Pengenalan Pola/ Pattern Recognition
|
|
|
- Shinta Chandra
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Pengenalan Pola/ Pattern Reognton Dasar Pengenalan Pola Imam Cholssodn S.S., M.Kom.
2 Dasar Pengenalan Pola. The Desgn Cyle. Collet Data 3. Objet to Dataset 4. Featre Seleton Usng PCA Menghtng Egen Vale Menghtng Egen Vetor Transformas Data Ftr Menghtng Nla Error 5. Tgas
3 The Desgn Cyle Collet data Choose featres Choose model Tran system Evalate system Apa sensor yang hars kta gnakan? Bagamana mengmplkan data? Bagamana mengetah ftr apa yang dplh, dan bagamana kta memlhnya...? (Msal transformas data ftr dengan PCA) Apa lassfer yang akan dgnakan? Apakah ada lassfer yang terbak...? Bagamana kta melakkan proses Tranng? Bagamana mengevalas knerja sstem? Bagamana memvaldas hasl? Berapakah tngkat keperayaan hasl keptsan?
4 Collet Data Mengambl nla data dar objek, Tpe data berdasarkan penskalaan datanya : Data Kaltatf : Data yang bkan berpa angka,. Terbag da : Nomnal : Data yang palng rendah dalam level pengkran data. Contoh : Jens kelamn, Merk mobl, Nama tempat Ordnal : Ada tngkatan data. Contoh : Sangat setj, Setj, krang setj, tdak setj. Data Kanttatf : Data berpa angka dalam art sebenarnya. Terbag da : Data Interval, Contoh : Interval temperatr rang adalah sbb : Ckp panas jka antara 5C-8 C, Panas jka antara 8 C- C, Sangat panas jka antara C-4 C. Data Raso, Tngkat pengkran palng tngg ; bersfat angka dalam art sesngghnya. Contoh : Tngg badan, Berat badan, Usa.
5 Objet to Dataset Ilstras transformas data dar objek yang damat : Tet Ctra Ado Vdeo Et Keterangan : No Ftr Ftr.. Ftr N Kelas 3.. M M menyatakan banyak data, N menyatakan banyak ftr. Ektraks ftr dlakkan jka data yang damat mash berpa data mentah (msalnya mash berpa kmplan data awal). Ftr yang dambl adalah yang merpakan r khas yang membedakan sat objek dengan objek lannya.
6 Dmensonalty Redton Problem : komplekstas komptas terhadap pengenalan pola pada rang dmens yang tngg. Sols : mappng data ke dalam rang dmens yang lebh rendah
7 Dmensonalty Redton Pengrangan dmens data dapat dlakkan dengan : Mengkombnaskan Ftr (seara lnear mapn nonlnear) Memlh hmpnan bagan dar ftr-ftr yang terseda Kombnas Lner merpakan pendekatan yang menark karena metode tersebt dlakkan dengan perhtngan yang sederhana dan terlaak seara analts
8 Dmensonalty Redton Dberkan ϵ R N, dengan tjan ntk menar transformas lner U sehngga y = U T ϵ R K dmana K<N N K b b b y a a a k N... dmensonalty rede...
9 Dmensonalty Redton Da pendekatan klask ntk menghtng transformas lner yang optmal : Prnpal Components Analyss (PCA): menar proyeks yang menyedakan nformas sebanyak mngkn dalam data dengan pendekatan leastsqares. Lnear Dsrmnant Analyss (LDA): menar proyeks terbak yang dapat memsahkan data dengan pendekatan least-sqares. Tjan PCA : mengrang dmens data dengan mempertahankan sebanyak mngkn nformas dar dataset yang asl.
10 Dmensonalty Redton Pendekatan vektor dengan menemkan bass ke dalam rang dmens yang lebh rendah Representas rang Dmens-Lebh Tngg : av av... a N v N v, v,..., v N merpakan bass dar rang dmens N Representas rang Dmens-Lebh Rendah : ˆ b b... b K K,,..., K merpakan bass dar rang dmens K a a... a N y b b... b k
11 Featre Seleton Usng PCA Pengrangan dmens berdampak pada hlangnya nformas PCA mempertahankan sebanyak mngkn nformas, dengan ara memnmalkan error : ˆ Bagamana aranya menentkan sb-rang dmens yang lebh rendah yang terbak? Egenvektor yang terbak dar matrks ovarans Egenvale yang terbesar Dsebt sebaga Prnpal Components
12 Featre Seleton Usng PCA Msalkan,,..., M terdapat dalam vektor N. Menar Mean (nla rata-rata) dar data. Menghtng Zero Mean (setap nla pada data sampel dkrang nla rata-rata tap parameter yang terkat) 3. Membangn matrks Covarans dengan mengkalkan matrks Zero Mean dengan transposenya 4. Menghtng egenvale 5. Menghtng matrks egenvektor 6. Mengrang dmens N sebesar K dmens yang ddapatkan dar egenvale yang terbesar sampa sampa yang terkel sebanyak K pertama
13 Featre Seleton Usng PCA Langkah : Menar Mean Global (nla rata-rata)... M Langkah : Menghtng Zero Mean M M M
14 Featre Seleton Usng PCA Langkah 3: Membangn matrks Covarans dengan mengkalkan matrks Zero Mean dengan transposenya Poplas Sampel M T N C M T N C
15 Featre Seleton Usng PCA Langkah 4 : Menghtng egenvale dar C CU U det( I C) I CU I U CU I U ( I C) U Hasl :,,...,, 3 N m,,, N,, m, m,,,,, m, N, n, n m, n, n, n m, n
16 Featre Seleton Usng PCA Langkah 5 : Menghtng egenvektor Dar egenvale yang dhtng pada langkah 4, dsbsttskan ke rms : ( I C) U Selesakan dengan menemkan nla U Hasl :,,...,, 3 N
17 Featre Seleton Usng PCA Langkah 6 : Mengrang dmens sebesar K dmens Plhlah ftr sebanyak K berdasarkan nla egenvale terbesar ˆ K b where K N ˆ merpakan hasl transformas dar
18 Featre Seleton Usng PCA PCA memproyekskan data sepanjang sat arah dmana data tersebt memlk varans yang tngg Arah tersebt dtentkan oleh egenvetors dar matrks ovarane yang memlk nla egenvales terbesar. Nla besaran dar egenvales merpakan nla varans data sepanjang arah dar egenvetor (gars lrs merah dan br)
19 Featre Seleton Usng PCA Pemlhan nla K menggnakan krtera berkt : K N Threshold ( e. g.,.9 or.95) Pada ontoh kass datas, dapat dkatakan bahwa kta menyedakan 9% ata 95% nformas dar data yang terseda Jka K=N, maka kta menyedakan % dar data yang terseda
20 Featre Seleton Usng PCA Vektor asal dapat dbangn kembal menggnakan komponen prnspal-nya PCA memnmalkan error dar rekonstrks prnspal tersebt: Hal t dapat dtnjkkan bahwa error sama dengan : K K b or b ˆ ˆ e ˆ N K e
21 PCA : Menghtng Egen Vale Msal dketah dataset : No Ftr Ftr Kelas P P Mobl P P Rmah Mean global Zero Mean Kovaran P D = P P P P P P Banyak_ Data P P D, msal C 4 N 5 T P P P Banyak_ Data
22 PCA : Menghtng Egen Vale Egen Vale : det C I ) 7( ) ( 7 3 3* 9) ( det * det * 4** ) ( 4,,,, a a b b Matrk EgenVale
23 PCA : Menghtng Egen Vetor Egen Vetor : Matrk EgenVale CU U ) ( ) ( Vektor egen ddapatkan dengan persamaan : ) (9 3 3 ) ( C Matrk kovaran : Untk λ = maka :
24 PCA : Menghtng Egen Vetor Egen Vetor : Untk λ = maka : Sols non trval sstem persamaan n adalah : Msalkan a 3 maka 8.378a 3 Jad vektor egen ntk λ = adalah : a U a 3 dmana a adalah blangan sembarang yang tdak nol. Untk λ = maka : Sols non trval sstem persamaan n adalah :.378 Msalkan b b maka. 378 Jad vektor egen ntk λ = adalah : 3b U. 378 b dmana b adalah blangan sembarang yang tdak nol.
25 PCA : Menghtng Egen Vetor Egen Vetor : Vektor egen ntk λ = adalah : a U a 3 msalkan a = maka U.5389 Jad Vektor egen globalnya adalah : U Vektor egen ntk λ = adalah : 3b U. 378 b msalkan b =.843 maka. U
26 PCA : Transformas Transformas data ftr : ˆ ku k Tentkan nla K dengan 9% nformas data yang kta gnakan Dar nla K yang dtentkan akan dperoleh ftr yang djadkan sebaga proses pengenalan pola ˆ
27 Selesa
Pengenalan Pola. Ekstraksi dan Seleksi Fitur
Pengenalan Pola Ekstraksi dan Seleksi Fitr PTIIK - 4 Corse Contents Collet Data Objet to Dataset 3 Ekstraksi Fitr 4 Seleksi Fitr Design Cyle Collet data Choose featres Choose model Train system Evalate
81 Bab 6 Ruang Hasilkali Dalam
8 Bab Rang Haslkal Dalam Bab RUANG HASIL KALI DALAM Rang hasl kal dalam merpakan rang ektor yang dlengkap dengan operas hasl kal dalam. Sepert halnya rang ektor rang haslkal dalam bermanfaat dalam beberapa
BAB X RUANG HASIL KALI DALAM
BAB X RUANG HASIL KALI DALAM 0. Hasl Kal Dalam Defns. Hasl kal dalam adalah fungs yang mengatkan setap pasangan vektor d ruang vektor V (msalkan pasangan u dan v, dnotaskan dengan u, v ) dengan blangan
PROPERTY DAN PERDAGANGAN SEBAGAI SEKTOR DOMINAN PADA DATA BURSA SAHAM. DENGAN Principal Component Analysis (PCA)
PROPERT DAN PERDAGANGAN SEBAGAI SEKTOR DOMINAN PADA DATA BURSA SAHAM DENGAN Prncpal Component Analyss (PCA) Oleh : Hanna aa Parhusp, usp, Deva eawdyananto a dan Bernadeta Desnova Kr Program Stud Statstka
MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA) MAKALAH Untuk Memenuhi Tugas Matakuliah Multivariat yang dibimbing oleh Ibu Trianingsih Eni Lestari
MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA) MAKALAH Untuk Memenuh Tugas Matakulah Multvarat yang dbmbng oleh Ibu Tranngsh En Lestar oleh Sherly Dw Kharsma 34839 Slva Indrayan 34844 Vvn Octana 34633 UNIVERSITAS
BAB 1 PENDAHULUAN. 1.1 Latar belakang
BAB 1 PENDAHULUAN 1.1 Latar belakang Dalam memlh sesuatu, mula yang memlh yang sederhana sampa ke hal yang sangat rumt yang dbutuhkan bukanlah berpkr yang rumt, tetap bagaman berpkr secara sederhana. AHP
PENDUGAAN RASIO, BEDA DAN REGRESI
TEKNIK SAMPLING PENDUGAAN RASIO, BEDA DAN REGRESI PENDAHULUAN Pendugaan parameter dar peubah Y seharusnya dlakukan dengan menggunakan nformas dar nla-nla peubah Y Bla nla-nla peubah Y sult ddapat, maka
BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model
BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN A. Regres Model Log-Log Pada prnspnya model n merupakan hasl transformas dar suatu model tdak lner dengan membuat model dalam bentuk
BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE
BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Fuzzy Set Pada tahun 1965, Zadeh memodfkas teor hmpunan dmana setap anggotanya memlk derajat keanggotaan yang bernla kontnu antara 0 sampa 1. Hmpunan n dsebut dengan hmpunaan
BAB I PENDAHULUAN. 1.1 Latar Belakang. Di dalam matematika mulai dari SD, SMP, SMA, dan Perguruan Tinggi
Daftar Is Daftar Is... Kata pengantar... BAB I...1 PENDAHULUAN...1 1.1 Latar Belakang...1 1.2 Rumusan Masalah...2 1.3 Tujuan...2 BAB II...3 TINJAUAN TEORITIS...3 2.1 Landasan Teor...4 BAB III...5 PEMBAHASAN...5
STATISTICAL STUDENT OF IST AKPRIND
E-mal : [email protected] Blog : Analss Regres SederhanaMenggunakan MS Excel 2007 Lsens Dokumen: Copyrght 2010 sssta.wordpress.com Seluruh dokumen d sssta.wordpress.com dapat dgunakan dan dsebarkan
Preferensi untuk alternatif A i diberikan
Bahan Kulah : Topk Khusus Metode Weghted Product (WP) menggunakan perkalan untuk menghubungkan ratng atrbut, dmana ratng setap atrbut harus dpangkatkan dulu dengan bobot atrbut yang bersangkutan. Proses
BAB 2 LANDASAN TEORI. Universitas Sumatera Utara
BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang
KORELASI DAN REGRESI LINIER. Debrina Puspita Andriani /
KORELASI DAN REGRESI LINIER 9 Debrna Puspta Andran www. E-mal : [email protected] / [email protected] 2 Outlne 3 Perbedaan mendasar antara korelas dan regres? KORELASI Korelas hanya menunjukkan sekedar hubungan.
Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan
Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN 3.1. Hpotess Peneltan Berkatan dengan manusa masalah d atas maka penuls menyusun hpotess sebaga acuan dalam penulsan hpotess penuls yatu Terdapat hubungan postf antara penddkan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang
BAB 3 PEMBAHASAN. 3.1 Prosedur Penyelesaian Masalah Program Linier Parametrik Prosedur Penyelesaian untuk perubahan kontinu parameter c
6 A PEMAHASA Pada bab sebelumnya telah dbahas teor-teor yang akan dgunakan untuk menyelesakan masalah program lner parametrk. Pada bab n akan dperlhatkan suatu prosedur yang lengkap untuk menyelesakan
METODE PENELITIAN. digunakan untuk mengetahui bagaimana pengaruh variabel X (celebrity
37 III. METODE PENELITIAN 3.1 Jens dan Sumber Data Jens peneltan yang dgunakan adalah peneltan deskrptf, yang mana dgunakan untuk mengetahu bagamana pengaruh varabel X (celebrty endorser) terhadap varabel
BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK:
BAB IX. STATISTIKA. CONTOH : HASIL ULANGAN MATEMATIKA 5 SISWA SBB: PENGERTIAN STATISTIKA DAN STATISTIK: BAB IX. STATISTIKA Contoh : hasl ulangan Matematka 5 sswa sbb: 6 8 7 6 9 Pengertan Statstka dan
BAB III METODELOGI PENELITIAN. metode penelitian yang digunakan dalam penelitian ini adalah metode deskriptif
BAB III METODELOGI PENELITIAN 3.1 Desan Peneltan Metode peneltan mengungkapkan dengan jelas bagamana cara memperoleh data yang dperlukan, oleh karena tu metode peneltan lebh menekankan pada strateg, proses
Tinjauan Algoritma Genetika Pada Permasalahan Himpunan Hitting Minimal
157 Vol. 13, No. 2, 157-161, Januar 2017 Tnjauan Algortma Genetka Pada Permasalahan Hmpunan Httng Mnmal Jusmawat Massalesse, Bud Nurwahyu Abstrak Beberapa persoalan menark dapat dformulaskan sebaga permasalahan
Kritikan Terhadap Varians Sebagai Alat Ukur
Krtkan Terhadap Varans Sebaga Alat Ukur Varans mengukur penympangan pengembalan aktva d sektar nla yang dharapkan, maka varans mempertmbangkan juga pengembalan d atas atau d bawah nla pengembalan yang
III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen yang telah dilaksanakan di SMA
III. METODE PENELITIAN A. Waktu dan Tempat Peneltan Peneltan n merupakan stud ekspermen yang telah dlaksanakan d SMA Neger 3 Bandar Lampung. Peneltan n dlaksanakan pada semester genap tahun ajaran 2012/2013.
Didownload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN
BAB I PENDAHULUAN Sebuah jarngan terdr dar sekelompok node yang dhubungkan oleh busur atau cabang. Suatu jens arus tertentu berkatan dengan setap busur. Notas standart untuk menggambarkan sebuah jarngan
ALJABAR LINIER LANJUT
ALABAR LINIER LANUT Ruang Bars dan Ruang Kolom suatu Matrks Msalkan A adalah matrks mnatas lapangan F. Bars pada matrks A merentang subruang F n dsebut ruang bars A, dnotaskan dengan rs(a) dan kolom pada
BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER
BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan
Analitik Data Tingkat Lanjut (Regresi)
0 Oktober 206 Analtk Data Tngkat Lanut (Regres) Imam Cholssodn [email protected] Pokok Bahasan. Konsep Regres 2. Analss Teknkal dan Fundamental 3. Regres Lnear & Regres Logstc (Optonal) 4. Regres
BAB.3 METODOLOGI PENELITIN 3.1 Lokasi dan Waktu Penelitian Penelitian ini di laksanakan di Sekolah Menengah Pertama (SMP) N. 1 Gorontalo pada kelas
9 BAB.3 METODOLOGI PENELITIN 3. Lokas dan Waktu Peneltan Peneltan n d laksanakan d Sekolah Menengah Pertama (SMP) N. Gorontalo pada kelas VIII. Waktu peneltan dlaksanakan pada semester ganjl, tahun ajaran
KLASTERISASI DATA MICROARRAY MENGGUNAKAN METODE CLIQUE PARTITIONING
KLASTERISASI DATA MICROARRAY MENGGUNAKAN METODE CLIQUE PARTITIONING Lsa Maranah 1, Fhra Nhta, Adwjaya 3 1,,3 ProdS1 Ilmu Komputas, Fakultas Informatka, Unverstas Telkom 1 [email protected], [email protected],
Teori Himpunan. Modul 1 PENDAHULUAN. impunan sebagai koleksi (pengelompokan) dari objek-objek yang
Modul 1 Teor Hmpunan PENDAHULUAN Prof SM Nababan, PhD Drs Warsto, MPd mpunan sebaga koleks (pengelompokan) dar objek-objek yang H dnyatakan dengan jelas, banyak dgunakan dan djumpa dberbaga bdang bukan
I. PENGANTAR STATISTIKA
1 I. PENGANTAR STATISTIKA 1.1 Jens-jens Statstk Secara umum, lmu statstka dapat terbag menjad dua jens, yatu: 1. Statstka Deskrptf. Statstka Inferensal Dalam sub bab n akan djelaskan mengena pengertan
SMALL AREA ESTIMATION UNTUK PENDUGAAN JUMLAH PENDUDUK MISKIN DI KOTA SEMARANG DENGAN PENDEKATAN KERNEL-BOOTSTRAP
Statstka, Vol., No., November 04 SMALL AREA ESTIMATION UNTUK PENDUGAAN JUMLAH PENDUDUK MISKIN DI KOTA SEMARANG DENGAN PENDEKATAN KERNEL-BOOTSTRAP Ujang Malana, Moh Yamn Darsyah, 3 Tan Wahy Utam,,3 Program
BAB I PENDAHULUAN. Analisis regresi merupakan metode statistika yang digunakan untuk
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan metode statstka ang dgunakan untuk meramalkan sebuah varabel respon Y dar satu atau lebh varabel bebas X, selan tu juga dgunakan untuk
PENERAPAN METODE LINIEAR DISCRIMINANT ANALYSIS PADA PENGENALAN WAJAH BERBASIS KAMERA
PENERAPAN MEODE LINIEAR DISCRIMINAN ANALYSIS PADA PENGENALAN AJAH ERASIS KAMERA Asep Sholahuddn 1, Rustam E. Sregar 2,Ipng Suprana 3,Setawan Had 4 1 Mahasswa S3 FMIPA Unverstas Padjadjaran e-mal: [email protected]
BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri I Tibawa pada semester genap
5 BAB III METODOLOGI PENELITIAN 3. Lokas Dan Waktu Peneltan Peneltan n dlaksanakan d SMA Neger I Tbawa pada semester genap tahun ajaran 0/03. Peneltan n berlangsung selama ± bulan (Me,Jun) mula dar tahap
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN Dalam pembuatan tugas akhr n, penulsan mendapat referens dar pustaka serta lteratur lan yang berhubungan dengan pokok masalah yang penuls ajukan. Langkah-langkah yang akan
ANALISIS BENTUK HUBUNGAN
ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel
Bab 1 Ruang Vektor. R. Leni Murzaini/0906577381
Bab 1 Ruang Vektor Defns Msalkan F adalah feld, yang elemen-elemennya dnyatakansebaga skalar. Ruang vektor atas F adalah hmpunan tak kosong V, yang elemen-elemennya merupakan vektor, bersama dengan dua
BAB III METODE PENELITIAN. sebuah fenomena atau suatu kejadian yang diteliti. Ciri-ciri metode deskriptif menurut Surakhmad W (1998:140) adalah
BAB III METODE PENELITIAN 3.1 Metode Peneltan Metode yang dgunakan dalam peneltan n adalah metode deskrptf. Peneltan deskrptf merupakan peneltan yang dlakukan untuk menggambarkan sebuah fenomena atau suatu
IV. UKURAN SIMPANGAN, DISPERSI & VARIASI
IV. UKURAN SIMPANGAN, DISPERSI & VARIASI Pendahuluan o Ukuran dspers atau ukuran varas, yang menggambarkan derajat bagamana berpencarnya data kuanttatf, dntaranya: rentang, rentang antar kuartl, smpangan
PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING
Meda Informatka, Vol. 2, No. 2, Desember 2004, 57-64 ISSN: 0854-4743 PENENTUAN LOKASI PEMANCAR TELEVISI MENGGUNAKAN FUZZY MULTI CRITERIA DECISION MAKING Sr Kusumadew Jurusan Teknk Informatka, Fakultas
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2 Masalah Transportas Jong Jek Sang (20) menelaskan bahwa masalah transportas merupakan masalah yang serng dhadap dalam pendstrbusan barang Msalkan ada m buah gudang (sumber) yang
BAB 2 LANDASAN TEORI
2 LNDSN TEORI 2. Teor engamblan Keputusan Menurut Supranto 99 keputusan adalah hasl pemecahan masalah yang dhadapnya dengan tegas. Suatu keputusan merupakan jawaban yang past terhadap suatu pertanyaan.
PENGENALAN JENIS-JENIS IKAN MENGGUNAKAN METODE ANALISIS KOMPONEN UTAMA
MAKALAH SEMINAR TUGAS AKHIR PENGENALAN JENIS-JENIS IKAN MENGGUNAKAN METODE ANALISIS KOMPONEN UTAMA Suharto Jat Santoso *, Bud Setyono **, R. Rzal Isnanto ** Abstrak - Selama n pengenalan jens kan pada
Dengan derajat bebas (pu-1) =(p-1)+(pu-p) (pu-1)=(p-1)+p(u-1) Sebagai contoh kita ambil p=4 dan u=6 maka tabulasi datanya sebagai berikut:
X. ANALISIS RAGAM SEDERANA Jka erlakan yang ngn dj/dbandngkan lebh dar da(p>) dan ragam tdak dketah maka kta bsa melakkan j t dengan jalan mengj erlakan seasang dem seasang. Banyaknya asangan hotess yang
BAB I PENDAHULUAN Latar Belakang dan Permasalahan
BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Matematka dbag menjad beberapa kelompok bdang lmu, antara lan analss, aljabar, dan statstka. Ruang barsan merupakan salah satu bagan yang ada d bdang
BAB VB PERSEPTRON & CONTOH
BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur
BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.
BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN. Latar Belakang Manova atau Multvarate of Varance merupakan pengujan dalam multvarate yang bertujuan untuk mengetahu pengaruh varabel respon dengan terhadap beberapa varabel predktor
Dekomposisi Nilai Singular dan Aplikasinya
A : Dekomposs Nla Sngular dan Aplkasnya Gregora Aryant Dekomposs Nla Sngular dan Aplkasnya Oleh : Gregora Aryant Program Stud Penddkan Matematka nverstas Wdya Mandala Madun aryant_gregora@yahoocom Abstrak
Regresi Polinomial local untuk Data Survey Skala Besar
Semnar Nasonal Statstka IX Insttut eknolog Sepuluh Nopember, 7 November 009 Regres Polnomal local untuk Data Survey Skala Besar Stud kasus: Model Pengeluaran Rumah angga berdasarkan Data Susenas Jawa mur
BAB IV TRIP GENERATION
BAB IV TRIP GENERATION 4.1 PENDAHULUAN Trp Generaton td : 1. Trp Producton 2. Trp Attracton j Generator Attractor - Setap tempat mempunya fktor untuk membangktkan dan menark pergerakan - Bangktan, Tarkan
REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear
REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana
APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS
Vol No Jurnal Sans Teknolog Industr APLIKASI METODE SINGULAR VALUE DECOMPOSITION(SVD) PADA SISTEM PERSAMAAN LINIER KOMPLEKS Ftr Aryan Dew Yulant Jurusan Matematka Fakultas Sans Teknolog UIN SUSKA Rau Emal:
PROPOSAL SKRIPSI JUDUL:
PROPOSAL SKRIPSI JUDUL: 1.1. Latar Belakang Masalah SDM kn makn berperan besar bag kesuksesan suatu organsas. Banyak organsas menyadar bahwa unsur manusa dalam suatu organsas dapat memberkan keunggulan
Misalkan S himpunan bilangan kompleks. Fungsi kompleks f pada S adalah aturan yang
Fngs Analtk FUNGSI ANALITIK Fngs sebt analtk ttk apabla aa sema ttk paa sat lngkngan Untk mengj keanaltkan sat ngs kompleks w = = + gnakan persamaan Cach Remann Sebelm mempelejar persamaan Cach-Remann
SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES 1 ABSTRAK
SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES Harm Sugart Jurusan Statstka FMIPA Unverstas Terbuka emal: [email protected] ABSTRAK Adanya penympangan terhadap asums
BAB III METODE PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode
BAB III METODE PENELITIAN Desan Peneltan Metode peneltan yang dgunakan dalam peneltan n adalah metode deskrptf analts dengan jens pendekatan stud kasus yatu dengan melhat fenomena permasalahan yang ada
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PEDAHULUA. Latar Belakang Rsko ddentfkaskan dengan ketdakpastan. Dalam mengambl keputusan nvestas para nvestor mengharapkan hasl yang maksmal dengan rsko tertentu atau hasl tertentu dengan rsko yang
TEORI INVESTASI DAN PORTFOLIO MATERI 4.
TEORI INVESTASI DAN PORTFOLIO MATERI 4 KONSEP DASAR 2/40 Ada tga konsep dasar yang perlu dketahu untuk memaham pembentukan portofolo optmal, yatu: portofolo efsen dan portofolo optmal fungs utltas dan
SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD
SUMBER BELAJAR PENUNJANG PLPG 0 MATA PELAJARAN/PAKET KEAHLIAN GURU KELAS SD BAB V STATISTIKA Dra.Hj.Rosdah Salam, M.Pd. Dra. Nurfazah, M.Hum. Drs. Latr S, S.Pd., M.Pd. Prof.Dr.H. Pattabundu, M.Ed. Wdya
BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metode eksperimen
3 BAB III METODOLOGI PENELITIAN A. Metode dan Desan Peneltan Metode yang dgunakan dalam peneltan n adalah metode ekspermen karena sesua dengan tujuan peneltan yatu melhat hubungan antara varabelvarabel
Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan :
Analss Regres Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Itasa & Y Angran Dep. Statstka FMIPA-IPB Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan
BAB III METODE PENELITIAN. Jenis penelitian yang akan digunakan dalam penelitian ini adalah
BAB III METODE PENELITIAN A. Jens Peneltan Jens peneltan yang akan dgunakan dalam peneltan n adalah peneltan pengembangan (Research and Development). Peneltan Research and Development (R&D) n merupakan
BAB VI MODEL-MODEL DETERMINISTIK
BAB VI MODEL-MODEL DETERMINISTIK 6. Masalah Penyaluran Daya Lstrk Andakan seorang perencana sstem kelstrkan merencakan penyaluran daya lstrk dar beberapa pembangkt yang ternterkoneks dan terhubung dengan
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tnjauan Pustaka Dar peneltan yang dlakukan Her Sulstyo (2010) telah dbuat suatu sstem perangkat lunak untuk mendukung dalam pengamblan keputusan menggunakan
BAB III HIPOTESIS DAN METODOLOGI PENELITIAN
BAB III HIPOTESIS DAN METODOLOGI PENELITIAN III.1 Hpotess Berdasarkan kerangka pemkran sebelumnya, maka dapat drumuskan hpotess sebaga berkut : H1 : ada beda sgnfkan antara sebelum dan setelah penerbtan
PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS)
PEMBUATAN GRAFIK PENGENDALI BERDASARKAN ANALISIS KOMPONEN UTAMA (PRINCIPAL COMPONENT ANALYSIS) Wrayant ), Ad Setawan ), Bambang Susanto ) ) Mahasswa Program Stud Matematka FSM UKSW Jl. Dponegoro 5-6 Salatga,
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI.1 Pengertan Regres Regres pertama kal dgunakan sebaga konsep statstka oleh Sr Francs Galton (18 1911).Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang selanjutnya
BAB III HASILKALI TENSOR PADA RUANG VEKTOR. Misalkan V ruang vektor atas lapangan F. Suatu transformasi linear f L ( V, F )
28 BAB III HASILKALI TENSOR PADA RUANG VEKTOR III.1 Ruang Dual Defns III.1.2: Ruang Dual [10] Msalkan V ruang vektor atas lapangan F. Suatu transformas lnear f L ( V, F ) dkatakan fungsonal lnear (atau
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB PENDAHULUAN. Latar Belaang Masalah Analss regres merupaan lmu peramalan dalam statst. Analss regres dapat dataan sebaga usaha mempreds atau meramalan perubahan. Regres mengemuaan tentang engntahuan
BAB IV PEMBAHASAN MODEL
BAB IV PEMBAHASAN MODEL Pada bab IV n akan dlakukan pembuatan model dengan melakukan analss perhtungan untuk permasalahan proses pengadaan model persedaan mult tem dengan baya produks cekung dan jont setup
BAB IV CONTOH PENGGUNAAN MODEL REGRESI GENERALIZED POISSON I. Kesulitan ekonomi yang tengah terjadi akhir-akhir ini, memaksa
BAB IV CONTOH PENGGUNAAN MODEL REGRESI GENERALIZED POISSON I 4. LATAR BELAKANG Kesultan ekonom yang tengah terjad akhr-akhr n, memaksa masyarakat memutar otak untuk mencar uang guna memenuh kebutuhan hdup
ANALISIS REGRESI. Catatan Freddy
ANALISIS REGRESI Regres Lner Sederhana : Contoh Perhtungan Regres Lner Sederhana Menghtung harga a dan b Menyusun Persamaan Regres Korelas Pearson (Product Moment) Koefsen Determnas (KD) Regres Ganda :
Model Potensial Gravitasi Hansen untuk Menentukan Pertumbuhan Populasi Daerah
Performa (2004) Vol. 3, No.1: 28-32 Model Potensal Gravtas Hansen untuk Menentukan Pertumbuhan Populas Daerah Bambang Suhard Jurusan Teknk Industr, Unverstas Sebelas Maret, Surakarta Abstract Gravtaton
BAB 1 PENDAHULUAN. Universitas Sumatera Utara
BAB 1 ENDAHULUAN 1.1 Latar Belakang Secara umum dapat dkatakan bahwa mengambl atau membuat keputusan berart memlh satu dantara sekan banyak alternatf. erumusan berbaga alternatf sesua dengan yang sedang
BAB I PENDAHULUAN. 1.1 Latar Belakang
I ENDHULUN. Latar elakang Mengambl keputusan secara aktf memberkan suatu tngkat pengendalan atas kehdupan spengambl keputusan. lhan-plhan yang dambl sebenarnya membantu dalam penentuan masa depan. Namun
TINJAUAN PUSTAKA. Node. Edge. Gambar 1 Directed Acyclic Graph
TINJAUAN PUSTAKA Bayesan Networks BNs dapat memberkan nformas yang sederhana dan padat mengena nformas peluang. Berdasarkan komponennya BNs terdr dar Bayesan Structure (Bs) dan Bayesan Parameter (Bp) (Cooper
Analisis Regresi 1. Pokok Bahasan : Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh
Analss Regres 1 Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan nla harapannya E[Y x] E[Y x] y b
BAB III METODE PENELITIAN. Penelitian ini merupakan penelitian yang bertujuan untuk mendeskripsikan
BAB III METODE PENELITIAN A. Jens Peneltan Peneltan n merupakan peneltan yang bertujuan untuk mendeskrpskan langkah-langkah pengembangan perangkat pembelajaran matematka berbass teor varas berupa Rencana
Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik
Pendeteksan Data Penclan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Dagnostk Sally Indra 1, Dod Vonanda, Rry Srnngsh 3 1 Student of Mathematcs Department State Unversty of Padang,
SENTIMENT ANALYSIS DOKUMEN E-COMPLAINT KAMPUS MENGGUNAKAN ADDITIVE SELECTED KERNEL SVM
Cholssodn I. Setawan B.D. 03. Sentment Analyss Dokumen E-Complant ampus Menggunakan Addtve Seleted ernel SVM. Semnar Nasonal Teknolog Informas Dan Aplkasnya SNATIA. SENTIMENT ANALYSIS DOUMEN E-COMPLAINT
BAB III METODE PENELITIAN. problems. Cresswell (2012: 533) beranggapan bahwa dengan
BAB III METODE PENELITIAN A. Jens Peneltan Jens peneltan n adalah peneltan kombnas atau mxed methods. Cresswell (2012: 533) A mxed methods research desgn s a procedure for collectng, analyzng and mxng
BAB II METODOLOGI PENELITIAN. Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian. variable independen dengan variabel dependen.
BAB II METODOLOGI PENELITIAN A. Bentuk Peneltan Jens peneltan yang dgunakan dalam peneltan n adalah peneltan deskrptf dengan analsa kuanttatf, dengan maksud untuk mencar pengaruh antara varable ndependen
Nama : Crishadi Juliantoro NPM :
ANALISIS INVESTASI PADA PERUSAHAAN YANG MASUK DALAM PERHITUNGAN INDEX LQ-45 MENGGUNAKAN PORTOFOLIO DENGAN METODE SINGLE INDEX MODEL. Nama : Crshad Julantoro NPM : 110630 Latar Belakang Pemlhan saham yang
