MINGGU KE-7 INTEGRAL LEBESQUE

Ukuran: px
Mulai penontonan dengan halaman:

Download "MINGGU KE-7 INTEGRAL LEBESQUE"

Transkripsi

1 MINGGU KE-7 INTEGRAL LEBESQUE INTEGRAL LEBESQUE (Ω, A, µ): measure space Fungsi Ψ : Ω R disebut sederhana bila jelajahnya berhingga. Misalkan A A. Maka I A : Ω {0, 1} yang didefinisikan sebagai I A (X ) = { 1 x A 0 x / A Disebut fungsi indikator himpunan A.

2 Lemma Misalkan Ψ fungsi sederhana yang terdefinisikan pada Ω dengan jelajah {a 1, a 2,...a n }. Andaikan {E i, i = 1, 2,..., n} koleksi himpunan bagian Ω sedemikian hingga, I Ei (x) = a i. Maka {E i, i = 1, 2,..., n} adalah partisi dari Ω. Misalkan Ψ fungsi sederhana pada Ω dengan jelajah {a 1, a 2,..., a n }. Misalkan {E i, i = 1, 2,..., n} partisi Ω. Maka Ψ = n a i I Ei i=1 disebut penyajian baku dari Ψ. Contoh Misalkan Ω = N = {1, 2, 3,...}. Kita definisikan fungsi sederhana Ψ dengan { 2 bila x genap Ψ(x) = 3 bila x ganjil Penyajian baku untuk Ψ adalah Ψ = 2I E1 + 3I E1 Dengan E 1 : himpunan bilangan asli dan genap E 2 : himpunan bilangan asli dan ganjil.

3 Misalkan Ψ fungsi sederhana non negatif pada (Ω, A, µ) dengan penyajian baku. Integral Ψ terhadap µ, ditulis Ψ dµ kita definisikan n Ψdµ = a i µ(e i ) i=1 Contoh 1 dµ = µ (Ω) 1 = 1I E1 + 0I E2 dengan E 1 = Ω, E 2 = φ dµ = 1µ(Ω) + µ(φ) = µ(e1 ) = µ(ω). 2 Misalkan Ω = N dan A = 2 N. kan fungsi sederhana Ψ dengan { 2 bila x genap Ψ(x) = 3 bila x ganjil

4 Penyajian standar untuk Ψ adalah Ψ = 2I E1 + 3I E1 Dengan E 1 : {x : x N dan x genap} E 2 : {x : x N dan x ganjil} Sekarang kita definisikan µ dengan µ(n) = 1 2 n, µ(a) = µ(n). n A Maka Ψdµ = 2 i= i + 3 i= i 1. Bila f (x) 0, x Ω, maka kita definisikan fdµ = fdµ(x) = sup Ψdµ Ψ fungsi sederhana standar,0 Ψ(x) f (x). Untuk sebarang f (x) 0, misalkan f + (x) = max{f (x), 0} f (x) = min{ f (x), 0} maka f (x) = f + (x) f (x)dan fdµ = f + dµ f dµ

5 Integral f (x)dm(x) terhadap ukuran Lebesgue m biasanya ditulis f (x)dx dan sama dengan integral Riemann biasa bila terdefinisikan. Tetapi, terdapat fungsi dimana integral Lebesgue terdifinisikan tetapi tidak untuk integral Riemann. Sebagai contoh I Q (x) bila Q himpunan bilangan rasional. Dalam teori probabilitas, xdp biasanya ditulis dengan E[X ] dan disebut ekspektasi atau harga harapan dari X. Bila A Ω maka f (x)dµ(x) = f (x)i A (x)dµ(x) Dalam hal A = [a, b] maka A A f (x)dµ(x) = (a,b) f (x dµ(x) = a b f (x)dµ(x) Bila F adalah fungsi distribusi kumulatif dari ukuran probabilitas P, kadang-kadang kita menulis df (x) sebagai pengganti dp(x). Perhatikan bahwa ini tidak lebih dari sekedar abuse notation

6 Sifat-sifat dasar integral Misalkan (Ω, A, µ) ruang ukuran dan f, g fungsi terukur pada Ω. 1 Bila fdµ ada dan a R maka afdµ = a fdµ 2 (f + g)dµ = fdµ + gdµ 3 Bila f (x) g(x) untuk setiap x, maka fdµ gdµ. Pada khususnya fdµ f dµ. Andaikan s(x) adalah pernyataan yang memuat sebarang x Ω. Kita mengatakan s(x) berlalu hampir dimana-mana µ(µ.a.e) bila terdapat himpunan N A sedemikian hingga µ(n) = 0 dan s(x) benar untuk setiap x yang tidak berada dalam N. Himpunan N dengan ukuran 0 disebut himpuan 0. Dalam terminologi probabilitas disebut P-almost surely (P.a.s) atau a.s) RADON-NIKODYM DERIVATIF Misalkan (Ω, A, µ) ruang ukuran dan f fungsi Borel tak negatif. Dapat ditunjukkan bahwa fungsi himpunan λ(a) = f (A)dµ, A A (1) adalah ukuran pada (Ω, A). Perhatikan bahwa A µ(a) = 0 maka λ(a) = 0 (2) Bila (2) benar untuk dua ukuran λ dan µ yang terdefinisikan pada ruang terukur yang sama, maka kita katakan λ kontinu absolut terhadap µ dan ditulis λ << µ.

7 Rumus (1) tidak hanya memberikan kepada kita bagailana mengkonstruksikan ukuran, tetapi juga metode menghitung ukuran pada himpunan terukur. Misalkan µ adalah ukuran yang sudah kita kenal (sepeti ukuran Lebesque atau counting measure) dan λ ukuran yang relatif tidak kita kenal. Bila kita dapat menentukan f sedemikian (1) berlalu, maka menghitung λ(a) dapat dilakukan melalui integrasi. Syarat perlu untuk (1) adalah λ << µ juga merupakan syarat cukup. Misalkan (Ω, A, µ) ruang ukuran µ disebut σ finite bila Ω dapat ditulis sebagai Ω = A n, A n A, saling asing dan µ(a n ) < untuk setiap n. n=1 TEOREMA (RADON-NIKODYM) Misalkan λ dan µ dua ukuran pada (Ω, A) dan µ σ finite. Bila λ < µ, maka terdapat fungsi Borel tak negatif f sedemikian hingga λ(a) = fdµ, A A. Selanjutnya f adalah tunggal a.e. µ yaitu, bila λ(a) = A g dµ untuk sebarang A A makaf = g a.e µ A

8 Bila fdµ = 1 untuk suatu f 0 a.e µ dan λ yang diberikan pada (1) adalah ukuran probabilitas dan f disebut fungsi kepadatan probabilitas terhadap µ. Catatan f disebut derivatif atau densitas atau λ terhadap µ dan ditulis dλ dµ. Berikut adalah hubungan antara probabilitas dan teori ukuran biasanya dipakai Probabilitas Teori Ukuran Ruang sampel Semesta Probabilitas Ukuran bernorma Ruang Probabilitas Ruang Ukuran Kejadian Elementer Singleton Kejadian Himpunan terukur Kejadian pasti Semesta Ω Kejadian mustahil Himpunan kosong Almost sure (a.s) Almost every where (a.e) Random Variabel Fungsi terukur Ekspektasi Integral

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA

MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA MINGGU KE-6 VARIABEL RANDOM DAN DISTRIBUSINYA VARIABEL RANDOM Misalkan (Ω, A, P) ruang probabilitas dan R = {x < x < } dan B : Borel field pada R. Andaikan X : Ω R dan untuk setiap A R, kita definisikan

Lebih terperinci

DASAR-DASAR TEORI PELUANG

DASAR-DASAR TEORI PELUANG DASAR-DASAR TEORI PELUANG Herry P. Suryawan 1 Ruang Peluang Definisi 1.1 Diberikan himpunan tak kosong Ω. Aljabar-σ (σ-algebra pada Ω adalah koleksi subhimpunan A dari Ω dengan sifat (i, Ω A (ii jika A

Lebih terperinci

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT HUKUM BILANGAN BESAR LEMAH DAN KUAT Misalkan X 1, X 2, X 3... barisan variabel random. Kita tulis S n = n X i. Dalam subbab ini kita akan menjawab pertanyaan

Lebih terperinci

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1 An-2 1. PENDAHULUAN Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS Abstrak Tujuan dari tulisan ini adalah membahas tentang integral Lebesgue

Lebih terperinci

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada BAB III FUNGSI TERUKUR LEBESGUE Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada Bab II, selanjutnya pada bab ini akan dipelajari gagasan mengenai fungsi terukur Lebesgue. Gagasan mengenai

Lebih terperinci

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh BAB III INTEGRAL LEBESGUE Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh fungsi-fungsi terukur dan memenuhi sifat yang berkaitan dengan integral Lebesgue. Kajian mengenai keterukuran suatu

Lebih terperinci

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi semua fungsi yang terintegralkan Lebesgue, 1. Sebagaimana telah dirumuskan

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Teori Himpunan Jurusan Informatika FMIPA Unsyiah February 25, 2015 Himpunan (set) adalah koleksi dari objek-objek yang terdefinisikan dengan baik. Terdefinisikan dengan baik dimaksudkan bahwa untuk sebarang

Lebih terperinci

INF-104 Matematika Diskrit

INF-104 Matematika Diskrit Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?

Lebih terperinci

BAB V DUALITAS RUANG ORLICZ

BAB V DUALITAS RUANG ORLICZ BAB V DUALITAS RUANG ORLICZ Karena ketaksamaan Holder yang telah dipelajari pada bab sebelumnya, Untuk sembarang h L θ, kita dapat mendefinisikan suatu fungsional linear kontinu l h yang memetakan L θ

Lebih terperinci

SILABUS MATAKULIAH TEORI INTEGRAL (MAA 525)

SILABUS MATAKULIAH TEORI INTEGRAL (MAA 525) SILABUS MATAKULIAH TEORI INTEGRAL (MAA 525) JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UPI BANDUNG 200 A. IDENTITAS MATAKULIH. Nama Matakuliah : Teori Integral 2. Kode Matakuliah : MAA 525 3. Program : Pendidikan

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

PENGANTAR MODEL PROBABILITAS

PENGANTAR MODEL PROBABILITAS PENGANTAR MODEL PROBABILITAS (PMP, Minggu 1-7) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 1:HIMPUNAN Operasi Himpunan Sifat-Sifat Operasi Himpunan 2 Minggu 2:COUNTING TECHNIQUE

Lebih terperinci

EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH. Y.D. Sumanto Jurusan Matematika FMIPA UNDIP

EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH. Y.D. Sumanto Jurusan Matematika FMIPA UNDIP EKUIVALENSI INTEGRAL BOCHNER DENGAN INTEGRAL MCSHANE KUAT UNTUK FUNGSI DENGAN NILAI DI DALAM RUANG BANACH Y.D. Sumanto Jurusan Matematika FMIPA UNDIP Abstrak Integral McShane fungsi-fungsi bernilai real

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

BAB 3 KONDISI SPECTRUM. Pada bab ini akan diperlihatkan hasil utama dari penelitian ini. Hasil utama yang

BAB 3 KONDISI SPECTRUM. Pada bab ini akan diperlihatkan hasil utama dari penelitian ini. Hasil utama yang BAB 3 KONDISI SPECTRUM Pada bab ini akan diperlihatkan hasil utama dari penelitian ini. Hasil utama yang diperoleh berdasarkan penjelasan - penjelasan yang telah dipaparkan pada bab - bab sebelumnya. Hasil

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan selanjutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

Catatan Kuliah KALKULUS II BAB V. INTEGRAL

Catatan Kuliah KALKULUS II BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunan dan Integral TakTentu Persamaan Diferensial Sederhana Notasi Sigma dan Luas Daerah di Bawah Kurva Integral Tentu Teorema Dasar Kalkulus Sifat-sifat Integral Tentu Lebih Lanjut

Lebih terperinci

Tugas Statistika Matematika TEORI PELUANG

Tugas Statistika Matematika TEORI PELUANG Lusi Agustin 131810101004 Ria Ammelia Wahyu 131810101008 Atiqoh Hani R 131810101044 Tugas Statistika Matematika TEORI PELUANG Percobaan acak menjadi percobaan yang hasilnya tidak dapat diprediksi dengan

Lebih terperinci

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALAM STATISTIKA HARGA HARAPAN Definisi Misalkan X variabel random. Bila X variabel random kontinu dengan f.k.p. f (x) dan maka harga harapan X adalah

Lebih terperinci

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya tidak dapat diprediksi dengan tepat tetapi kita

Lebih terperinci

5. Sifat Kelengkapan Bilangan Real

5. Sifat Kelengkapan Bilangan Real 5. Sifat Kelengkapan Bilangan Real Sifat aljabar dan sifat urutan bilangan real telah dibahas sebelumnya. Selanjutnya, akan dijelaskan sifat kelengkapan bilangan real. Bilangan rasional ℚ juga memenuhi

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

II. TINJAUAN PUSTAKA. dan Integral Bawah Darboux, Integral Darboux, Teorema Bolzano Weierstrass,

II. TINJAUAN PUSTAKA. dan Integral Bawah Darboux, Integral Darboux, Teorema Bolzano Weierstrass, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi Integral Atas dan Integral Bawah Darboux, Integral Darboux, Teorema Bolzano Weierstrass, serta teorema-teorema yang mendukung

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf.

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. III BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk 00) Konsep ini merupakan pengembangan dari konsep dimensi partisi pewarnaan graf Pewarnaan titik pada

Lebih terperinci

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah Variabel Random dan Nilai Harapan Oleh Azimmatul Ihwah Outcomes dari suatu eksperimen dapat dinyatakan dengan angka untuk mempermudah. Suatu variabel yang mengasosiakan outcomes dari suatu eksperimen dengan

Lebih terperinci

16. Analisis Multi Resolusi

16. Analisis Multi Resolusi 16. Analisis Multi esolusi Esensi dari basis ortonormal yang dibangun oleh sebuah wavelet adalah sifat multi resolusi-nya, sehingga kita dapat menganalisis suatu signal pada berbagai frekuensi di suatu

Lebih terperinci

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan

Lebih terperinci

BAB IV MODEL HIDDEN MARKOV

BAB IV MODEL HIDDEN MARKOV BAB IV MODEL HIDDEN MARKOV 4.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang (Ω, F, P). Misalnya X = {X : k N} adalah rantai Markov dengan state berhingga yang bersifat homogen

Lebih terperinci

SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER. Yulia Romadiastri

SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER. Yulia Romadiastri Jurnal Matematika Murni dan Terapan εpsilon Vol. 07, No.01, 013, Hal. 1 1 SIFAT P-KONVEKS PADA RUANG FUNGSI MUSIELAK-ORLICZ TYPE BOCHNER Yulia Romadiastri Program Studi Tadris Matematika Fakultas Tarbiyah

Lebih terperinci

Catatan Kuliah. Matematika Keuangan. (preliminary draft, comments welcome)

Catatan Kuliah. Matematika Keuangan. (preliminary draft, comments welcome) Catatan Kuliah Matematika Keuangan (preliminary draft, comments welcome) M. Syamsuddin Daftar Isi Pendahuluan v Model Binomial untuk Harga Saham. Model untuk satu periode............................. Pergerakan

Lebih terperinci

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada BAB II DASAR TEORI Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada pembahasan BAB III, mulai dari definisi sampai sifat-sifat yang merupakan konsep dasar untuk mempelajari Fungsi

Lebih terperinci

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY 3.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang Ω,,. Misalkan ; adalah rantai Markov dengan state berhingga

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. November 19, 2007 Secara geometris, f kontinu di suatu titik berarti bahwa grafiknya tidak terputus

Lebih terperinci

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf

Lebih terperinci

Sistem Bilangan Real

Sistem Bilangan Real TUGAS I ANALISIS REAL I Sistem Bilangan Real Tugas 1 Analisis Real I Disusun oleh : Nariswari Setya D. Kartini Marvina Puspito M0108022 M0108050 M0108056 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso. Beberapa 27 April 2014 Beberapa Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat memahami dan menghitung

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini diberikan tinjauan pustaka yang berisi penelitian sebelumnya yang mendasari penelitian ini, definisi, dan teori yang diperlukan serta kerangka pemikiran. 2.1 Tinjauan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini.

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini. BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori dari penelitian ini. 2.1 Konsep Dasar Graf Beberapa konsep dasar

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan

Lebih terperinci

1. σ field dan pengukuran Definisi 1.1

1. σ field dan pengukuran Definisi 1.1 TEORI PROBABILITAS 1. σ field dan pengukuran Misalkan Ω adalah elemen dari himpunan. Contoh Ω merupakan himpunan bilangan dalam suatu interval di bilangan riil yang merupakan hasil dari percobaan random.

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

KETAKSAMAAN TIPE LEMAH UNTUK OPERATOR INTEGRAL FRAKSIONAL DI RUANG MORREY ATAS RUANG METRIK TAK HOMOGEN

KETAKSAMAAN TIPE LEMAH UNTUK OPERATOR INTEGRAL FRAKSIONAL DI RUANG MORREY ATAS RUANG METRIK TAK HOMOGEN KETAKSAMAAN TIPE LEMAH UNTUK OPERATOR INTEGRAL FRAKSIONAL DI RUANG MORREY ATAS RUANG METRIK TAK HOMOGEN Idha Sihwaningrum Jurusan Matematika FMIPA Unsoed Email: idha.sihwaningrum@unsoed.ac.id Abstrak Pada

Lebih terperinci

BAB III KEKONVERGENAN LEMAH

BAB III KEKONVERGENAN LEMAH BAB III KEKONVERGENAN LEMAH Bab ini membahas inti kajian tugas akhir. Di dalamnya akan dibahas mengenai kekonvergenan lemah beserta sifat-sifat yang terkait dengannya. Sifatsifat yang dikaji pada bab ini

Lebih terperinci

METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ]

METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ] METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ] Zulfaneti dan Rahimullaily* Program Studi Pendidikan Matematika STKIP PGRI Sumbar Abstract: There is

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Konsep integral sering digunakan untuk menentukan luas daerah di bawah kurva. Selain itu, integral juga sering digunakan untuk mencari penyelesaian dari suatu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Perumusan Masalah Misalkan adalah proses Poisson nonhomogen pada interval dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas diasumsikan terintegralkan lokal

Lebih terperinci

INFERENSI PARAMETER MEAN POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF

INFERENSI PARAMETER MEAN POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF INFERENSI PARAMETER MEAN POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF Adi Setiawan Program Studi Matematika Industri dan Statistika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl

Lebih terperinci

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi Bab 5 Peubah Acak Kontinu 5.1 Pendahuluan Definisi 5.1. Peubah acak adalah suatu fungsi dari ruang contoh S ke R (himpunan bilangan nyata) Peubah acak X bersifat diskret jika F (x) adalah fungsi tangga.

Lebih terperinci

Bab II Kajian Teori Copula

Bab II Kajian Teori Copula Bab Kajian Teori Copula.1 Pendahuluan Copula Tesis ini mengacu pada terminologi copula sebagai fungsi yang menghubungkan fungsi distribusi multivariat terhadap fungsi distribusi marginal uniform. Misalkan

Lebih terperinci

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya.

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya. PEMAHAAN 1. Pengertian Kontradiksi Kontradiksi adalah dua pernyataan yang bernilai salah untuk setiap nilai kebenaran dari setiap komponen-komponennya. 2. Pembuktian dengan Kontradiksi Kontradiksi merupakan

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

yang Dibangun oleh Ukuran Bernilai Proyeksi

yang Dibangun oleh Ukuran Bernilai Proyeksi SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Integral pada A - 3 yang Dibangun oleh Ukuran Bernilai Proyeksi Arta Ekayanti dan Ch. Rini Indrati. FMIPA Universitas Gadjah Mada arta_ekayanti@ymail.com

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

untuk setiap x sehingga f g

untuk setiap x sehingga f g Jadi ( f ( f ) bernilai nol untuk setiap x, sehingga ( f ( f ) fungsi nol atau ( f ( f ) Aksioma 5 Ambil f, g F, R, ( f g )( f g ( g( g( ( f g)( Karena ( f g )( ( f g)( untuk setiap x sehingga f g Aksioma

Lebih terperinci

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat III. BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.00). Konsep ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf. Pewarnaan

Lebih terperinci

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann.

BAB I PENDAHULUAN. Integral Lebesgue merupakan suatu perluasan dari integral Riemann. BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral Lebesgue merupakan suatu perluasan dari integral Riemann. Sebagaimana telah diketahui, pengkonstruksian integral Riemann dilakukan dengan cara pemartisian

Lebih terperinci

Dasar-dasar Statistika Pemodelan Sistem

Dasar-dasar Statistika Pemodelan Sistem Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari 2016

Lebih terperinci

ANALISIS VARIABEL REAL 2

ANALISIS VARIABEL REAL 2 2012 ANALISIS VARIABEL REAL 2 www.alfirosyadi.wordpress.com UNIVERSITAS MUHAMMADIYAH MALANG 1/1/2012 IDENTITAS MAHASISWA NAMA : NIM : KELAS : KELOMPOK : 2 PENDAHULUAN Modul ini disusun untuk membantu mahasiswa

Lebih terperinci

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM 1.11 Chebyshev s Inequality DISTRIBUTIONS OF RANDOM VARIABLE (Ketaksamaan Chebyshev) A. Pendahuluan DISTRIBUSI VARIABEL RANDOM Konsep atau rumus yang berhubungan dengan Ketaksamaan Chebyshev Ekspektasi

Lebih terperinci

Pengantar Analisis Real

Pengantar Analisis Real Modul Pengantar Analisis Real Dr Endang Cahya, MA, MSi P PENDAHULUAN ada Modul ini disajikan beberapa topik pengantar mata kuliah Analisis Real, yang terbagi dalam beberapa kegiatan belajar yang harus

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini diberikan beberapa konsep dasar seperti teorema dan beberapa definisi sebagai landasan dalam penelitian ini. Konsep dasar ini berkaitan dengan masalah yang dibahas dalam

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengantar Pada bab ini akan diuraikan beberapa landasan teori untuk menunjang penulisan skripsi ini. Uraian ini terdiri dari beberapa bagian yang akan dipaparkan secara terperinci

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Peluang Definisi 2.1.1 Percobaan Acak (Ross 2000) Suatu percobaan yang dapat diulang dalam kondisi yang sama dan semua kemungkinan hasil yang muncul dapat diketahui tetapi

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup BAB 3 DASAR DASAR GRUP Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengidentifikasi dan mengenal sifat-sifat dasar suatu Grup Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

Discrete Time Dynamical Systems

Discrete Time Dynamical Systems Discrete Time Dynamical Systems Sheet 1 and Solution (1) Tentukan titik tetap dari fungsi berikut. (a) f(x) = x x (b) f(x) = 2x + bx (c) f(x) = e (a) Titik tetap f memenuhi persamaan f(x) = x x x = x x

Lebih terperinci

KONSTRUKSI INTEGRAL MENGGUNAKAN FUNGSI SEDERHANA δ PADA [, ] Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang, 50275

KONSTRUKSI INTEGRAL MENGGUNAKAN FUNGSI SEDERHANA δ PADA [, ] Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang, 50275 KONSTRUKSI INTEGRAL MENGGUNAKAN FUNGSI SEDERHANA δ PADA [,] Abdul Aziz 1, YD. Sumanto 2 1,2 Departemen Matematika, Fakultas Sains dan Matematika, Universitas Diponegoro Jl. Prof. H. Soedarto, S.H., Tembalang,

Lebih terperinci

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran

II LANDASAN TEORI. 2.1 Ruang Contoh, Kejadian dan Peluang. 2.2 Peubah Acak dan Fungsi Sebaran II LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan diketahui

Lebih terperinci

Teori Himpunan Elementer

Teori Himpunan Elementer Teori Himpunan Elementer Kuliah Matematika Diskret Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Himpunan Januari 2016 1 / 72 Acknowledgements

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bagian ini dipaparkan dasar-dasar yang akan digunakan pada bagian pembahasan dari skripsi ini. Tinjauan yang dilakukan dengan memaparkan definisi mengenai himpunan fuzzy, struktur

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN

Teori Himpunan. Modul 1 PENDAHULUAN Modul 1 Teori Himpunan Drs. Sukirman, M.Pd. M PENDAHULUAN odul ini memuat pembahasan teori himpunan dan himpunan bilangan bulat. Teori himpunan memuat notasi himpunan, relasi dan operasi dua himpunan atau

Lebih terperinci

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM.

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. HUKUM ITERASI LOGARITMA TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. 00290 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU

BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60 Abstract. Let g [0 ] [0] is piecewise continuous monotone

Lebih terperinci

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral

MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Ditinjau dari bidang ilmu pengetahuan, teori persamaan diferensial merupakan suatu cabang analisis matematika yang banyak dipakai dalam kehidupan nyata,

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB 1 PENDAHULUAN 1.1. Latar Belakang Permasalahan Ilmu pengetahuan merupakan hal yang mengalami perkembangan secara terus-menerus. Diantaranya teori integral yaitu ilmu bidang matematika analisis yang

Lebih terperinci

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks

0. Pendahuluan. 0.1 Notasi dan istilah, bilangan kompleks 0. Pendahuluan Analisis Fourier mempelajari berbagai teknik menganalisis sebuah fungsi dengan menguraikannya sebagai deret atau integral fungsi tertentu (yang sifat-sifatnya telah kita kenal dengan baik,

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri BAB II KAJIAN TEORI Analisis kekonvergenan pada barisan fungsi, apakah barisan fungsi itu? Apakah berbeda dengan barisan pada umumnya? Tentunya sebelum membahas mengenai barisan fungsi, apa saja jenis

Lebih terperinci

SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a

SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a SUKU BANYAK A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a b ) 3) F(x) : [(x a)(x b)], maka S(x) = (x a)s 2 + S 1, dengan S 2 adalah sisa pembagian pada

Lebih terperinci

Lemma Henstock untuk Suatu Fungsi Bernilai Vektor di dalam Ruang Metrik Kompak Lokal

Lemma Henstock untuk Suatu Fungsi Bernilai Vektor di dalam Ruang Metrik Kompak Lokal 22 ISSN 2302-7290 Vol. 2 No. 1, Oktober 2013 Lemma Henstock untuk Suatu Fungsi Bernilai Vektor di dalam Ruang Metrik Kompak Lokal (The Henstock Lemma of a Vector Valued Function in a Locally Compact Metric

Lebih terperinci

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga Kesumawati Prodi Statistika FMIPA-UII April 29, 2015 Akar Barisan a 1, a 2, a 3, a 4,... adalah susunan bilangan-bilangan real yang teratur, satu untuk setiap bilangan bulat positif. adalah fungsi yang

Lebih terperinci

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi.

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi. BAB PENDAHULUAN Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi Himpunan Real Ada beberapa notasi himpunan yang sering digunakan dalam Analisis () merupakan

Lebih terperinci

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan BAGIAN KEDUA Fungsi, Limit dan Kekontinuan, Turunan 51 52 Hendra Gunawan Pengantar Analisis Real 53 6. FUNGSI 6.1 Fungsi dan Grafiknya Konsep fungsi telah dipelajari oleh Gottfried Wilhelm von Leibniz

Lebih terperinci

Pengantar Statistika Matematik(a)

Pengantar Statistika Matematik(a) Catatan Kuliah Pengantar Statistika Matematik(a) Statistika Lebih Dari Sekadar Matematika disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

SIFAT-SIFAT TOPOLOGI RUANG LINEAR. Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo. Abstrak

SIFAT-SIFAT TOPOLOGI RUANG LINEAR. Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo. Abstrak SIFAT-SIFAT TOPOLOGI RUANG LINEAR Nila Kurniasih Program Studi Pendidikan Matematika Jalan KHA Dahlan 3 Purworejo Abstrak Penulisan ini bertujuan menyelidiki sifat-sifat yang berlaku di dalam topologi

Lebih terperinci

Keterbagian Pada Bilangan Bulat

Keterbagian Pada Bilangan Bulat Latest Update: March 8, 2017 Pengantar Teori Bilangan (Bagian 1): Keterbagian Pada Bilangan Bulat Muhamad Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Lebih terperinci

INTEGRAL RIEMANN-LEBESGUE

INTEGRAL RIEMANN-LEBESGUE INTEGRAL RIEMANN-LEBESGUE Ikram Hamid Program Studi Pendidikan Matematika Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam FKIP Universitas Khairun ABSTRACT In this paper, we discuss a Riemann-type

Lebih terperinci

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

TEORI HIMPUNAN Penyajian Himpunan

TEORI HIMPUNAN Penyajian Himpunan TEORI HIMPUNAN 1.1. Penyajian Himpunan Definisi 1. Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek yang dimaksud biasa disebut dengan elemen-elemen atau anggota-anggota dari himpunan. Suatu

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika dilengkapi dengan suatu norma., maka dikenal bahwa suatu ruang vektor bernorma. Kemudian

Lebih terperinci