Dasar-dasar Statistika Pemodelan Sistem

Ukuran: px
Mulai penontonan dengan halaman:

Download "Dasar-dasar Statistika Pemodelan Sistem"

Transkripsi

1 Dasar-dasar Statistika Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

2 Acknowledgements Slide ini disusun berdasarkan materi yang terdapat pada sumber-sumber berikut: 1 Simulation Modeling and Analysis, Edisi 3, 2000, oleh A. M. Law, W. D. Kelton (acuan utama). 2 Elements of Stochastic Process, oleh B. S. Gottfried. 3 Discrete-Event Simulation, Edisi 4, oleh J. Banks, J. S. Carson II, B. L. Nelson, D. M. Nicol. 4 Introduction to Queueing Theory, Edisi 2, oleh R. B. Cooper. 5 Queueing Systems, oleh I. Adan, J. Resing. 6 Slide kuliah Probabilitas Terapan (2009) dan Statistika & Probabilitas (2013) di Fasilkom UI. 7 Slide kuliah Pemodelan Sistem di Telkom University oleh Tim Dosen Pemodelan dan Simulasi. 8 Wikipedia. Beberapa gambar dapat diambil dari sumber-sumber di atas. Slide ini ditujukan untuk keperluan akademis di lingkungan FIF Telkom University. Jika Anda memiliki saran/ pendapat/ pertanyaan terkait materi dalam slide ini, silakan kirim ke MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

3 Bahasan 1 Definisi dan Istilah dalam Teori Peluang 2 Variabel Acak (Random Variable) 3 Fungsi Distribusi Peluang (Probability Distribution Function) 4 Ukuran Pemusatan Data 5 Variansi dan Standar Deviasi 6 Beberapa Jenis Distribusi Peluang Diskrit 7 Beberapa Jenis Distribusi Peluang Kontinu 8 Statistika pada Pemodelan Sistem MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

4 Bahasan Definisi dan Istilah dalam Teori Peluang 1 Definisi dan Istilah dalam Teori Peluang 2 Variabel Acak (Random Variable) 3 Fungsi Distribusi Peluang (Probability Distribution Function) 4 Ukuran Pemusatan Data 5 Variansi dan Standar Deviasi 6 Beberapa Jenis Distribusi Peluang Diskrit 7 Beberapa Jenis Distribusi Peluang Kontinu 8 Statistika pada Pemodelan Sistem MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

5 Definisi dan Istilah dalam Teori Peluang Definisi dan Istilah dalam Teori Peluang Teori peluang (probabilitas) diperlukan untuk menganalisis kejadian yang bersifat non-deterministik. Definisi Percobaan atau eksperimen merupakan suatu proses yang menghasilkan data. Data yang dihasilkan juga disebut sebagai kejadian (event). Ruang sampel (sample space) S merupakan himpunan yang berisi semua kemungkinan elementer/ kejadian elementer (elementary event) yang dapat terjadi pada suatu percobaan. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

6 Definisi dan Istilah dalam Teori Peluang Contoh Ruang Sampel dan Kejadian Contoh Diberikan dua buah uang koin, setiap koin memiliki dua sisi, yaitu sisi angka (a) dan sisi gambar (g). Dari percobaan pelemparan dua uang koin secara bersamaan, kita memiliki ruang sampel MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

7 Definisi dan Istilah dalam Teori Peluang Contoh Ruang Sampel dan Kejadian Contoh Diberikan dua buah uang koin, setiap koin memiliki dua sisi, yaitu sisi angka (a) dan sisi gambar (g). Dari percobaan pelemparan dua uang koin secara bersamaan, kita memiliki ruang sampel S = {aa, ag, ga, gg}. Suatu kejadian merupakan himpunan bagian (subset) dari S. Misalkan E merupakan kejadian pada percobaan pelemparan dua uang koin di mana salah satu uang koin tersebut menampilkan sisi angka (a), maka E = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

8 Definisi dan Istilah dalam Teori Peluang Contoh Ruang Sampel dan Kejadian Contoh Diberikan dua buah uang koin, setiap koin memiliki dua sisi, yaitu sisi angka (a) dan sisi gambar (g). Dari percobaan pelemparan dua uang koin secara bersamaan, kita memiliki ruang sampel S = {aa, ag, ga, gg}. Suatu kejadian merupakan himpunan bagian (subset) dari S. Misalkan E merupakan kejadian pada percobaan pelemparan dua uang koin di mana salah satu uang koin tersebut menampilkan sisi angka (a), maka E = {aa, ag, ga}. Contoh MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

9 Definisi dan Istilah dalam Teori Peluang Contoh Ruang Sampel dan Kejadian Contoh Diberikan dua buah uang koin, setiap koin memiliki dua sisi, yaitu sisi angka (a) dan sisi gambar (g). Dari percobaan pelemparan dua uang koin secara bersamaan, kita memiliki ruang sampel S = {aa, ag, ga, gg}. Suatu kejadian merupakan himpunan bagian (subset) dari S. Misalkan E merupakan kejadian pada percobaan pelemparan dua uang koin di mana salah satu uang koin tersebut menampilkan sisi angka (a), maka E = {aa, ag, ga}. Contoh Diberikan sebuah dadu, yang setiap sisinya diberi angka 1 6. Dari percobaan pelemparan dadu tersebut kita memiliki ruang sampel S = {1, 2, 3, 4, 5, 6}. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

10 Definisi dan Istilah dalam Teori Peluang Kejadian Saling Lepas Definisi Dua kejadian A S dan B S dikatakan saling lepas (mutually exclusive) bila A B =. Contoh MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

11 Definisi dan Istilah dalam Teori Peluang Kejadian Saling Lepas Definisi Dua kejadian A S dan B S dikatakan saling lepas (mutually exclusive) bila A B =. Contoh Pada pelemparan sebuah dadu, misalkan E i menyatakan kejadian di mana angka i muncul pada bagian atas dadu, maka kita memiliki E 1 E 2 =. Secara umum E i E j = untuk i j. Definisi MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

12 Definisi dan Istilah dalam Teori Peluang Kejadian Saling Lepas Definisi Dua kejadian A S dan B S dikatakan saling lepas (mutually exclusive) bila A B =. Contoh Pada pelemparan sebuah dadu, misalkan E i menyatakan kejadian di mana angka i muncul pada bagian atas dadu, maka kita memiliki E 1 E 2 =. Secara umum E i E j = untuk i j. Definisi Diberikan suatu kejadian E dari suatu percobaan S, titik sampel pada E adalah anggota pada E. Contoh MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

13 Definisi dan Istilah dalam Teori Peluang Kejadian Saling Lepas Definisi Dua kejadian A S dan B S dikatakan saling lepas (mutually exclusive) bila A B =. Contoh Pada pelemparan sebuah dadu, misalkan E i menyatakan kejadian di mana angka i muncul pada bagian atas dadu, maka kita memiliki E 1 E 2 =. Secara umum E i E j = untuk i j. Definisi Diberikan suatu kejadian E dari suatu percobaan S, titik sampel pada E adalah anggota pada E. Contoh Misalkan pada pelemparan sebuah dadu E odd menyatakan kejadian di mana angka ganjil muncul pada bagian atas dadu, maka kita memiliki E odd = {1, 3, 5}. Dalam hal ini 1, 3, maupun 5 adalah titik sampel dari kejadian E odd. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

14 Definisi dan Istilah dalam Teori Peluang Dasar-dasar Fungsi Peluang dan Sifat-sifatnya Definisi Suatu fungsi distribusi peluang (probability distribution function) pada ruang sampel S adalah fungsi P ( ) atau Pr ( ) yang memetakan setiap kejadian pada S ke bilangan real (R) dengan sifat-sifat: MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

15 Definisi dan Istilah dalam Teori Peluang Dasar-dasar Fungsi Peluang dan Sifat-sifatnya Definisi Suatu fungsi distribusi peluang (probability distribution function) pada ruang sampel S adalah fungsi P ( ) atau Pr ( ) yang memetakan setiap kejadian pada S ke bilangan real (R) dengan sifat-sifat: 1 0 P (A) 1 untuk setiap kejadian A pada S MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

16 Definisi dan Istilah dalam Teori Peluang Dasar-dasar Fungsi Peluang dan Sifat-sifatnya Definisi Suatu fungsi distribusi peluang (probability distribution function) pada ruang sampel S adalah fungsi P ( ) atau Pr ( ) yang memetakan setiap kejadian pada S ke bilangan real (R) dengan sifat-sifat: 1 0 P (A) 1 untuk setiap kejadian A pada S 2 P (S) = 1 MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

17 Definisi dan Istilah dalam Teori Peluang Dasar-dasar Fungsi Peluang dan Sifat-sifatnya Definisi Suatu fungsi distribusi peluang (probability distribution function) pada ruang sampel S adalah fungsi P ( ) atau Pr ( ) yang memetakan setiap kejadian pada S ke bilangan real (R) dengan sifat-sifat: 1 0 P (A) 1 untuk setiap kejadian A pada S 2 P (S) = 1 3 P (A B) = P (A) + P (B) apabila A dan B adalah kejadian yang saling lepas. Selanjutnya P (A) atau Pr (A) dikatakan sebagai peluang dari kejadian A. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

18 Definisi dan Istilah dalam Teori Peluang Teorema Untuk setiap kejadian A dan B pada ruang sampel S berlaku P (A B) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

19 Definisi dan Istilah dalam Teori Peluang Teorema Untuk setiap kejadian A dan B pada ruang sampel S berlaku P (A B) = P (A) + P (B) P (A B) P (A) + P (B). Teorema Ketika S dapat dicacah (countable), maka P (A) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

20 Definisi dan Istilah dalam Teori Peluang Teorema Untuk setiap kejadian A dan B pada ruang sampel S berlaku P (A B) = P (A) + P (B) P (A B) P (A) + P (B). Teorema Ketika S dapat dicacah (countable), maka P (A) = P (s) = Pr (s). s A s A MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

21 Definisi dan Istilah dalam Teori Peluang Latihan Latihan Diberikan dua buah dadu yang setiap sisinya dinomori angka 1 6. Jika peluang munculnya angka i pada masing-masing dadu uniform (seragam), tentukan peluang dari kejadian: jumlah angka yang dihasilkan adalah 4 atau kedua dadu menampilkan angka yang sama. Solusi: Misalkan S = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

22 Definisi dan Istilah dalam Teori Peluang Latihan Latihan Diberikan dua buah dadu yang setiap sisinya dinomori angka 1 6. Jika peluang munculnya angka i pada masing-masing dadu uniform (seragam), tentukan peluang dari kejadian: jumlah angka yang dihasilkan adalah 4 atau kedua dadu menampilkan angka yang sama. Solusi: Misalkan S = {(x, y) x angka dadu pertama dan y angka dadu ke dua}. Kita memiliki S = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

23 Definisi dan Istilah dalam Teori Peluang Latihan Latihan Diberikan dua buah dadu yang setiap sisinya dinomori angka 1 6. Jika peluang munculnya angka i pada masing-masing dadu uniform (seragam), tentukan peluang dari kejadian: jumlah angka yang dihasilkan adalah 4 atau kedua dadu menampilkan angka yang sama. Solusi: Misalkan S = {(x, y) x angka dadu pertama dan y angka dadu ke dua}. Kita memiliki S = 36. Misalkan A : kejadian di mana jumlah angka yang dihasilkan adalah 4, maka A = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

24 Definisi dan Istilah dalam Teori Peluang Latihan Latihan Diberikan dua buah dadu yang setiap sisinya dinomori angka 1 6. Jika peluang munculnya angka i pada masing-masing dadu uniform (seragam), tentukan peluang dari kejadian: jumlah angka yang dihasilkan adalah 4 atau kedua dadu menampilkan angka yang sama. Solusi: Misalkan S = {(x, y) x angka dadu pertama dan y angka dadu ke dua}. Kita memiliki S = 36. Misalkan A : kejadian di mana jumlah angka yang dihasilkan adalah 4, maka A = {(1, 3), (2, 2), (3, 1)}. Misalkan B : kejadian di mana kedua dadu menampilkan angka yang sama, maka B = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

25 Definisi dan Istilah dalam Teori Peluang Latihan Latihan Diberikan dua buah dadu yang setiap sisinya dinomori angka 1 6. Jika peluang munculnya angka i pada masing-masing dadu uniform (seragam), tentukan peluang dari kejadian: jumlah angka yang dihasilkan adalah 4 atau kedua dadu menampilkan angka yang sama. Solusi: Misalkan S = {(x, y) x angka dadu pertama dan y angka dadu ke dua}. Kita memiliki S = 36. Misalkan A : kejadian di mana jumlah angka yang dihasilkan adalah 4, maka A = {(1, 3), (2, 2), (3, 1)}. Misalkan B : kejadian di mana kedua dadu menampilkan angka yang sama, maka B = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

26 Definisi dan Istilah dalam Teori Peluang Misalkan A B : MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

27 Definisi dan Istilah dalam Teori Peluang Misalkan A B : kejadian di mana jumlah angka yang dihasilkan adalah 4 dan dadu menampilkan angka yang sama, maka A B = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

28 Definisi dan Istilah dalam Teori Peluang Misalkan A B : kejadian di mana jumlah angka yang dihasilkan adalah 4 dan dadu menampilkan angka yang sama, maka A B = {(2, 2)} Karena peluang pada masing-masing dadu uniform, maka P (A) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

29 Definisi dan Istilah dalam Teori Peluang Misalkan A B : kejadian di mana jumlah angka yang dihasilkan adalah 4 dan dadu menampilkan angka yang sama, maka A B = {(2, 2)} Karena peluang pada masing-masing dadu uniform, maka P (A) = A S = 3 36, P (B) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

30 Definisi dan Istilah dalam Teori Peluang Misalkan A B : kejadian di mana jumlah angka yang dihasilkan adalah 4 dan dadu menampilkan angka yang sama, maka A B = {(2, 2)} Karena peluang pada masing-masing dadu uniform, maka P (A) = A S = 3 36, P (B) = B S = 6 36, dan P (A B) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

31 Definisi dan Istilah dalam Teori Peluang Misalkan A B : kejadian di mana jumlah angka yang dihasilkan adalah 4 dan dadu menampilkan angka yang sama, maka A B = {(2, 2)} Karena peluang pada masing-masing dadu uniform, maka P (A) = A S = 3 36, P (B) = B S = 6 A B 36, dan P (A B) = S = Misalkan A B : MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

32 Definisi dan Istilah dalam Teori Peluang Misalkan A B : kejadian di mana jumlah angka yang dihasilkan adalah 4 dan dadu menampilkan angka yang sama, maka A B = {(2, 2)} Karena peluang pada masing-masing dadu uniform, maka P (A) = A S = 3 36, P (B) = B S = 6 36, dan P (A B) = A B S = Misalkan A B : kejadian di mana jumlah angka yang dihasilkan adalah 4 atau dadu menampilkan angka yang sama. Kita memiliki P (A B) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

33 Definisi dan Istilah dalam Teori Peluang Misalkan A B : kejadian di mana jumlah angka yang dihasilkan adalah 4 dan dadu menampilkan angka yang sama, maka A B = {(2, 2)} Karena peluang pada masing-masing dadu uniform, maka P (A) = A S = 3 36, P (B) = B S = 6 36, dan P (A B) = A B S = Misalkan A B : kejadian di mana jumlah angka yang dihasilkan adalah 4 atau dadu menampilkan angka yang sama. Kita memiliki P (A B) = P (A) + P (B) P (A B) = = 8 36 = 2 9. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

34 Bahasan Variabel Acak (Random Variable) 1 Definisi dan Istilah dalam Teori Peluang 2 Variabel Acak (Random Variable) 3 Fungsi Distribusi Peluang (Probability Distribution Function) 4 Ukuran Pemusatan Data 5 Variansi dan Standar Deviasi 6 Beberapa Jenis Distribusi Peluang Diskrit 7 Beberapa Jenis Distribusi Peluang Kontinu 8 Statistika pada Pemodelan Sistem MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

35 Variabel Acak (Random Variable) Variabel Acak (Random Variable) Kita telah melihat bahwa ruang sampel merupakan himpunan yang beranggotakan semua kejadian elementer (elementary event) yang mungkin terjadi pada suatu percobaan. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

36 Variabel Acak (Random Variable) Variabel Acak (Random Variable) Kita telah melihat bahwa ruang sampel merupakan himpunan yang beranggotakan semua kejadian elementer (elementary event) yang mungkin terjadi pada suatu percobaan. Tidak selamanya ruang sampel berisi elemen-elemen numerik, pada percobaan pelemparan dua uang koin secara bersamaan, kita memiliki ruang sampel MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

37 Variabel Acak (Random Variable) Variabel Acak (Random Variable) Kita telah melihat bahwa ruang sampel merupakan himpunan yang beranggotakan semua kejadian elementer (elementary event) yang mungkin terjadi pada suatu percobaan. Tidak selamanya ruang sampel berisi elemen-elemen numerik, pada percobaan pelemparan dua uang koin secara bersamaan, kita memiliki ruang sampel S = {aa, ag, ga, gg}. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

38 Variabel Acak (Random Variable) Variabel Acak (Random Variable) Kita telah melihat bahwa ruang sampel merupakan himpunan yang beranggotakan semua kejadian elementer (elementary event) yang mungkin terjadi pada suatu percobaan. Tidak selamanya ruang sampel berisi elemen-elemen numerik, pada percobaan pelemparan dua uang koin secara bersamaan, kita memiliki ruang sampel S = {aa, ag, ga, gg}. Untuk mempermudah analisis matematika dalam perhitungan statistika, kita perlu memetakan setiap titik sampel pada suatu nilai numerik. Nilai numerik yang mewakili titik sampel ini dinamakan sebagai variabel acak (random variable). MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

39 Variabel Acak (Random Variable) Definisi Misalkan S adalah suatu ruang sampel, variabel acak pada S merupakan pemetaan X : S R yang memetakan setiap titik sampel s S ke suatu nilai numerik X (s). MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

40 Variabel Acak (Random Variable) Definisi Misalkan S adalah suatu ruang sampel, variabel acak pada S merupakan pemetaan X : S R yang memetakan setiap titik sampel s S ke suatu nilai numerik X (s). Variabel acak merepresentasikan suatu ketidakpastian. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

41 Variabel Acak (Random Variable) Definisi Misalkan S adalah suatu ruang sampel, variabel acak pada S merupakan pemetaan X : S R yang memetakan setiap titik sampel s S ke suatu nilai numerik X (s). Variabel acak merepresentasikan suatu ketidakpastian. Biasanya variabel acak ditulis dengan huruf besar X, Y, Z, atau dengan indeks bila perlu: X 1, X 2, X 3,.... Nilai dari variabel acak biasanya ditulis dalam huruf kecil x, y, z atau dengan indeks bila perlu: x 1, x 2, x 3,.... Variabel acak dapat berupa variabel acak diskrit atau kontinu. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

42 Variabel Acak (Random Variable) Definisi Misalkan S adalah suatu ruang sampel, variabel acak pada S merupakan pemetaan X : S R yang memetakan setiap titik sampel s S ke suatu nilai numerik X (s). Variabel acak merepresentasikan suatu ketidakpastian. Biasanya variabel acak ditulis dengan huruf besar X, Y, Z, atau dengan indeks bila perlu: X 1, X 2, X 3,.... Nilai dari variabel acak biasanya ditulis dalam huruf kecil x, y, z atau dengan indeks bila perlu: x 1, x 2, x 3,.... Variabel acak dapat berupa variabel acak diskrit atau kontinu. Suatu variabel acak X yang memetakan titik-titik sampel s S dikatakan variabel acak diskrit bila nilai dari X (s) dapat dicacah (contohnya..., 3, 2, 1, 0, 1, 2, 3,...) MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

43 Variabel Acak (Random Variable) Definisi Misalkan S adalah suatu ruang sampel, variabel acak pada S merupakan pemetaan X : S R yang memetakan setiap titik sampel s S ke suatu nilai numerik X (s). Variabel acak merepresentasikan suatu ketidakpastian. Biasanya variabel acak ditulis dengan huruf besar X, Y, Z, atau dengan indeks bila perlu: X 1, X 2, X 3,.... Nilai dari variabel acak biasanya ditulis dalam huruf kecil x, y, z atau dengan indeks bila perlu: x 1, x 2, x 3,.... Variabel acak dapat berupa variabel acak diskrit atau kontinu. Suatu variabel acak X yang memetakan titik-titik sampel s S dikatakan variabel acak diskrit bila nilai dari X (s) dapat dicacah (contohnya..., 3, 2, 1, 0, 1, 2, 3,...) Suatu variabel acak X yang memetakan titik-titik sampel s S dikatakan variabel acak kontinu bila nilai dari X (s) tidak dapat dicacah (contohnya seluruh bilangan real a yang memenuhi 0 a 1). MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

44 Variabel Acak (Random Variable) Variabel Acak Diskrit (Discrete Random Variable) Variabel acak diskrit merupakan variabel acak yang nilainya dapat dicacah, dapat terhingga atau tak terhingga. Contoh variabel acak diskrit: MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

45 Variabel Acak (Random Variable) Variabel Acak Diskrit (Discrete Random Variable) Variabel acak diskrit merupakan variabel acak yang nilainya dapat dicacah, dapat terhingga atau tak terhingga. Contoh variabel acak diskrit: Banyaknya orang yang mengantri di ATM pada selang waktu tertentu. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

46 Variabel Acak (Random Variable) Variabel Acak Diskrit (Discrete Random Variable) Variabel acak diskrit merupakan variabel acak yang nilainya dapat dicacah, dapat terhingga atau tak terhingga. Contoh variabel acak diskrit: Banyaknya orang yang mengantri di ATM pada selang waktu tertentu. Banyaknya produk yang rusak dalam selang waktu tertentu. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

47 Variabel Acak (Random Variable) Variabel Acak Diskrit (Discrete Random Variable) Variabel acak diskrit merupakan variabel acak yang nilainya dapat dicacah, dapat terhingga atau tak terhingga. Contoh variabel acak diskrit: Banyaknya orang yang mengantri di ATM pada selang waktu tertentu. Banyaknya produk yang rusak dalam selang waktu tertentu. Hasil yang mungkin dari pelemparan n buah uang koin. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

48 Variabel Acak (Random Variable) Variabel Acak Diskrit (Discrete Random Variable) Variabel acak diskrit merupakan variabel acak yang nilainya dapat dicacah, dapat terhingga atau tak terhingga. Contoh variabel acak diskrit: Banyaknya orang yang mengantri di ATM pada selang waktu tertentu. Banyaknya produk yang rusak dalam selang waktu tertentu. Hasil yang mungkin dari pelemparan n buah uang koin. Hari di mana turun hujan dalam satu pekan (Minggu, Senin, Selasa,..., Sabtu). MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

49 Variabel Acak (Random Variable) Ruang Sampel Diskrit Ruang sampel diskrit merupakan ruang sampel yang elemen-elemennya dapat dicacah. Biasanya ruang sampel diskrit yang ditinjau dalam simulasi berhingga. Contoh Misalkan terdapat eksperimen pelemparan 3 uang koin yang masing-masing memiliki dua sisi, yaitu sisi angka (a) dan sisi gambar (g). Hasil dari eksperimen adalah sisi uang koin yang nampak di atas. Ruang sampel dari kejadian ini adalah MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

50 Variabel Acak (Random Variable) Ruang Sampel Diskrit Ruang sampel diskrit merupakan ruang sampel yang elemen-elemennya dapat dicacah. Biasanya ruang sampel diskrit yang ditinjau dalam simulasi berhingga. Contoh Misalkan terdapat eksperimen pelemparan 3 uang koin yang masing-masing memiliki dua sisi, yaitu sisi angka (a) dan sisi gambar (g). Hasil dari eksperimen adalah sisi uang koin yang nampak di atas. Ruang sampel dari kejadian ini adalah S = {aaa, aag, aga, gaa, agg, gag, gga, ggg}. Beberapa contoh kejadian (event atau outcome) dari eksperimen ini adalah: tepat dua uang koin memberikan tampak atas angka, misalkan kejadian ini dinotasikan dengan A, maka A = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

51 Variabel Acak (Random Variable) Ruang Sampel Diskrit Ruang sampel diskrit merupakan ruang sampel yang elemen-elemennya dapat dicacah. Biasanya ruang sampel diskrit yang ditinjau dalam simulasi berhingga. Contoh Misalkan terdapat eksperimen pelemparan 3 uang koin yang masing-masing memiliki dua sisi, yaitu sisi angka (a) dan sisi gambar (g). Hasil dari eksperimen adalah sisi uang koin yang nampak di atas. Ruang sampel dari kejadian ini adalah S = {aaa, aag, aga, gaa, agg, gag, gga, ggg}. Beberapa contoh kejadian (event atau outcome) dari eksperimen ini adalah: tepat dua uang koin memberikan tampak atas angka, misalkan kejadian ini dinotasikan dengan A, maka A = {aag, aga, gaa}; setidaknya dua uang koin memberikan tampak atas angka, misalkan kejadian ini dinotasikan dengan B, maka B = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

52 Variabel Acak (Random Variable) Ruang Sampel Diskrit Ruang sampel diskrit merupakan ruang sampel yang elemen-elemennya dapat dicacah. Biasanya ruang sampel diskrit yang ditinjau dalam simulasi berhingga. Contoh Misalkan terdapat eksperimen pelemparan 3 uang koin yang masing-masing memiliki dua sisi, yaitu sisi angka (a) dan sisi gambar (g). Hasil dari eksperimen adalah sisi uang koin yang nampak di atas. Ruang sampel dari kejadian ini adalah S = {aaa, aag, aga, gaa, agg, gag, gga, ggg}. Beberapa contoh kejadian (event atau outcome) dari eksperimen ini adalah: tepat dua uang koin memberikan tampak atas angka, misalkan kejadian ini dinotasikan dengan A, maka A = {aag, aga, gaa}; setidaknya dua uang koin memberikan tampak atas angka, misalkan kejadian ini dinotasikan dengan B, maka B = {aaa, aag, aga, gaa}; kita memiliki A B. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

53 Variabel Acak (Random Variable) Variabel Acak Kontinu (Continuous Random Variable) Variabel acak kontinu merupakan variabel acak yang nilainya tidak dapat dicacah, dapat terbatas (contohnya seluruh bilangan real a yang memenuhi 0 a 1) atau tidak terbatas. Contoh variabel acak kontinu: MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

54 Variabel Acak (Random Variable) Variabel Acak Kontinu (Continuous Random Variable) Variabel acak kontinu merupakan variabel acak yang nilainya tidak dapat dicacah, dapat terbatas (contohnya seluruh bilangan real a yang memenuhi 0 a 1) atau tidak terbatas. Contoh variabel acak kontinu: Selisih waktu kedatangan antar pelanggan pada ATM. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

55 Variabel Acak (Random Variable) Variabel Acak Kontinu (Continuous Random Variable) Variabel acak kontinu merupakan variabel acak yang nilainya tidak dapat dicacah, dapat terbatas (contohnya seluruh bilangan real a yang memenuhi 0 a 1) atau tidak terbatas. Contoh variabel acak kontinu: Selisih waktu kedatangan antar pelanggan pada ATM. Lama waktu hidup (lifetime) suatu barang elektronik. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

56 Variabel Acak (Random Variable) Variabel Acak Kontinu (Continuous Random Variable) Variabel acak kontinu merupakan variabel acak yang nilainya tidak dapat dicacah, dapat terbatas (contohnya seluruh bilangan real a yang memenuhi 0 a 1) atau tidak terbatas. Contoh variabel acak kontinu: Selisih waktu kedatangan antar pelanggan pada ATM. Lama waktu hidup (lifetime) suatu barang elektronik. Hasil yang mungkin dari pengukuran temperatur. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

57 Variabel Acak (Random Variable) Variabel Acak Kontinu (Continuous Random Variable) Variabel acak kontinu merupakan variabel acak yang nilainya tidak dapat dicacah, dapat terbatas (contohnya seluruh bilangan real a yang memenuhi 0 a 1) atau tidak terbatas. Contoh variabel acak kontinu: Selisih waktu kedatangan antar pelanggan pada ATM. Lama waktu hidup (lifetime) suatu barang elektronik. Hasil yang mungkin dari pengukuran temperatur. Waktu terjadinya suatu fenomena alam (secara rinci). MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

58 Variabel Acak (Random Variable) Ruang Sampel Kontinu Ruang sampel kontinu merupakan ruang sampel yang elemen-elemennya dapat direpresentasikan sebagai bilangan real dalam suatu interval, tidak dapat dicacah, dan tidak berhingga. Contoh Misalkan terdapat eksperimen menghitung tinggi badan siswa SD. Hasil eksperimen adalah tinggi badan siswa SD yang dapat direpresentasikan dalam selang bilangan real [0, 150], dengan nilai x [0, 150] diperoleh dari pengukuran tinggi badan siswa (dalam cm). Ruang sampel kejadian ini adalah MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

59 Variabel Acak (Random Variable) Ruang Sampel Kontinu Ruang sampel kontinu merupakan ruang sampel yang elemen-elemennya dapat direpresentasikan sebagai bilangan real dalam suatu interval, tidak dapat dicacah, dan tidak berhingga. Contoh Misalkan terdapat eksperimen menghitung tinggi badan siswa SD. Hasil eksperimen adalah tinggi badan siswa SD yang dapat direpresentasikan dalam selang bilangan real [0, 150], dengan nilai x [0, 150] diperoleh dari pengukuran tinggi badan siswa (dalam cm). Ruang sampel kejadian ini adalah S = [0, 150] = {a 0 a 150}. Beberapa contoh kejadian (event atau outcome) dari eksperimen ini adalah: beberapa siswa SD memiliki tinggi di antara 90 cm 120 cm, misalkan kejadian ini dinotasikan dengan A, maka A = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

60 Variabel Acak (Random Variable) Ruang Sampel Kontinu Ruang sampel kontinu merupakan ruang sampel yang elemen-elemennya dapat direpresentasikan sebagai bilangan real dalam suatu interval, tidak dapat dicacah, dan tidak berhingga. Contoh Misalkan terdapat eksperimen menghitung tinggi badan siswa SD. Hasil eksperimen adalah tinggi badan siswa SD yang dapat direpresentasikan dalam selang bilangan real [0, 150], dengan nilai x [0, 150] diperoleh dari pengukuran tinggi badan siswa (dalam cm). Ruang sampel kejadian ini adalah S = [0, 150] = {a 0 a 150}. Beberapa contoh kejadian (event atau outcome) dari eksperimen ini adalah: beberapa siswa SD memiliki tinggi di antara 90 cm 120 cm, misalkan kejadian ini dinotasikan dengan A, maka A = {t 90 t 120}; beberapa siswa SD memiliki tinggi di antara 90 cm 140 cm, misalkan kejadian ini dinotasikan dengan B, maka B = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

61 Variabel Acak (Random Variable) Ruang Sampel Kontinu Ruang sampel kontinu merupakan ruang sampel yang elemen-elemennya dapat direpresentasikan sebagai bilangan real dalam suatu interval, tidak dapat dicacah, dan tidak berhingga. Contoh Misalkan terdapat eksperimen menghitung tinggi badan siswa SD. Hasil eksperimen adalah tinggi badan siswa SD yang dapat direpresentasikan dalam selang bilangan real [0, 150], dengan nilai x [0, 150] diperoleh dari pengukuran tinggi badan siswa (dalam cm). Ruang sampel kejadian ini adalah S = [0, 150] = {a 0 a 150}. Beberapa contoh kejadian (event atau outcome) dari eksperimen ini adalah: beberapa siswa SD memiliki tinggi di antara 90 cm 120 cm, misalkan kejadian ini dinotasikan dengan A, maka A = {t 90 t 120}; beberapa siswa SD memiliki tinggi di antara 90 cm 140 cm, misalkan kejadian ini dinotasikan dengan B, maka B = {t 90 t 140}; kita memiliki A B. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

62 Bahasan Fungsi Distribusi Peluang (Probability Distribution Function) 1 Definisi dan Istilah dalam Teori Peluang 2 Variabel Acak (Random Variable) 3 Fungsi Distribusi Peluang (Probability Distribution Function) 4 Ukuran Pemusatan Data 5 Variansi dan Standar Deviasi 6 Beberapa Jenis Distribusi Peluang Diskrit 7 Beberapa Jenis Distribusi Peluang Kontinu 8 Statistika pada Pemodelan Sistem MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

63 Fungsi Distribusi Peluang (Probability Distribution Function) Fungsi Distribusi Peluang (Probability Distribution Function) Fungsi distribusi peluang (probability distribution function) merupakan fungsi yang digunakan untuk mendeskripsikan suatu distribusi peluang (probability distribution). Fungsi distribusi peluang dapat berupa: 1 fungsi massa peluang (probability mass function, pmf ) untuk variabel acak diskrit; 2 fungsi densitas peluang (probability density function, pdf ) untuk variabel acak kontinu; 3 fungsi distribusi kumulatif (cumulative distribution function, cdf ) untuk variabel acak diskrit maupun kontinu. Biasanya istilah fungsi distribusi peluang merujuk pada cdf. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

64 Fungsi Distribusi Peluang (Probability Distribution Function) pmf dan cdf dari Variabel Acak Diskrit pmf Variabel Acak Diskrit Misalkan S adalah suatu ruang sampel dan X : S R adalah suatu variabel acak diskrit. Fungsi massa peluang untuk X adalah fungsi f X : R [0, 1] yang didefinisikan sebagai f X (x) = P (X = x) = Pr (X = x) = P ({s S X (s) = x}) = Pr ({s S X (s) = x}) dan memenuhi sifat f X (x) = 1. x Definisi (cdf Variabel Acak Diskrit) Misalkan S adalah suatu ruang sampel dan X : S R adalah suatu variabel acak diskrit. Fungsi distribusi kumulatif untuk X adalah F X (x) = P (X x) = Pr (X x) = y x P (X = y) = y x Pr (X = y). MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

65 Fungsi Distribusi Peluang (Probability Distribution Function) Variabel Acak Diskrit dan pmf-nya Contoh Ruang sampel dari pelemparan sebuah uang koin adalah S = {a, g} dengan a merepresentasikan sisi angka dan g merepresentasikan sisi gambar. Kita dapat mendefinisikan variabel acak X : S R sebagai X (x) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

66 Fungsi Distribusi Peluang (Probability Distribution Function) Variabel Acak Diskrit dan pmf-nya Contoh Ruang sampel dari pelemparan sebuah uang koin adalah S = {a, g} dengan a merepresentasikan sisi angka dan g merepresentasikan sisi gambar. Kita dapat mendefinisikan variabel acak X : S R sebagai X (x) = { 1, jika x = a 0, jika x = g. Kemudian pmf untuk X adalah f X (x) = P (X = x) = P ({s S X (s) = x}), dengan asumsi bahwa peluang munculnya a maupun g seragam (uniform), kita memiliki f X (1) = P (X = 1) = P ({s S X (s) = 1}) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

67 Fungsi Distribusi Peluang (Probability Distribution Function) Variabel Acak Diskrit dan pmf-nya Contoh Ruang sampel dari pelemparan sebuah uang koin adalah S = {a, g} dengan a merepresentasikan sisi angka dan g merepresentasikan sisi gambar. Kita dapat mendefinisikan variabel acak X : S R sebagai X (x) = { 1, jika x = a 0, jika x = g. Kemudian pmf untuk X adalah f X (x) = P (X = x) = P ({s S X (s) = x}), dengan asumsi bahwa peluang munculnya a maupun g seragam (uniform), kita memiliki f X (1) = P (X = 1) = P ({s S X (s) = 1}) = P ({a}) = 1 2, f X (0) = P (X = 0) = P ({s S X (s) = 0}) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

68 Fungsi Distribusi Peluang (Probability Distribution Function) Variabel Acak Diskrit dan pmf-nya Contoh Ruang sampel dari pelemparan sebuah uang koin adalah S = {a, g} dengan a merepresentasikan sisi angka dan g merepresentasikan sisi gambar. Kita dapat mendefinisikan variabel acak X : S R sebagai X (x) = { 1, jika x = a 0, jika x = g. Kemudian pmf untuk X adalah f X (x) = P (X = x) = P ({s S X (s) = x}), dengan asumsi bahwa peluang munculnya a maupun g seragam (uniform), kita memiliki f X (1) = P (X = 1) = P ({s S X (s) = 1}) = P ({a}) = 1 2, f X (0) = P (X = 0) = P ({s S X (s) = 0}) = P ({g}) = 1 2. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

69 Fungsi Distribusi Peluang (Probability Distribution Function) pdf dan cdf dari Variabel Acak Kontinu pdf Variabel Acak Kontinu Misalkan S adalah suatu ruang sampel dan X : S R adalah suatu variabel acak kontinu. Fungsi densitas peluang untuk X adalah fungsi f X : R [0, 1] yang mendeskripsikan peluang dari nilai variabel acak pada selang tertentu. Kita memiliki dan memenuhi sifat P (a X b) = Pr (a X b) = Definisi (cdf Variabel Acak Kontinu) f X (x) dx = 1. b a f X (x) dx Misalkan S adalah suatu ruang sampel dan X : S R adalah suatu variabel acak kontinu. Fungsi distribusi kumulatif untuk X adalah F X (x) = P (X x) = x f X (x) dx. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

70 Fungsi Distribusi Peluang (Probability Distribution Function) Variabel Acak Kontinu dan pdf-nya Contoh Ruang sampel dari tinggi badan siswa SD adalah S = {t 50 t 150} dengan t merepresentasikan tinggi badan dalam cm. Kita dapat mendefinisikan variabel acak X : S R sebagai X (t) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

71 Fungsi Distribusi Peluang (Probability Distribution Function) Variabel Acak Kontinu dan pdf-nya Contoh Ruang sampel dari tinggi badan siswa SD adalah S = {t 50 t 150} dengan t merepresentasikan tinggi badan dalam cm. Kita dapat mendefinisikan variabel acak X : S R sebagai X (t) = t. Kemudian pdf untuk X adalah suatu fungsi tertentu, contohnya jika X berdistribusi uniform (seragam) kontinu, maka f X (t) = { 1 100, jika 50 t 150 0, lainnya, dengan asumsi bahwa tinggi badan siswa SD berdistribusi uniform, kita dapat menghitung: peluang siswa SD memiliki tinggi di antara 100 cm 120 cm adalah MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

72 Fungsi Distribusi Peluang (Probability Distribution Function) Variabel Acak Kontinu dan pdf-nya Contoh Ruang sampel dari tinggi badan siswa SD adalah S = {t 50 t 150} dengan t merepresentasikan tinggi badan dalam cm. Kita dapat mendefinisikan variabel acak X : S R sebagai X (t) = t. Kemudian pdf untuk X adalah suatu fungsi tertentu, contohnya jika X berdistribusi uniform (seragam) kontinu, maka f X (t) = { 1 100, jika 50 t 150 0, lainnya, dengan asumsi bahwa tinggi badan siswa SD berdistribusi uniform, kita dapat menghitung: peluang siswa SD memiliki tinggi di antara 100 cm 120 cm adalah P (100 T 120) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

73 Fungsi Distribusi Peluang (Probability Distribution Function) Variabel Acak Kontinu dan pdf-nya Contoh Ruang sampel dari tinggi badan siswa SD adalah S = {t 50 t 150} dengan t merepresentasikan tinggi badan dalam cm. Kita dapat mendefinisikan variabel acak X : S R sebagai X (t) = t. Kemudian pdf untuk X adalah suatu fungsi tertentu, contohnya jika X berdistribusi uniform (seragam) kontinu, maka f X (t) = { 1 100, jika 50 t 150 0, lainnya, dengan asumsi bahwa tinggi badan siswa SD berdistribusi uniform, kita dapat menghitung: peluang siswa SD memiliki tinggi di antara 100 cm 120 cm adalah P (100 T 120) = dt = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

74 Fungsi Distribusi Peluang (Probability Distribution Function) Variabel Acak Kontinu dan pdf-nya Contoh Ruang sampel dari tinggi badan siswa SD adalah S = {t 50 t 150} dengan t merepresentasikan tinggi badan dalam cm. Kita dapat mendefinisikan variabel acak X : S R sebagai X (t) = t. Kemudian pdf untuk X adalah suatu fungsi tertentu, contohnya jika X berdistribusi uniform (seragam) kontinu, maka f X (t) = { 1 100, jika 50 t 150 0, lainnya, dengan asumsi bahwa tinggi badan siswa SD berdistribusi uniform, kita dapat menghitung: peluang siswa SD memiliki tinggi di antara 100 cm 120 cm adalah P (100 T 120) = dt = 1 5 = 0.2; peluang siswa SD memiliki tinggi di antara 90 cm 140 cm adalah MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

75 Fungsi Distribusi Peluang (Probability Distribution Function) Variabel Acak Kontinu dan pdf-nya Contoh Ruang sampel dari tinggi badan siswa SD adalah S = {t 50 t 150} dengan t merepresentasikan tinggi badan dalam cm. Kita dapat mendefinisikan variabel acak X : S R sebagai X (t) = t. Kemudian pdf untuk X adalah suatu fungsi tertentu, contohnya jika X berdistribusi uniform (seragam) kontinu, maka f X (t) = { 1 100, jika 50 t 150 0, lainnya, dengan asumsi bahwa tinggi badan siswa SD berdistribusi uniform, kita dapat menghitung: peluang siswa SD memiliki tinggi di antara 100 cm 120 cm adalah P (100 T 120) = dt = 1 5 = 0.2; peluang siswa SD memiliki tinggi di antara 90 cm 140 cm adalah P (90 T 140) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

76 Fungsi Distribusi Peluang (Probability Distribution Function) Variabel Acak Kontinu dan pdf-nya Contoh Ruang sampel dari tinggi badan siswa SD adalah S = {t 50 t 150} dengan t merepresentasikan tinggi badan dalam cm. Kita dapat mendefinisikan variabel acak X : S R sebagai X (t) = t. Kemudian pdf untuk X adalah suatu fungsi tertentu, contohnya jika X berdistribusi uniform (seragam) kontinu, maka f X (t) = { 1 100, jika 50 t 150 0, lainnya, dengan asumsi bahwa tinggi badan siswa SD berdistribusi uniform, kita dapat menghitung: peluang siswa SD memiliki tinggi di antara 100 cm 120 cm adalah P (100 T 120) = dt = 1 5 = 0.2; peluang siswa SD memiliki tinggi di antara 90 cm 140 cm adalah P (90 T 140) = dt = 90 MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

77 Fungsi Distribusi Peluang (Probability Distribution Function) Variabel Acak Kontinu dan pdf-nya Contoh Ruang sampel dari tinggi badan siswa SD adalah S = {t 50 t 150} dengan t merepresentasikan tinggi badan dalam cm. Kita dapat mendefinisikan variabel acak X : S R sebagai X (t) = t. Kemudian pdf untuk X adalah suatu fungsi tertentu, contohnya jika X berdistribusi uniform (seragam) kontinu, maka f X (t) = { 1 100, jika 50 t 150 0, lainnya, dengan asumsi bahwa tinggi badan siswa SD berdistribusi uniform, kita dapat menghitung: peluang siswa SD memiliki tinggi di antara 100 cm 120 cm adalah P (100 T 120) = dt = 1 5 = 0.2; peluang siswa SD memiliki tinggi di antara 90 cm 140 cm adalah P (90 T 140) = dt = 1 2 = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

78 Bahasan Ukuran Pemusatan Data 1 Definisi dan Istilah dalam Teori Peluang 2 Variabel Acak (Random Variable) 3 Fungsi Distribusi Peluang (Probability Distribution Function) 4 Ukuran Pemusatan Data 5 Variansi dan Standar Deviasi 6 Beberapa Jenis Distribusi Peluang Diskrit 7 Beberapa Jenis Distribusi Peluang Kontinu 8 Statistika pada Pemodelan Sistem MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

79 Ukuran Pemusatan Data Ukuran Pemusatan Data (Measure of Central Tendency) Ukuran pemusatan data (measure of central tendency) dari suatu variabel acak X dapat dibagi menjadi: 1 Mean (ekspektasi), dinotasikan dengan E [X]. 2 Median (nilai tengah). 3 Modus (nilai yang (mungkin) paling sering muncul). MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

80 Mean (Ekspektasi) Ukuran Pemusatan Data Mean (Ekspektasi/ Rata-rata) Ekspektasi (mean atau rata-rata) dari suatu variabel acak X, dinotasikan dengan E [X], didefinisikan sebagai E [X] = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

81 Mean (Ekspektasi) Ukuran Pemusatan Data Mean (Ekspektasi/ Rata-rata) Ekspektasi (mean atau rata-rata) dari suatu variabel acak X, dinotasikan dengan E [X], didefinisikan sebagai E [X] = x xp (X = x) = x x Pr (x) = x xf X (x) (untuk variabel acak diskrit) E [X] = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

82 Mean (Ekspektasi) Ukuran Pemusatan Data Mean (Ekspektasi/ Rata-rata) Ekspektasi (mean atau rata-rata) dari suatu variabel acak X, dinotasikan dengan E [X], didefinisikan sebagai E [X] = x xp (X = x) = x x Pr (x) = x xf X (x) E [X] = (untuk variabel acak diskrit) xf X (x) dx (untuk variabel acak kontinu), dengan syarat: deret x xf X (x) konvergen absolut (yaitu x x f X (x) < ) untuk variabel acak diskrit; integral tak wajar xf X (x) konvergen (untuk variabel acak kontinu). MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

83 Ukuran Pemusatan Data Median dan Modus Median Median dari suatu variabel acak X adalah suatu nilai m dengan sifat P (X m) 1 2 dan P (X m) 1 2 Perhatikan bahwa untuk variabel acak kontinu P (X m) = 1 P (X m). Modus MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

84 Ukuran Pemusatan Data Median dan Modus Median Median dari suatu variabel acak X adalah suatu nilai m dengan sifat P (X m) 1 2 dan P (X m) 1 2 Perhatikan bahwa untuk variabel acak kontinu P (X m) = 1 P (X m). Modus Modus dari suatu variabel acak X adalah suatu nilai m dengan sifat f X (m) f X (x) untuk setiap x R. Bila X adalah variabel acak diskrit, maka modus adalah nilai m dengan sifat P (X = m) P (X = x) untuk setiap x R Pr (X = m) Pr (X = x) untuk setiap x R. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

85 Ukuran Pemusatan Data Latihan Latihan Diberikan sebuah dadu yang setiap sisinya diberi nomor 1 6. Seseorang melakukan percobaan dengan melempar dadu tersebut dan mengamati sisi yang menghadap ke atas. Jika peluang setiap sisi untuk menghadap ke atas adalah sama dan seragam, tentukan mean, median, dan modus dari eksperimen tersebut. Solusi: Misalkan ruang sampel percobaan adalah S = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

86 Ukuran Pemusatan Data Latihan Latihan Diberikan sebuah dadu yang setiap sisinya diberi nomor 1 6. Seseorang melakukan percobaan dengan melempar dadu tersebut dan mengamati sisi yang menghadap ke atas. Jika peluang setiap sisi untuk menghadap ke atas adalah sama dan seragam, tentukan mean, median, dan modus dari eksperimen tersebut. Solusi: Misalkan ruang sampel percobaan adalah S = {1, 2, 3, 4, 5, 6}. Selanjutnya definisikan variabel acak X (s) = s untuk setiap s S. Dengan asumsi bahwa peluang setiap sisi untuk menghadap ke atas adalah sama dan seragam (uniform), maka P (X = x) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

87 Ukuran Pemusatan Data Latihan Latihan Diberikan sebuah dadu yang setiap sisinya diberi nomor 1 6. Seseorang melakukan percobaan dengan melempar dadu tersebut dan mengamati sisi yang menghadap ke atas. Jika peluang setiap sisi untuk menghadap ke atas adalah sama dan seragam, tentukan mean, median, dan modus dari eksperimen tersebut. Solusi: Misalkan ruang sampel percobaan adalah S = {1, 2, 3, 4, 5, 6}. Selanjutnya definisikan variabel acak X (s) = s untuk setiap s S. Dengan asumsi bahwa peluang setiap sisi untuk menghadap ke atas adalah sama dan seragam (uniform), maka P (X = x) = 1 untuk setiap x = 1, 2,..., 6. 6 MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

88 Ukuran Pemusatan Data Kita memiliki E [X] = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

89 Ukuran Pemusatan Data Kita memiliki E [X] = 6 xp (X = x) = x=1 MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

90 Ukuran Pemusatan Data Kita memiliki E [X] = 6 xp (X = x) = x=1 6 x=1 x 1 6 = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

91 Ukuran Pemusatan Data Kita memiliki E [X] = = 6 xp (X = x) = x=1 6 x=1 x 1 6 = x x=1 MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

92 Ukuran Pemusatan Data Kita memiliki E [X] = 6 xp (X = x) = x=1 6 x=1 x 1 6 = x x=1 = 1 6 ( ) = 7 2 = 3.5 Ini berarti mean (nilai ekspektasi) dari percobaan pelemparan dadu adalah 3.5. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

93 Ukuran Pemusatan Data Kita memiliki E [X] = 6 xp (X = x) = x=1 6 x=1 x 1 6 = x x=1 = 1 6 ( ) = 7 2 = 3.5 Ini berarti mean (nilai ekspektasi) dari percobaan pelemparan dadu adalah 3.5. Karena dadu tidak memiliki sisi dengan nomor 3.5, maka nilai yang diharapkan muncul (expected value) dari eksperimen ini adalah keluarnya angka 3 atau angka 4. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

94 Ukuran Pemusatan Data Untuk mencari median, perhatikan bahwa P (X 1) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

95 Ukuran Pemusatan Data Untuk mencari median, perhatikan bahwa P (X 1) = 1 dan P (X 1) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

96 Ukuran Pemusatan Data Untuk mencari median, perhatikan bahwa P (X 1) = 1 dan P (X 1) = 1 6 P (X 2) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

97 Ukuran Pemusatan Data Untuk mencari median, perhatikan bahwa P (X 1) = 1 dan P (X 1) = 1 6 P (X 2) = 5 6 dan P (X 2) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

98 Ukuran Pemusatan Data Untuk mencari median, perhatikan bahwa P (X 1) = 1 dan P (X 1) = 1 6 P (X 2) = 5 6 dan P (X 2) = 2 6 P (X 3) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

99 Ukuran Pemusatan Data Untuk mencari median, perhatikan bahwa P (X 1) = 1 dan P (X 1) = 1 6 P (X 2) = 5 6 dan P (X 2) = 2 6 P (X 3) = 4 6 dan P (X 3) = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

100 Ukuran Pemusatan Data Untuk mencari median, perhatikan bahwa P (X 1) = 1 dan P (X 1) = 1 6 P (X 2) = 5 6 dan P (X 2) = 2 6 P (X 3) = 4 6 dan P (X 3) = 3 6 MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

101 Ukuran Pemusatan Data Untuk mencari median, perhatikan bahwa P (X 1) = 1 dan P (X 1) = 1 6 P (X 2) = 5 6 dan P (X 2) = 2 6 P (X 3) = 4 6 dan P (X 3) = 3 6 P (X 4) = 3 6 dan P (X 4) = 4 6 MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

102 Ukuran Pemusatan Data Untuk mencari median, perhatikan bahwa P (X 1) = 1 dan P (X 1) = 1 6 P (X 2) = 5 6 dan P (X 2) = 2 6 P (X 3) = 4 6 dan P (X 3) = 3 6 P (X 4) = 3 6 dan P (X 4) = 4 6 P (X 5) = 2 6 dan P (X 5) = 5 6 MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

103 Ukuran Pemusatan Data Untuk mencari median, perhatikan bahwa P (X 1) = 1 dan P (X 1) = 1 6 P (X 2) = 5 6 dan P (X 2) = 2 6 P (X 3) = 4 6 dan P (X 3) = 3 6 P (X 4) = 3 6 dan P (X 4) = 4 6 P (X 5) = 2 6 dan P (X 5) = 5 6 P (X 6) = 1 6 dan P (X 6) = 1 Akibatnya median dari percobaan adalah keluarnya angka 3 atau angka 4. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

104 Ukuran Pemusatan Data Untuk mencari median, perhatikan bahwa P (X 1) = 1 dan P (X 1) = 1 6 P (X 2) = 5 6 dan P (X 2) = 2 6 P (X 3) = 4 6 dan P (X 3) = 3 6 P (X 4) = 3 6 dan P (X 4) = 4 6 P (X 5) = 2 6 dan P (X 5) = 5 6 P (X 6) = 1 6 dan P (X 6) = 1 Akibatnya median dari percobaan adalah keluarnya angka 3 atau angka 4. Terakhir, modus dari percobaan pelemparan dadu diperoleh dari nilai m yang memenuhi P (X = m) P (X = x) untuk setiap x R. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

105 Ukuran Pemusatan Data Untuk mencari median, perhatikan bahwa P (X 1) = 1 dan P (X 1) = 1 6 P (X 2) = 5 6 dan P (X 2) = 2 6 P (X 3) = 4 6 dan P (X 3) = 3 6 P (X 4) = 3 6 dan P (X 4) = 4 6 P (X 5) = 2 6 dan P (X 5) = 5 6 P (X 6) = 1 6 dan P (X 6) = 1 Akibatnya median dari percobaan adalah keluarnya angka 3 atau angka 4. Terakhir, modus dari percobaan pelemparan dadu diperoleh dari nilai m yang memenuhi P (X = m) P (X = x) untuk setiap x R. Karena P (X = x) = 1 6 untuk setiap 1 x 6, maka modus dari percobaan ini adalah keluarnya angka 1, angka 2, angka 3, angka 4, angka 5, atau angka 6. MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

106 Ukuran Pemusatan Data Latihan Latihan Diberikan dua uang koin yang masing-masing memiliki sisi angka dan sisi gambar. Seseorang melakukan percobaan dengan melempar uang koin tersebut dan mengamati sisi yang menghadap ke atas. Jika pada setiap uang koin peluang setiap sisi untuk menghadap ke atas adalah sama dan seragam, tentukan mean, modus, dan median dari eksperimen tersebut. Solusi: Misalkan ruang sampel percobaan adalah S = MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

107 Ukuran Pemusatan Data Latihan Latihan Diberikan dua uang koin yang masing-masing memiliki sisi angka dan sisi gambar. Seseorang melakukan percobaan dengan melempar uang koin tersebut dan mengamati sisi yang menghadap ke atas. Jika pada setiap uang koin peluang setiap sisi untuk menghadap ke atas adalah sama dan seragam, tentukan mean, modus, dan median dari eksperimen tersebut. Solusi: Misalkan ruang sampel percobaan adalah S = {aa, ag, ga, gg} dengan a merepresentasikan sisi angka dan g merepresentasikan sisi gambar. Selanjutnya definisikan variabel acak X : S R sebagai berikut MZI (FIF Tel-U) Statistika Pemodelan Januari / 80

Pendahuluan Perkuliahan Pemodelan Sistem

Pendahuluan Perkuliahan Pemodelan Sistem Pendahuluan Perkuliahan Pemodelan Sistem Kuliah Pemodelan Sistem Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Pendahuluan Perkuliahan Januari

Lebih terperinci

Teori Himpunan Elementer

Teori Himpunan Elementer Teori Himpunan Elementer Kuliah Matematika Diskret Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2016 MZI (FIF Tel-U) Himpunan Januari 2016 1 / 72 Acknowledgements

Lebih terperinci

Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Harapan Matematik Bahan Kuliah II09 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Harapan Matematik Satu konsep yang penting di dalam teori peluang

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata dan Statistika dan Fungsi Peluang Adam Hendra Brata acak adalah sebuah fungsi yang memetakan hasil kejadian yang ada di alam (seperti : buka dan tutup; terang, redup dan gelap; merah, kuning dan hijau;

Lebih terperinci

PEUBAH ACAK & DISTRIBUSI PROBABILITAS. Nur Hayati, S.ST, MT Yogyakarta, Februari 2016

PEUBAH ACAK & DISTRIBUSI PROBABILITAS. Nur Hayati, S.ST, MT Yogyakarta, Februari 2016 PEUBAH ACAK & DISTRIBUSI PROBABILITAS Nur Hayati, S.ST, MT Yogyakarta, Februari 2016 Pendahuluan Bidang Statistika Penarikan kesimpulan populasi dan sifat populasi. Percobaan hasil berkemungkinan Percobaan

Lebih terperinci

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 4. Variabel Acak dan Distribusi Probabilitas Prima Kristalina April 2015 1 Outline 1. Definisi

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

Sistem Persamaan Linier (SPL)

Sistem Persamaan Linier (SPL) Sistem Persamaan Linier (SPL) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) SPL Agustus 2015 1 / 27 Acknowledgements

Lebih terperinci

Hidup penuh dengan ketidakpastian

Hidup penuh dengan ketidakpastian BAB 2 Probabilitas Hidup penuh dengan ketidakpastian Tidak mungkin bagi kita untuk dapat mengatakan dengan pasti apa yang akan terjadi dalam 1 menit ke depan tapi Probabilitas akan memprediksikan masa

Lebih terperinci

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak Peubah Acak Peubah Acak Diskrit dan Distribusi Peluang Peubah Acak (Random Variable): Sebuah keluaran numerik yang merupakan hasil dari percobaan (eksperimen) Untuk setiap anggota dari ruang sampel percobaan,

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

Distribusi Peubah Acak

Distribusi Peubah Acak Chandra Novtiar 085794801125 chandramathitb07@gmail.com PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG 4 April 2017 Garis Besar Pembahasan FUNGSI

Lebih terperinci

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer BAB I PENDAHULUAN A. Latar Belakang Statistika merupakan salah satu ilmu matematika yang terus berkembang dari waktu ke waktu. Di dalamnya mencakup berbagai sub pokok-sub pokok materi yang sangat bermanfaat

Lebih terperinci

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak

STK 511 Analisis statistika. Materi 3 Sebaran Peubah Acak STK 511 Analisis statistika Materi 3 Sebaran Peubah Acak 1 Konsep Peluang 2 Peluang Peluang dapat diartikan sebagai ukuran kemungkinan terjadinya suatu kejadian Untuk memahami peluang diperlukan pemahaman

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia

Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia VARIABEL ACAK VARIABEL ACAK : suatu fungsi yang nilainya berupa bilangan nyata yang ditentukan oleh setiap unsur dalam ruang

Lebih terperinci

HANDOUT PERKULIAHAN. Pertemuan Ke : 3 : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak

HANDOUT PERKULIAHAN. Pertemuan Ke : 3 : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak HANDOUT PERKULIAHAN Pertemuan Ke : 3 Pokok Bahasan : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak URAIAN POKOK PERKULIAHAN A. Peubah Acak Definisi 1 : Peubah Acak Misalkan E adalah suatu

Lebih terperinci

Ruang Vektor Euclid R 2 dan R 3

Ruang Vektor Euclid R 2 dan R 3 Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah Variabel Random dan Nilai Harapan Oleh Azimmatul Ihwah Outcomes dari suatu eksperimen dapat dinyatakan dengan angka untuk mempermudah. Suatu variabel yang mengasosiakan outcomes dari suatu eksperimen dengan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia Peluang Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu.

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan V Peubah Acak dan Sebaran Peubah Acak Septian Rahardiantoro - STK IPB 1 Pertemuan minggu lalu kita sudah belajar mengenai cara untuk membuat daftar kemungkinan-kemungkinan

Lebih terperinci

PENGANTAR MODEL PROBABILITAS

PENGANTAR MODEL PROBABILITAS PENGANTAR MODEL PROBABILITAS (PMP, Minggu 1-7) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 1:HIMPUNAN Operasi Himpunan Sifat-Sifat Operasi Himpunan 2 Minggu 2:COUNTING TECHNIQUE

Lebih terperinci

ADITHYA SUDIARNO, ST., MT.

ADITHYA SUDIARNO, ST., MT. STATISTIKA INDUSTRI [VAR RANDOM & DISTRIBUSI PROB.] ADITHYA SUDIARNO, ST., MT. ANALISIS PEMBELAJARAN STATISTIK DESKRIPTIF KONSEP PELUANG/ PROBABILITAS TEKNIK PENGAMBILAN SAMPLING RANDOM VARIABLE KONSEP

Lebih terperinci

Statistika & Probabilitas

Statistika & Probabilitas Statistika & Probabilitas Peubah Acak Peubah = variabel Dalam suatu eksperimen, seringkali kita lebih tertarik bukan pada titik sampelnya, tetapi gambaran numerik dari hasil. Misalkan pada pelemparan sebuah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol

BAB II TINJAUAN PUSTAKA. (b) Variabel independen yang biasanya dinyatakan dengan simbol BAB II TINJAUAN PUSTAKA A. Regresi Regresi adalah suatu studi statistik untuk menjelaskan hubungan dua variabel atau lebih yang dinyatakan dalam bentuk persamaan. Salah satu variabel merupakan variabel

Lebih terperinci

1 PROBABILITAS. Pengertian

1 PROBABILITAS. Pengertian PROBABILITAS Pengertian Pada awal perkuliahan, sebelum menjelaskan probabilitas, dibahas sepintas sebagai pengantar tentang eksperimen, titik sampel, ruang sampel, dan peristiwa, serta variabel random

Lebih terperinci

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran

matematika DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL K e l a s A. Penarikan Sampel dari Suatu Populasi Kurikulum 2013 Tujuan Pembelajaran Kurikulum 20 matematika K e l a s XI DISTRIBUSI VARIABEL ACAK DAN DISTRIBUSI BINOMIAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami perbedaan

Lebih terperinci

Peluang dan Kejadian (Event) Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Peluang dan Kejadian (Event) Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Peluang dan Kejadian (Event) Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Kejadian (event) Kejadian adalah himpunan bagian (subset) dari

Lebih terperinci

DISTRIBUSI PROBABILITAS (PELUANG)

DISTRIBUSI PROBABILITAS (PELUANG) DISTRIBUSI PROBABILITAS (PELUANG) Distribusi Probabilitas (Peluang) Distribusi? Probabilitas? Distribusi Probabilitas? JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Distribusi = sebaran,

Lebih terperinci

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

PELUANG DAN PEUBAH ACAK

PELUANG DAN PEUBAH ACAK PELUANG DAN PEUBAH ACAK Materi 3 - STK511 Analisis Statistika October 3, 2017 Okt, 2017 1 Konsep Peluang 2 Pendahuluan Kejadian di dunia: pasti (deterministik) atau tidak pasti (probabilistik) Contoh kejadian

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

Metode Statistika (STK 211) Pertemuan ke-5

Metode Statistika (STK 211) Pertemuan ke-5 Metode Statistika (STK 211) Pertemuan ke-5 rrahmaanisa@apps.ipb.ac.id Memahami definisi dan aplikasi peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Memahami sebaran peubah acak

Lebih terperinci

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah fungsi) ke ruang bilangan

Lebih terperinci

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi

BAB I PENDAHULUAN. dapat dianggap mendekati normal dengan mean μ = μ dan variansi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang melambangkan kemajuan zaman. Oleh karena itu matematika banyak digunakan oleh cabang ilmu lain

Lebih terperinci

Bahan Ajar. Statistika. Haryadi NIDN

Bahan Ajar. Statistika. Haryadi NIDN Bahan Ajar Statistika Haryadi NIDN 000311640 Universitas Muhammadiyah Palangkaraya 2012 Daftar Isi 1 Populasi dan Sampel 1 1.1 Pengantar............................... 1 1.2 Sifat variabel dalam penelitian...................

Lebih terperinci

Pendahuluan Perkuliahan Matematika Diskret

Pendahuluan Perkuliahan Matematika Diskret Pendahuluan Perkuliahan Matematika Diskret Kuliah Matematika Diskret Semester Genap 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Januari 2015 MZI (FIF Tel-U) Pendahuluan Perkuliahan Januari

Lebih terperinci

Ruang Vektor Euclid R n

Ruang Vektor Euclid R n Ruang Vektor Euclid R n Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Oktober 2015 MZI (FIF Tel-U) Ruang Vektor R n Oktober 2015 1 / 38 Acknowledgements

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi

Lebih terperinci

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal 1 Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

Bahan Ajar Statistika. Haryadi Universitas Muhammadiyah Palangkaraya

Bahan Ajar Statistika. Haryadi Universitas Muhammadiyah Palangkaraya Bahan Ajar Statistika Haryadi Universitas Muhammadiyah Palangkaraya 2011 2 Daftar Isi 1 Populasi dan Sampel 5 1.1 Pengantar................................ 5 1.2 Sifat variabel dalam penelitian.....................

Lebih terperinci

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh

PEUBAH ACAK. Materi 4 - STK211 Metode Statistika. October 2, Okt, Department of Statistics, IPB. Dr. Agus Mohamad Soleh PEUBAH ACAK Materi 4 - STK211 Metode Statistika October 2, 2017 Okt, 2017 1 Pendahuluan Pernahkah bertanya, mengapa dalam soal ujian penerimaan mahasiswa baru, jika jawaban benar diberi nilai 4, salah

Lebih terperinci

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak Konsep Peubah Acak Metode Statistika (STK11) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi

Mata Kuliah Pemodelan & Simulasi Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu. Adam Hendra Brata

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu. Adam Hendra Brata Probabilitas dan Statistika Adam Hendra Brata Himpunan nilai-nilai yang mungkin dari peubah acak X merupakan himpunan tak terhitung yaitu tidak dapat dinyatakan sebagai {,, 3,., n } atau {,, 3,.} tetapi

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : SIMULASI & PERMODELAN ( S1 / TEKNIK INFORMATIKA) KODE / SKS : KK / 3 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : SIMULASI & PERMODELAN ( S1 / TEKNIK INFORMATIKA) KODE / SKS : KK / 3 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : SIMULASI PERMODELAN ( S1 / TEKNIK INFORMATIKA) KODE / SKS : KK-043241 / 3 SKS Minggu Ke Pokok Bahasan dan TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajaran

Lebih terperinci

Peubah Acak. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Peubah Acak. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Peubah Acak Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Peubah Acak Peubah = variabel Dalam suatu eksperimen, seringkali kita

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MUG2D3 PROBABILITAS DAN STATISTIKA Disusun oleh: INDWIARTI FAKULTAS INFORMATIKA TELKOM UNIVERSITY 1 LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS) ini telah disahkan

Lebih terperinci

Review Teori Probabilitas

Review Teori Probabilitas Rekayasa Trafik 1 Review Teori Probabilitas Rekayasa Trafik Outline Arti Probabilitas Counting Method Random Variable Discrete RV Continuous RV Multiple RVs Rekayasa Trafik 2 Arti Probabilitas Rekayasa

Lebih terperinci

PRODI S1 STATISTIKA FMIPA-ITS RENCANA PEMBELAJARAN Teknik Simulasi Kode/SKS: SS / (2/1/0) Dosen : NI, PPO Semester : V

PRODI S1 STATISTIKA FMIPA-ITS RENCANA PEMBELAJARAN Teknik Simulasi Kode/SKS: SS / (2/1/0) Dosen : NI, PPO Semester : V RP-S1-SK-04 Kurikulum 2014, Edisi : September-2014 No.Revisi : 00 Hal: 1 dari 6 A. : 1. CP 3.1 : Membuat suatu sistem informasi manajemen di berbagai bidang 2. CP 9.3 : Mampu merancang pengumpulan data

Lebih terperinci

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) Matriks -

Lebih terperinci

Distribusi Peluang Teoritis

Distribusi Peluang Teoritis Distribusi Peluang Teoritis 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

Statistika. Random Variables Discrete Random Variables Continuous Random Variables. Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada

Statistika. Random Variables Discrete Random Variables Continuous Random Variables. Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada Statistika Random Variables Discrete Random Variables Continuous Random Variables 1 Pengertian Random variable (variabel acak) Jenis suatu fungsi

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

EKSPEKTASI. Achmad Basuki. Politeknik Elektronika Negeri Surabaya 2004

EKSPEKTASI. Achmad Basuki. Politeknik Elektronika Negeri Surabaya 2004 EKSPEKTASI Achmad Basuki Politeknik Elektronika Negeri Surabaya 004 Jam Jumlah bemo 06.00-06.30 5 06.30-07.00 9 07.00-07.30 7 07.30-08.00 7 08.00-08.30 5 08.30-09.00 4 09.00-09.30 09.30-0.00 4 0.00-0.30

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 2 Sinyal Acak

SISTEM PENGOLAHAN ISYARAT. Kuliah 2 Sinyal Acak TK 403 SISTM PNGOLAHAN ISYARAT Kuliah Sinyal Acak Indah Susilawati, S.T., M.ng. Program Studi Teknik lektro Fakultas Teknik dan Ilmu Komputer Universitas Mercu Buana Yogyakarta 009 KULIAH SISTM PNGOLAHAN

Lebih terperinci

REFERENSI 1 source : Cara Menentukan Ruang Sampel Suatu Kejadian

REFERENSI 1 source :  Cara Menentukan Ruang Sampel Suatu Kejadian REFERENSI 1 source : http://mafia.mafiaol.com/2014/06/cara-menentukan-ruang-sampel-suatu-kejadian.html Cara Menentukan Ruang Sampel Suatu Kejadian I. Peluang Kita ketahui bahwa pengertian dari ruang sampel

Lebih terperinci

Sampling dengan Simulasi Komputer

Sampling dengan Simulasi Komputer Modul Sampling dengan Simulasi Komputer PENDAHULUAN Sutawanir Darwis M etode statistika merupakan alat untuk menyelesaikan masalah apabila solusi analitik tidak mungkin diperoleh. Dengan metode statistika

Lebih terperinci

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas

Bagian 2. Probabilitas. Struktur Probabilitas. Probabilitas Subyektif. Metode Frekuensi Relatif Kejadian untuk Menentukan Probabilitas Probabilitas Bagian Probabilitas A) = peluang (probabilitas) bahwa kejadian A terjadi 0 < A) < 1 A) = 0 artinya A pasti terjadi A) = 1 artinya A tidak mungkin terjadi Penentuan nilai probabilitas: Metode

Lebih terperinci

Probabilitas dan Proses Stokastik

Probabilitas dan Proses Stokastik Probabilitas dan Proses Stokastik Tim ProStok Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember Surabaya, 2014 O U T L I N E 1. Capaian Pembelajaran 2. Pengantar dan 3. Contoh 4. Ringkasan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peluang Peluang mempunyai banyak persamaan arti, seperti kemungkinan, kesempatan dan kecenderungan. Peluang menunjukkan kemungkinan terjadinya suatu kejadian yang bersifat acak.

Lebih terperinci

Probabilitas dan Statistika Ruang Sampel. Adam Hendra Brata

Probabilitas dan Statistika Ruang Sampel. Adam Hendra Brata dan Statistika Ruang Adam Hendra Brata adalah suatu ilmu untuk memprediksi suatu kejadian (event) atau dapat disebut peluang suatu kejadian berdasarkan pendekatan matematis. Dengan ilmu probabilitas, kita

Lebih terperinci

Logika Predikat (Kalkulus Predikat)

Logika Predikat (Kalkulus Predikat) Logika Predikat (Kalkulus Predikat) Kuliah (Pengantar) Metode Formal Semester Ganjil 2015-2016 M. Arzaki Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Logika Predikat (Kalkulus

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DASAR Kode : EK11. B230 / 3 Sks

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DASAR Kode : EK11. B230 / 3 Sks Minggu Pokok Bahasan ke dan TIU 1 1Pendahuluan tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika statistika Mahasiswa dapat menjelaskan kegunaan

Lebih terperinci

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Distribusi Peluang Teoritis. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang. MATERI BAB I RUANG SAMPEL DAN KEJADIAN Pendahuluan Ruang Sampel Kejadian Dua Kejadian Yang Saling Lepas Operasi Kejadian BAB II MENGHITUNG TITIK SAMPEL Prinsip Perkalian/ Aturan Dasar Notasi Faktorial

Lebih terperinci

DISTRIBUSI PELUANG.

DISTRIBUSI PELUANG. DISTRIBUSI PELUANG readonee@yahoo.com Distribusi? Peluang? Distribusi Peluang? Distribusi = sebaran, pencaran, susunan data Peluang : Ukuran/derajat ketidakpastian suatu peristiwa Distribusi Peluang adalah

Lebih terperinci

DISTRIBUSI PELUANG TEORITIS

DISTRIBUSI PELUANG TEORITIS Distribusi Teoritis 1/ 15 DISTRIBUSI PELUANG TEORITIS 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. PEUBAH ACAK Fungsi yang mendefinisikan

Lebih terperinci

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari. 6.. Proses Kelahiran Murni Dalam bab ini, akan dibahas beberapa contoh penting dari waktu kontinu, state diskrit, proses Markov. Khususnya, dengan kumpulan dari variabel acak {;0 } di mana nilai yang mungkin

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS

oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS Dasar Statistik untuk Pemodelan dan Simulasi oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS . Probabilitas Probabilitas=Peluang, bisa diartikan

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang

BAB II LANDASAN TEORI. ilmiah. Pencacahan atau pengukuran karakteristik suatu objek kajian yang BAB II LANDASAN TEORI 2.1 Konsep Dasar Peluang Pada dasarnya statistika berkaitan dengan penyajian dan penafsiran hasil yang berkemungkinan (hasil yang belum dapat ditentukan sebelumnya) yang muncul dalam

Lebih terperinci

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.

Lebih terperinci

STATISTIKA MATEMATIKA Probabilitas, Distribusi, dan Asimtosis dalam Statistika

STATISTIKA MATEMATIKA Probabilitas, Distribusi, dan Asimtosis dalam Statistika STATISTIKA MATEMATIKA Probabilitas, Distribusi, dan Asimtosis dalam Statistika Penulis: Prof. Drs. Subanar, Ph.D Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang.

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang

II. LANDASAN TEORI. 2. P bersifat aditif tak hingga, yaitu jika dengan. 2.1 Ruang Contoh, Kejadian dan Peluang II. LANDASAN TEORI 2.1 Ruang Contoh, Kejadian dan Peluang Dalam suatu percobaan sering kali diperlukan pengulangan yang dilakukan dalam kondisi yang sama. Semua kemungkinan hasil yang akan muncul akan

Lebih terperinci

DISTRIBUSI SATU PEUBAH ACAK

DISTRIBUSI SATU PEUBAH ACAK 0 DISTRIBUSI SATU PEUBAH ACAK Dalam hal ini akan dibahas macam-macam peubah acak, distribusi peluang, fungsi densitas, dan fungsi distribusi. Pada pembahasan selanjutnya, fungsi peluang untuk peubah acak

Lebih terperinci

Peluang suatu kejadian

Peluang suatu kejadian Peluang suatu kejadian Percobaan: Percobaan adalah suatu tindakan atau kegiatan yang dapat memberikan beberapa kemungkinan hasil Ruang Sampel: Ruang sampel adalah himpunan semua hasil yang mungkin dari

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 \ BAB I PENDAHULUAN 1.1 Latar Belakang Informasi-informasi faktual yang diperoleh berdasarkan hasil observasi maupun penelitian sangatlah beragam. Informasi yang dirangkum sedemikian rupa disebut dengan

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab 2 LANDASAN TEORI 2.1. Penaksiran Parameter Jika adalah nilai parameter populasi yang belum diketahui harganya, maka dapat ditaksir oleh nilai statistik, dan disebut sebagai penaksir atau fungsi keputusan.

Lebih terperinci

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF 1 (MI) KODE / SKS: KK / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DESKRIPTIF 1 (MI) KODE / SKS: KK / 2 SKS Minggu Pokok Bahasan ke dan TIU 1 1. Pendahulua n tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika Mahasiswa dapat menjelaskan pengertian statistika

Lebih terperinci

Logika Proposisi 1: Motivasi Pohon Urai (Parse Tree)

Logika Proposisi 1: Motivasi Pohon Urai (Parse Tree) Logika Proposisi 1: Motivasi Pohon Urai (Parse Tree) Kuliah Logika Matematika Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) Logika Proposisi

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA

RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA RENCANA PEMBELAJARAN SEMESTER (RPS) KKKF33112 PROBABILITAS DAN STATISTIKA PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER (FILKOM) UNIVERSITAS PUTRA INDONESIA YPTK PADANG LEMBAR PENGESAHAN Rencana

Lebih terperinci

Metode Statistika (STK211)

Metode Statistika (STK211) Metode Statistika (STK211) Peubah Acak dan Sebaran Peluang (Random Variable and Probability Distribution) Dr. Ir. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 1 Konsep Peubah Acak (Random Variable) Peubah

Lebih terperinci