi. Nilai p agar vektor 2i + pj + k dan i 2j 2k saling tegak lurus adalah... a) 6

Lebih terperinci

MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI

MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI IDENTITAS MAHASISWA NAMA NPM KELOMPOK : : : DAFTAR ISI Kata Pengantar Daftar Isi BAB I Bilangan

Lebih terperinci

Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS.

Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Pembahasan Soal SBMPTN 2014 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika Dasar Distributed By : WWW.E-SBMPTN.COM Kumpulan SMART SOLUTION dan TRIK

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Dasar 1 Kode / SKS : IT012314 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 & 2 HIMPUNAN BILANGAN Mahasiswa memahami konsep himpunan

Lebih terperinci

Pengantar : Induksi Matematika

Pengantar : Induksi Matematika Pengantar : Induksi Matematika Analisis Real /2 SKS/ Ega Gradini, M.Sc Induksi Matematika adalah cara standar dalam membuktikan bahwa sebuah pernyataan tertentu berlaku untuk setiap bilangan asli. Pembuktian

Lebih terperinci

PERTEMUAN 6-7 LIMIT DAN KESINAMBUNGAN FUNGSI

PERTEMUAN 6-7 LIMIT DAN KESINAMBUNGAN FUNGSI PERTEMUAN 6-7 LIMIT DAN KESINAMBUNGAN FUNGSI LIMIT Limit menggambarkan seberapa jauh sebuah fungsi akan berkembang apabila variabel di dalam fungsi yang bersangkutan terus menerus berkembang mendekati

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

Penulis Penelaah Materi Penyunting Bahasa Layout

Penulis Penelaah Materi Penyunting Bahasa Layout Penulis Clara Ika Sari Budhayanti Josef Tjahjo Baskoro Edy Ambar Roostanto Bitman Simanullang Penelaah Materi M. Syaifuddin Penyunting Bahasa Yumiati Layout Renaldo Rhesky N Kata Pengantar Pendidikan Jarak

Lebih terperinci

KOMPETISI MATEMATIKA 2017 Tingkat SMA SE-SULAWESI UTARA dan Tingkat SMP Se-kota Manado

KOMPETISI MATEMATIKA 2017 Tingkat SMA SE-SULAWESI UTARA dan Tingkat SMP Se-kota Manado KOMPETISI MATEMATIKA 2017 Tingkat SMA SE-SULAWESI UTARA dan Tingkat SMP Se-kota Manado Himpunan Mahasiswa Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sam Ratulangi Kompetisi

Lebih terperinci

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA LIMIT FUNGSI SMK NEGERI 1 SURABAYA Halaman 1 BAB LIMIT FUNGSI A. Limit Fungsi Aljabar PENGERTIAN

Lebih terperinci