Pengenalan Pola/ Pattern Recognition

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengenalan Pola/ Pattern Recognition"

Transkripsi

1 Pengenalan Pola/ Pattern Reognton Dasar Pengenalan Pola Imam Cholssodn S.S., M.Kom.

2 Dasar Pengenalan Pola. The Desgn Cyle. Collet Data 3. Objet to Dataset 4. Featre Seleton Usng PCA Menghtng Egen Vale Menghtng Egen Vetor Transformas Data Ftr Menghtng Nla Error 5. Tgas

3 The Desgn Cyle Collet data Choose featres Choose model Tran system Evalate system Apa sensor yang hars kta gnakan? Bagamana mengmplkan data? Bagamana mengetah ftr apa yang dplh, dan bagamana kta memlhnya...? (Msal transformas data ftr dengan PCA) Apa lassfer yang akan dgnakan? Apakah ada lassfer yang terbak...? Bagamana kta melakkan proses Tranng? Bagamana mengevalas knerja sstem? Bagamana memvaldas hasl? Berapakah tngkat keperayaan hasl keptsan?

4 Collet Data Mengambl nla data dar objek, Tpe data berdasarkan penskalaan datanya : Data Kaltatf : Data yang bkan berpa angka,. Terbag da : Nomnal : Data yang palng rendah dalam level pengkran data. Contoh : Jens kelamn, Merk mobl, Nama tempat Ordnal : Ada tngkatan data. Contoh : Sangat setj, Setj, krang setj, tdak setj. Data Kanttatf : Data berpa angka dalam art sebenarnya. Terbag da : Data Interval, Contoh : Interval temperatr rang adalah sbb : Ckp panas jka antara 5C-8 C, Panas jka antara 8 C- C, Sangat panas jka antara C-4 C. Data Raso, Tngkat pengkran palng tngg ; bersfat angka dalam art sesngghnya. Contoh : Tngg badan, Berat badan, Usa.

5 Objet to Dataset Ilstras transformas data dar objek yang damat : Tet Ctra Ado Vdeo Et Keterangan : No Ftr Ftr.. Ftr N Kelas 3.. M M menyatakan banyak data, N menyatakan banyak ftr. Ektraks ftr dlakkan jka data yang damat mash berpa data mentah (msalnya mash berpa kmplan data awal). Ftr yang dambl adalah yang merpakan r khas yang membedakan sat objek dengan objek lannya.

6 Dmensonalty Redton Problem : komplekstas komptas terhadap pengenalan pola pada rang dmens yang tngg. Sols : mappng data ke dalam rang dmens yang lebh rendah

7 Dmensonalty Redton Pengrangan dmens data dapat dlakkan dengan : Mengkombnaskan Ftr (seara lnear mapn nonlnear) Memlh hmpnan bagan dar ftr-ftr yang terseda Kombnas Lner merpakan pendekatan yang menark karena metode tersebt dlakkan dengan perhtngan yang sederhana dan terlaak seara analts

8 Dmensonalty Redton Dberkan ϵ R N, dengan tjan ntk menar transformas lner U sehngga y = U T ϵ R K dmana K<N N K b b b y a a a k N... dmensonalty rede...

9 Dmensonalty Redton Da pendekatan klask ntk menghtng transformas lner yang optmal : Prnpal Components Analyss (PCA): menar proyeks yang menyedakan nformas sebanyak mngkn dalam data dengan pendekatan leastsqares. Lnear Dsrmnant Analyss (LDA): menar proyeks terbak yang dapat memsahkan data dengan pendekatan least-sqares. Tjan PCA : mengrang dmens data dengan mempertahankan sebanyak mngkn nformas dar dataset yang asl.

10 Dmensonalty Redton Pendekatan vektor dengan menemkan bass ke dalam rang dmens yang lebh rendah Representas rang Dmens-Lebh Tngg : av av... a N v N v, v,..., v N merpakan bass dar rang dmens N Representas rang Dmens-Lebh Rendah : ˆ b b... b K K,,..., K merpakan bass dar rang dmens K a a... a N y b b... b k

11 Featre Seleton Usng PCA Pengrangan dmens berdampak pada hlangnya nformas PCA mempertahankan sebanyak mngkn nformas, dengan ara memnmalkan error : ˆ Bagamana aranya menentkan sb-rang dmens yang lebh rendah yang terbak? Egenvektor yang terbak dar matrks ovarans Egenvale yang terbesar Dsebt sebaga Prnpal Components

12 Featre Seleton Usng PCA Msalkan,,..., M terdapat dalam vektor N. Menar Mean (nla rata-rata) dar data. Menghtng Zero Mean (setap nla pada data sampel dkrang nla rata-rata tap parameter yang terkat) 3. Membangn matrks Covarans dengan mengkalkan matrks Zero Mean dengan transposenya 4. Menghtng egenvale 5. Menghtng matrks egenvektor 6. Mengrang dmens N sebesar K dmens yang ddapatkan dar egenvale yang terbesar sampa sampa yang terkel sebanyak K pertama

13 Featre Seleton Usng PCA Langkah : Menar Mean Global (nla rata-rata)... M Langkah : Menghtng Zero Mean M M M

14 Featre Seleton Usng PCA Langkah 3: Membangn matrks Covarans dengan mengkalkan matrks Zero Mean dengan transposenya Poplas Sampel M T N C M T N C

15 Featre Seleton Usng PCA Langkah 4 : Menghtng egenvale dar C CU U det( I C) I CU I U CU I U ( I C) U Hasl :,,...,, 3 N m,,, N,, m, m,,,,, m, N, n, n m, n, n, n m, n

16 Featre Seleton Usng PCA Langkah 5 : Menghtng egenvektor Dar egenvale yang dhtng pada langkah 4, dsbsttskan ke rms : ( I C) U Selesakan dengan menemkan nla U Hasl :,,...,, 3 N

17 Featre Seleton Usng PCA Langkah 6 : Mengrang dmens sebesar K dmens Plhlah ftr sebanyak K berdasarkan nla egenvale terbesar ˆ K b where K N ˆ merpakan hasl transformas dar

18 Featre Seleton Usng PCA PCA memproyekskan data sepanjang sat arah dmana data tersebt memlk varans yang tngg Arah tersebt dtentkan oleh egenvetors dar matrks ovarane yang memlk nla egenvales terbesar. Nla besaran dar egenvales merpakan nla varans data sepanjang arah dar egenvetor (gars lrs merah dan br)

19 Featre Seleton Usng PCA Pemlhan nla K menggnakan krtera berkt : K N Threshold ( e. g.,.9 or.95) Pada ontoh kass datas, dapat dkatakan bahwa kta menyedakan 9% ata 95% nformas dar data yang terseda Jka K=N, maka kta menyedakan % dar data yang terseda

20 Featre Seleton Usng PCA Vektor asal dapat dbangn kembal menggnakan komponen prnspal-nya PCA memnmalkan error dar rekonstrks prnspal tersebt: Hal t dapat dtnjkkan bahwa error sama dengan : K K b or b ˆ ˆ e ˆ N K e

21 PCA : Menghtng Egen Vale Msal dketah dataset : No Ftr Ftr Kelas P P Mobl P P Rmah Mean global Zero Mean Kovaran P D = P P P P P P Banyak_ Data P P D, msal C 4 N 5 T P P P Banyak_ Data

22 PCA : Menghtng Egen Vale Egen Vale : det C I ) 7( ) ( 7 3 3* 9) ( det * det * 4** ) ( 4,,,, a a b b Matrk EgenVale

23 PCA : Menghtng Egen Vetor Egen Vetor : Matrk EgenVale CU U ) ( ) ( Vektor egen ddapatkan dengan persamaan : ) (9 3 3 ) ( C Matrk kovaran : Untk λ = maka :

24 PCA : Menghtng Egen Vetor Egen Vetor : Untk λ = maka : Sols non trval sstem persamaan n adalah : Msalkan a 3 maka 8.378a 3 Jad vektor egen ntk λ = adalah : a U a 3 dmana a adalah blangan sembarang yang tdak nol. Untk λ = maka : Sols non trval sstem persamaan n adalah :.378 Msalkan b b maka. 378 Jad vektor egen ntk λ = adalah : 3b U. 378 b dmana b adalah blangan sembarang yang tdak nol.

25 PCA : Menghtng Egen Vetor Egen Vetor : Vektor egen ntk λ = adalah : a U a 3 msalkan a = maka U.5389 Jad Vektor egen globalnya adalah : U Vektor egen ntk λ = adalah : 3b U. 378 b msalkan b =.843 maka. U

26 PCA : Transformas Transformas data ftr : ˆ ku k Tentkan nla K dengan 9% nformas data yang kta gnakan Dar nla K yang dtentkan akan dperoleh ftr yang djadkan sebaga proses pengenalan pola ˆ

27 Selesa

Pengenalan Pola. Ekstraksi dan Seleksi Fitur

Pengenalan Pola. Ekstraksi dan Seleksi Fitur Pengenalan Pola Ekstraksi dan Seleksi Fitr PTIIK - 4 Corse Contents Collet Data Objet to Dataset 3 Ekstraksi Fitr 4 Seleksi Fitr Design Cyle Collet data Choose featres Choose model Train system Evalate

Lebih terperinci

81 Bab 6 Ruang Hasilkali Dalam

81 Bab 6 Ruang Hasilkali Dalam 8 Bab Rang Haslkal Dalam Bab RUANG HASIL KALI DALAM Rang hasl kal dalam merpakan rang ektor yang dlengkap dengan operas hasl kal dalam. Sepert halnya rang ektor rang haslkal dalam bermanfaat dalam beberapa

Lebih terperinci

BAB X RUANG HASIL KALI DALAM

BAB X RUANG HASIL KALI DALAM BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan

Lebih terperinci

PROPERTY DAN PERDAGANGAN SEBAGAI SEKTOR DOMINAN PADA DATA BURSA SAHAM. DENGAN Principal Component Analysis (PCA)

PROPERTY DAN PERDAGANGAN SEBAGAI SEKTOR DOMINAN PADA DATA BURSA SAHAM. DENGAN Principal Component Analysis (PCA) PROPERT DAN PERDAGANGAN SEBAGAI SEKTOR DOMINAN PADA DATA BURSA SAHAM DENGAN Prncpal Component Analyss (PCA) Oleh : Hanna aa Parhusp, usp, Deva eawdyananto a dan Bernadeta Desnova Kr Program Stud Statstka

Lebih terperinci

MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA) MAKALAH Untuk Memenuhi Tugas Matakuliah Multivariat yang dibimbing oleh Ibu Trianingsih Eni Lestari

MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA) MAKALAH Untuk Memenuhi Tugas Matakuliah Multivariat yang dibimbing oleh Ibu Trianingsih Eni Lestari MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA) MAKALAH Untuk Memenuh Tugas Matakulah Multvarat yang dbmbng oleh Ibu Tranngsh En Lestar oleh Sherly Dw Kharsma 34839 Slva Indrayan 34844 Vvn Octana 34633 UNIVERSITAS

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar belakang

BAB 1 PENDAHULUAN. 1.1 Latar belakang BAB 1 PENDAHULUAN 1.1 Latar belakang Dalam memlh sesuatu, mula yang memlh yang sederhana sampa ke hal yang sangat rumt yang dbutuhkan bukanlah berpkr yang rumt, tetap bagaman berpkr secara sederhana. AHP

Lebih terperinci

PENDUGAAN RASIO, BEDA DAN REGRESI

PENDUGAAN RASIO, BEDA DAN REGRESI TEKNIK SAMPLING PENDUGAAN RASIO, BEDA DAN REGRESI PENDAHULUAN Pendugaan parameter dar peubah Y seharusnya dlakukan dengan menggunakan nformas dar nla-nla peubah Y Bla nla-nla peubah Y sult ddapat, maka

Lebih terperinci

BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model

BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN A. Regres Model Log-Log Pada prnspnya model n merupakan hasl transformas dar suatu model tdak lner dengan membuat model dalam bentuk

Lebih terperinci

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE

BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi

BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi Daftar Is Daftar Is... Kata pengantar... BAB I...1 PENDAHULUAN...1 1.1 Latar Belakang...1 1.2 Rumusan Masalah...2 1.3 Tujuan...2 BAB II...3 TINJAUAN TEORITIS...3 2.1 Landasan Teor...4 BAB III...5 PEMBAHASAN...5

Lebih terperinci

STATISTICAL STUDENT OF IST AKPRIND

STATISTICAL STUDENT OF IST AKPRIND E-mal : [email protected] Blog : Analss Regres SederhanaMenggunakan MS Excel 2007 Lsens Dokumen: Copyrght 2010 sssta.wordpress.com Seluruh dokumen d sssta.wordpress.com dapat dgunakan dan dsebarkan

Lebih terperinci

Preferensi untuk alternatif A i diberikan

Preferensi untuk alternatif A i diberikan Bahan Kulah : Topk Khusus Metode Weghted Product (WP) menggunakan perkalan untuk menghubungkan ratng atrbut, dmana ratng setap atrbut harus dpangkatkan dulu dengan bobot atrbut yang bersangkutan. Proses

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang

Lebih terperinci

KORELASI DAN REGRESI LINIER. Debrina Puspita Andriani /

KORELASI DAN REGRESI LINIER. Debrina Puspita Andriani    / KORELASI DAN REGRESI LINIER 9 Debrna Puspta Andran www. E-mal : [email protected] / [email protected] 2 Outlne 3 Perbedaan mendasar antara korelas dan regres? KORELASI Korelas hanya menunjukkan sekedar hubungan.

Lebih terperinci

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Hpotess Peneltan Berkatan dengan manusa masalah d atas maka penuls menyusun hpotess sebaga acuan dalam penulsan hpotess penuls yatu Terdapat hubungan postf antara penddkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c

BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c 6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan

Lebih terperinci

METODE PENELITIAN. digunakan untuk mengetahui bagaimana pengaruh variabel X (celebrity

METODE PENELITIAN. digunakan untuk mengetahui bagaimana pengaruh variabel X (celebrity 37 III. METODE PENELITIAN 3.1 Jens dan Sumber Data Jens peneltan yang dgunakan adalah peneltan deskrptf, yang mana dgunakan untuk mengetahu bagamana pengaruh varabel X (celebrty endorser) terhadap varabel

Lebih terperinci

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK:

BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA Contoh : hasl ulangan Matematka 5 sswa sbb: 6 8 7 6 9 Pengertan Statstka dan

Lebih terperinci

BAB III METODELOGI PENELITIAN. metode penelitian yang digunakan dalam penelitian ini adalah metode deskriptif

BAB III METODELOGI PENELITIAN. metode penelitian yang digunakan dalam penelitian ini adalah metode deskriptif BAB III METODELOGI PENELITIAN 3.1 Desan Peneltan Metode peneltan mengungkapkan dengan jelas bagamana cara memperoleh data yang dperlukan, oleh karena tu metode peneltan lebh menekankan pada strateg, proses

Lebih terperinci

Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal

Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal 157 Vol. 13, No. 2, 157-161, Januar 2017 Tnjauan Algortma Genetka Pada Permasalahan Hmpunan Httng Mnmal Jusmawat Massalesse, Bud Nurwahyu Abstrak Beberapa persoalan menark dapat dformulaskan sebaga permasalahan

Lebih terperinci

Kritikan Terhadap Varians Sebagai Alat Ukur

Kritikan Terhadap Varians Sebagai Alat Ukur Krtkan Terhadap Varans Sebaga Alat Ukur Varans mengukur penympangan pengembalan aktva d sektar nla yang dharapkan, maka varans mempertmbangkan juga pengembalan d atas atau d bawah nla pengembalan yang

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen yang telah dilaksanakan di SMA

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen yang telah dilaksanakan di SMA III. METODE PENELITIAN A. Waktu dan Tempat Peneltan Peneltan n merupakan stud ekspermen yang telah dlaksanakan d SMA Neger 3 Bandar Lampung. Peneltan n dlaksanakan pada semester genap tahun ajaran 2012/2013.

Lebih terperinci

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN

Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN BAB I PENDAHULUAN Sebuah jarngan terdr dar sekelompok node yang dhubungkan oleh busur atau cabang. Suatu jens arus tertentu berkatan dengan setap busur. Notas standart untuk menggambarkan sebuah jarngan

Lebih terperinci

ALJABAR LINIER LANJUT

ALJABAR LINIER LANJUT ALABAR LINIER LANUT Ruang Bars dan Ruang Kolom suatu Matrks Msalkan A adalah matrks mnatas lapangan F. Bars pada matrks A merentang subruang F n dsebut ruang bars A, dnotaskan dengan rs(a) dan kolom pada

Lebih terperinci

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan

Lebih terperinci

Analitik Data Tingkat Lanjut (Regresi)

Analitik Data Tingkat Lanjut (Regresi) 0 Oktober 206 Analtk Data Tngkat Lanut (Regres) Imam Cholssodn [email protected] Pokok Bahasan. Konsep Regres 2. Analss Teknkal dan Fundamental 3. Regres Lnear & Regres Logstc (Optonal) 4. Regres

Lebih terperinci

BAB.3 METODOLOGI PENELITIN 3.1 Lokasi dan Waktu Penelitian Penelitian ini di laksanakan di Sekolah Menengah Pertama (SMP) N. 1 Gorontalo pada kelas

BAB.3 METODOLOGI PENELITIN 3.1 Lokasi dan Waktu Penelitian Penelitian ini di laksanakan di Sekolah Menengah Pertama (SMP) N. 1 Gorontalo pada kelas 9 BAB.3 METODOLOGI PENELITIN 3. Lokas dan Waktu Peneltan Peneltan n d laksanakan d Sekolah Menengah Pertama (SMP) N. Gorontalo pada kelas VIII. Waktu peneltan dlaksanakan pada semester ganjl, tahun ajaran

Lebih terperinci

KLASTERISASI DATA MICROARRAY MENGGUNAKAN METODE CLIQUE PARTITIONING

KLASTERISASI DATA MICROARRAY MENGGUNAKAN METODE CLIQUE PARTITIONING KLASTERISASI DATA MICROARRAY MENGGUNAKAN METODE CLIQUE PARTITIONING Lsa Maranah 1, Fhra Nhta, Adwjaya 3 1,,3 ProdS1 Ilmu Komputas, Fakultas Informatka, Unverstas Telkom 1 [email protected], [email protected],

Lebih terperinci

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang

Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang Modul 1 Teor Hmpunan PENDAHULUAN Prof SM Nababan, PhD Drs Warsto, MPd mpunan sebaga koleks (pengelompokan) dar objek-objek yang H dnyatakan dengan jelas, banyak dgunakan dan djumpa dberbaga bdang bukan

Lebih terperinci

I. PENGANTAR STATISTIKA

I. PENGANTAR STATISTIKA 1 I. PENGANTAR STATISTIKA 1.1 Jens-jens Statstk Secara umum, lmu statstka dapat terbag menjad dua jens, yatu: 1. Statstka Deskrptf. Statstka Inferensal Dalam sub bab n akan djelaskan mengena pengertan

Lebih terperinci

SMALL AREA ESTIMATION UNTUK PENDUGAAN JUMLAH PENDUDUK MISKIN DI KOTA SEMARANG DENGAN PENDEKATAN KERNEL-BOOTSTRAP

SMALL AREA ESTIMATION UNTUK PENDUGAAN JUMLAH PENDUDUK MISKIN DI KOTA SEMARANG DENGAN PENDEKATAN KERNEL-BOOTSTRAP Statstka, Vol., No., November 04 SMALL AREA ESTIMATION UNTUK PENDUGAAN JUMLAH PENDUDUK MISKIN DI KOTA SEMARANG DENGAN PENDEKATAN KERNEL-BOOTSTRAP Ujang Malana, Moh Yamn Darsyah, 3 Tan Wahy Utam,,3 Program

Lebih terperinci

BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk

BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan metode statstka ang dgunakan untuk meramalkan sebuah varabel respon Y dar satu atau lebh varabel bebas X, selan tu juga dgunakan untuk

Lebih terperinci

PENERAPAN METODE LINIEAR DISCRIMINANT ANALYSIS PADA PENGENALAN WAJAH BERBASIS KAMERA

PENERAPAN METODE LINIEAR DISCRIMINANT ANALYSIS PADA PENGENALAN WAJAH BERBASIS KAMERA PENERAPAN MEODE LINIEAR DISCRIMINAN ANALYSIS PADA PENGENALAN AJAH ERASIS KAMERA Asep Sholahuddn 1, Rustam E. Sregar 2,Ipng Suprana 3,Setawan Had 4 1 Mahasswa S3 FMIPA Unverstas Padjadjaran e-mal: [email protected]

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri I Tibawa pada semester genap

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri I Tibawa pada semester genap 5 BAB III METODOLOGI PENELITIAN 3. Lokas Dan Waktu Peneltan Peneltan n dlaksanakan d SMA Neger I Tbawa pada semester genap tahun ajaran 0/03. Peneltan n berlangsung selama ± bulan (Me,Jun) mula dar tahap

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Dalam pembuatan tugas akhr n, penulsan mendapat referens dar pustaka serta lteratur lan yang berhubungan dengan pokok masalah yang penuls ajukan. Langkah-langkah yang akan

Lebih terperinci

ANALISIS BENTUK HUBUNGAN

ANALISIS BENTUK HUBUNGAN ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel

Lebih terperinci

Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381

Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381 Bab 1 Ruang Vektor Defns Msalkan F adalah feld, yang elemen-elemennya dnyatakansebaga skalar. Ruang vektor atas F adalah hmpunan tak kosong V, yang elemen-elemennya merupakan vektor, bersama dengan dua

Lebih terperinci

BAB III METODE PENELITIAN. sebuah fenomena atau suatu kejadian yang diteliti. Ciri-ciri metode deskriptif menurut Surakhmad W (1998:140) adalah

BAB III METODE PENELITIAN. sebuah fenomena atau suatu kejadian yang diteliti. Ciri-ciri metode deskriptif menurut Surakhmad W (1998:140) adalah BAB III METODE PENELITIAN 3.1 Metode Peneltan Metode yang dgunakan dalam peneltan n adalah metode deskrptf. Peneltan deskrptf merupakan peneltan yang dlakukan untuk menggambarkan sebuah fenomena atau suatu

Lebih terperinci

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI

IV. UKURAN SIMPANGAN, DISPERSI & VARIASI IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan

Lebih terperinci

PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING

PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING Meda Informatka, Vol. 2, No. 2, Desember 2004, 57-64 ISSN: 0854-4743 PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING Sr Kusumadew Jurusan Teknk Informatka, Fakultas

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2 Masalah Transportas Jong Jek Sang (20) menelaskan bahwa masalah transportas merupakan masalah yang serng dhadap dalam pendstrbusan barang Msalkan ada m buah gudang (sumber) yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 2 LNDSN TEORI 2. Teor engamblan Keputusan Menurut Supranto 99 keputusan adalah hasl pemecahan masalah yang dhadapnya dengan tegas. Suatu keputusan merupakan jawaban yang past terhadap suatu pertanyaan.

Lebih terperinci

PENGENALAN JENIS-JENIS IKAN MENGGUNAKAN METODE ANALISIS KOMPONEN UTAMA

PENGENALAN JENIS-JENIS IKAN MENGGUNAKAN METODE ANALISIS KOMPONEN UTAMA MAKALAH SEMINAR TUGAS AKHIR PENGENALAN JENIS-JENIS IKAN MENGGUNAKAN METODE ANALISIS KOMPONEN UTAMA Suharto Jat Santoso *, Bud Setyono **, R. Rzal Isnanto ** Abstrak - Selama n pengenalan jens kan pada

Lebih terperinci

Dengan derajat bebas (pu-1) =(p-1)+(pu-p) (pu-1)=(p-1)+p(u-1) Sebagai contoh kita ambil p=4 dan u=6 maka tabulasi datanya sebagai berikut:

Dengan derajat bebas (pu-1) =(p-1)+(pu-p) (pu-1)=(p-1)+p(u-1) Sebagai contoh kita ambil p=4 dan u=6 maka tabulasi datanya sebagai berikut: X. ANALISIS RAGAM SEDERANA Jka erlakan yang ngn dj/dbandngkan lebh dar da(p>) dan ragam tdak dketah maka kta bsa melakkan j t dengan jalan mengj erlakan seasang dem seasang. Banyaknya asangan hotess yang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang dan Permasalahan

BAB I PENDAHULUAN Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Matematka dbag menjad beberapa kelompok bdang lmu, antara lan analss, aljabar, dan statstka. Ruang barsan merupakan salah satu bagan yang ada d bdang

Lebih terperinci

BAB VB PERSEPTRON & CONTOH

BAB VB PERSEPTRON & CONTOH BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur

Lebih terperinci

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi. BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN. Latar Belakang Manova atau Multvarate of Varance merupakan pengujan dalam multvarate yang bertujuan untuk mengetahu pengaruh varabel respon dengan terhadap beberapa varabel predktor

Lebih terperinci

Dekomposisi Nilai Singular dan Aplikasinya

Dekomposisi Nilai Singular dan Aplikasinya A : Dekomposs Nla Sngular dan Aplkasnya Gregora Aryant Dekomposs Nla Sngular dan Aplkasnya Oleh : Gregora Aryant Program Stud Penddkan Matematka nverstas Wdya Mandala Madun aryant_gregora@yahoocom Abstrak

Lebih terperinci

Regresi Polinomial local untuk Data Survey Skala Besar

Regresi Polinomial local untuk Data Survey Skala Besar Semnar Nasonal Statstka IX Insttut eknolog Sepuluh Nopember, 7 November 009 Regres Polnomal local untuk Data Survey Skala Besar Stud kasus: Model Pengeluaran Rumah angga berdasarkan Data Susenas Jawa mur

Lebih terperinci

BAB IV TRIP GENERATION

BAB IV TRIP GENERATION BAB IV TRIP GENERATION 4.1 PENDAHULUAN Trp Generaton td : 1. Trp Producton 2. Trp Attracton j Generator Attractor - Setap tempat mempunya fktor untuk membangktkan dan menark pergerakan - Bangktan, Tarkan

Lebih terperinci

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana

Lebih terperinci

APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS

APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Vol No Jurnal Sans Teknolog Industr APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Ftr Aryan Dew Yulant Jurusan Matematka Fakultas Sans Teknolog UIN SUSKA Rau Emal:

Lebih terperinci

PROPOSAL SKRIPSI JUDUL:

PROPOSAL SKRIPSI JUDUL: PROPOSAL SKRIPSI JUDUL: 1.1. Latar Belakang Masalah SDM kn makn berperan besar bag kesuksesan suatu organsas. Banyak organsas menyadar bahwa unsur manusa dalam suatu organsas dapat memberkan keunggulan

Lebih terperinci

Misalkan S himpunan bilangan kompleks. Fungsi kompleks f pada S adalah aturan yang

Misalkan S himpunan bilangan kompleks. Fungsi kompleks f pada S adalah aturan yang Fngs Analtk FUNGSI ANALITIK Fngs sebt analtk ttk apabla aa sema ttk paa sat lngkngan Untk mengj keanaltkan sat ngs kompleks w = = + gnakan persamaan Cach Remann Sebelm mempelejar persamaan Cach-Remann

Lebih terperinci

SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES 1 ABSTRAK

SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES 1 ABSTRAK SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES Harm Sugart Jurusan Statstka FMIPA Unverstas Terbuka emal: [email protected] ABSTRAK Adanya penympangan terhadap asums

Lebih terperinci

BAB III METODE PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode

BAB III METODE PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode BAB III METODE PENELITIAN Desan Peneltan Metode peneltan yang dgunakan dalam peneltan n adalah metode deskrptf analts dengan jens pendekatan stud kasus yatu dengan melhat fenomena permasalahan yang ada

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PEDAHULUA. Latar Belakang Rsko ddentfkaskan dengan ketdakpastan. Dalam mengambl keputusan nvestas para nvestor mengharapkan hasl yang maksmal dengan rsko tertentu atau hasl tertentu dengan rsko yang

Lebih terperinci

TEORI INVESTASI DAN PORTFOLIO MATERI 4.

TEORI INVESTASI DAN PORTFOLIO MATERI 4. TEORI INVESTASI DAN PORTFOLIO MATERI 4 KONSEP DASAR 2/40 Ada tga konsep dasar yang perlu dketahu untuk memaham pembentukan portofolo optmal, yatu: portofolo efsen dan portofolo optmal fungs utltas dan

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD

SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD SUMBER BELAJAR PENUNJANG PLPG 0 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB V STATISTIKA Dra.Hj.Rosdah Salam, M.Pd. Dra. Nurfazah, M.Hum. Drs. Latr S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Wdya

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metode eksperimen

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metode eksperimen 3 BAB III METODOLOGI PENELITIAN A. Metode dan Desan Peneltan Metode yang dgunakan dalam peneltan n adalah metode ekspermen karena sesua dengan tujuan peneltan yatu melhat hubungan antara varabelvarabel

Lebih terperinci

Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan :

Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan : Analss Regres Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Itasa & Y Angran Dep. Statstka FMIPA-IPB Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan

Lebih terperinci

BAB III METODE PENELITIAN. Jenis penelitian yang akan digunakan dalam penelitian ini adalah

BAB III METODE PENELITIAN. Jenis penelitian yang akan digunakan dalam penelitian ini adalah BAB III METODE PENELITIAN A. Jens Peneltan Jens peneltan yang akan dgunakan dalam peneltan n adalah peneltan pengembangan (Research and Development). Peneltan Research and Development (R&D) n merupakan

Lebih terperinci

BAB VI MODEL-MODEL DETERMINISTIK

BAB VI MODEL-MODEL DETERMINISTIK BAB VI MODEL-MODEL DETERMINISTIK 6. Masalah Penyaluran Daya Lstrk Andakan seorang perencana sstem kelstrkan merencakan penyaluran daya lstrk dar beberapa pembangkt yang ternterkoneks dan terhubung dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tnjauan Pustaka Dar peneltan yang dlakukan Her Sulstyo (2010) telah dbuat suatu sstem perangkat lunak untuk mendukung dalam pengamblan keputusan menggunakan

Lebih terperinci

BAB III HIPOTESIS DAN METODOLOGI PENELITIAN

BAB III HIPOTESIS DAN METODOLOGI PENELITIAN BAB III HIPOTESIS DAN METODOLOGI PENELITIAN III.1 Hpotess Berdasarkan kerangka pemkran sebelumnya, maka dapat drumuskan hpotess sebaga berkut : H1 : ada beda sgnfkan antara sebelum dan setelah penerbtan

Lebih terperinci

PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS)

PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS) PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS) Wrayant ), Ad Setawan ), Bambang Susanto ) ) Mahasswa Program Stud Matematka FSM UKSW Jl. Dponegoro 5-6 Salatga,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Pengertan Regres Regres pertama kal dgunakan sebaga konsep statstka oleh Sr Francs Galton (18 1911).Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang selanjutnya

Lebih terperinci

BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F )

BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F ) 28 BAB III HASILKALI TENSOR PADA RUANG VEKTOR III.1 Ruang Dual Defns III.1.2: Ruang Dual [10] Msalkan V ruang vektor atas lapangan F. Suatu transformas lnear f L ( V, F ) dkatakan fungsonal lnear (atau

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB PENDAHULUAN. Latar Belaang Masalah Analss regres merupaan lmu peramalan dalam statst. Analss regres dapat dataan sebaga usaha mempreds atau meramalan perubahan. Regres mengemuaan tentang engntahuan

Lebih terperinci

BAB IV PEMBAHASAN MODEL

BAB IV PEMBAHASAN MODEL BAB IV PEMBAHASAN MODEL Pada bab IV n akan dlakukan pembuatan model dengan melakukan analss perhtungan untuk permasalahan proses pengadaan model persedaan mult tem dengan baya produks cekung dan jont setup

Lebih terperinci

BAB IV CONTOH PENGGUNAAN MODEL REGRESI GENERALIZED POISSON I. Kesulitan ekonomi yang tengah terjadi akhir-akhir ini, memaksa

BAB IV CONTOH PENGGUNAAN MODEL REGRESI GENERALIZED POISSON I. Kesulitan ekonomi yang tengah terjadi akhir-akhir ini, memaksa BAB IV CONTOH PENGGUNAAN MODEL REGRESI GENERALIZED POISSON I 4. LATAR BELAKANG Kesultan ekonom yang tengah terjad akhr-akhr n, memaksa masyarakat memutar otak untuk mencar uang guna memenuh kebutuhan hdup

Lebih terperinci

ANALISIS REGRESI. Catatan Freddy

ANALISIS REGRESI. Catatan Freddy ANALISIS REGRESI Regres Lner Sederhana : Contoh Perhtungan Regres Lner Sederhana Menghtung harga a dan b Menyusun Persamaan Regres Korelas Pearson (Product Moment) Koefsen Determnas (KD) Regres Ganda :

Lebih terperinci

Model Potensial Gravitasi Hansen untuk Menentukan Pertumbuhan Populasi Daerah

Model Potensial Gravitasi Hansen untuk Menentukan Pertumbuhan Populasi Daerah Performa (2004) Vol. 3, No.1: 28-32 Model Potensal Gravtas Hansen untuk Menentukan Pertumbuhan Populas Daerah Bambang Suhard Jurusan Teknk Industr, Unverstas Sebelas Maret, Surakarta Abstract Gravtaton

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 ENDAHULUAN 1.1 Latar Belakang Secara umum dapat dkatakan bahwa mengambl atau membuat keputusan berart memlh satu dantara sekan banyak alternatf. erumusan berbaga alternatf sesua dengan yang sedang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang I ENDHULUN. Latar elakang Mengambl keputusan secara aktf memberkan suatu tngkat pengendalan atas kehdupan spengambl keputusan. lhan-plhan yang dambl sebenarnya membantu dalam penentuan masa depan. Namun

Lebih terperinci

TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph

TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph TINJAUAN PUSTAKA Bayesan Networks BNs dapat memberkan nformas yang sederhana dan padat mengena nformas peluang. Berdasarkan komponennya BNs terdr dar Bayesan Structure (Bs) dan Bayesan Parameter (Bp) (Cooper

Lebih terperinci

Analisis Regresi 1. Pokok Bahasan : Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh

Analisis Regresi 1. Pokok Bahasan : Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh Analss Regres 1 Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan nla harapannya E[Y x] E[Y x] y b

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini merupakan penelitian yang bertujuan untuk mendeskripsikan

BAB III METODE PENELITIAN. Penelitian ini merupakan penelitian yang bertujuan untuk mendeskripsikan BAB III METODE PENELITIAN A. Jens Peneltan Peneltan n merupakan peneltan yang bertujuan untuk mendeskrpskan langkah-langkah pengembangan perangkat pembelajaran matematka berbass teor varas berupa Rencana

Lebih terperinci

Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik

Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik Pendeteksan Data Penclan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Dagnostk Sally Indra 1, Dod Vonanda, Rry Srnngsh 3 1 Student of Mathematcs Department State Unversty of Padang,

Lebih terperinci

SENTIMENT ANALYSIS DOKUMEN E-COMPLAINT KAMPUS MENGGUNAKAN ADDITIVE SELECTED KERNEL SVM

SENTIMENT ANALYSIS DOKUMEN E-COMPLAINT KAMPUS MENGGUNAKAN ADDITIVE SELECTED KERNEL SVM Cholssodn I. Setawan B.D. 03. Sentment Analyss Dokumen E-Complant ampus Menggunakan Addtve Seleted ernel SVM. Semnar Nasonal Teknolog Informas Dan Aplkasnya SNATIA. SENTIMENT ANALYSIS DOUMEN E-COMPLAINT

Lebih terperinci

BAB III METODE PENELITIAN. problems. Cresswell (2012: 533) beranggapan bahwa dengan

BAB III METODE PENELITIAN. problems. Cresswell (2012: 533) beranggapan bahwa dengan BAB III METODE PENELITIAN A. Jens Peneltan Jens peneltan n adalah peneltan kombnas atau mxed methods. Cresswell (2012: 533) A mxed methods research desgn s a procedure for collectng, analyzng and mxng

Lebih terperinci

BAB II METODOLOGI PENELITIAN. Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian. variable independen dengan variabel dependen.

BAB II METODOLOGI PENELITIAN. Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian. variable independen dengan variabel dependen. BAB II METODOLOGI PENELITIAN A. Bentuk Peneltan Jens peneltan yang dgunakan dalam peneltan n adalah peneltan deskrptf dengan analsa kuanttatf, dengan maksud untuk mencar pengaruh antara varable ndependen

Lebih terperinci

Nama : Crishadi Juliantoro NPM :

Nama : Crishadi Juliantoro NPM : ANALISIS INVESTASI PADA PERUSAHAAN YANG MASUK DALAM PERHITUNGAN INDEX LQ-45 MENGGUNAKAN PORTOFOLIO DENGAN METODE SINGLE INDEX MODEL. Nama : Crshad Julantoro NPM : 110630 Latar Belakang Pemlhan saham yang

Lebih terperinci