Kebalikan Transformasi Laplace
|
|
|
- Yohanes Sudjarwadi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 TKS 4003 Matematika II Kebalikan Transformasi Laplace Fraksi Pecahan (Partial Fraction: Laplace Transform Inverse) Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PENDAHULUAN Dalam penggunaannya, transformasi Laplace seringkali melibatkan bentuk Q(s) dengan banyak fraksi, dimana Q(s) P(s) dan P(s) merupakan suku polinomial. Oleh karenanya, terlebih dahulu dipelajari bagaimana fraksi-fraksi yang terlibat/dihasilkan diubah ke fraksi pecahan (partial fraction) agar didapatkan solusi dari Persamaan Differensial Biasa, Jadi, terlebih dahulu dipelajari bagaimana menggunakan partial fraction sebelum memecahkan Persamaan Differensial Biasa (Ordinary Differential Equation).
2 PENDAHULUAN (Lanjutan) Jika : dengan Q(s) P(s) = a s α a 2 s α 2 a n s α n () P s = s α s α 2 s α n Maka terdapat 3 kemungkinan penyelesaian :. P s akar-akarnya riil dan berbeda. 2. P s akar-akarnya riil dan sama. 3. P s akar-akarnya pasangan bilangan kompleks. FRAKSI PECAHAN. P s akar-akarnya riil dan berbeda α α 2 α n Tuliskan masing-masing faktor P s, dan tambahkan koefisien yang sesuai (A, B, dan seterusnya) pada bagian pembilang. Contoh : s = A B s 2 4s3 (s ) (s 3) B (s 2)(s) = A (s 2) (s) 2
3 FRAKSI PECAHAN (Lanjutan) 2. P s akar-akarnya riil dan sama α = α 2 = = α n Jika Q(s) = a P(s) s α n, maka diuraikan menjadi : Q(s) P(s) = a s α a s α 2 Contoh : = s 2 6s9 (s3) 2 (s3) B (s3) 2 a k s α k a k s α k a n s α n FRAKSI PECAHAN (Lanjutan) 3. P s akar-akarnya pasangan bilangan kompleks α = a bi, α 2 = a bi Jika Q(s) P(s) = ABs sa 2 b 2 Contoh : = s 3 s 2 2 s = a 3 s α 3 a n s α n s 2 2s2 s s i s i BCs (s ) (s ) 2 3
4 FRAKSI PECAHAN (Lanjutan) Dari pemecahan fraksi di atas, perlu dicari nilai dari koefisien A, B, C dan seterusnya. Terdapat 3 cara untuk menyelesaikan fraksi pecahan, yaitu :. Cover up rule 2. Substitution 3. Equate coefficient COVER UP RULE Langkah-langkah penyelesaian fraksi pecahan dengan cover up rule adalah : a. Kalikan dengan s α i b. Substitusikan s = α i Contoh. Jika P(s) akar-akarnya riil dan berbeda : Cari fraksi pecahan dari : Jawab : s s s 3 s B s 3 s s s 3 4
5 COVER UP RULE (Lanjutan) Kalikan dengan s : s s s 3 s B s 3 Substitusikan dengan s = : s = 2 A = 2 Selanjutnya kalikan dengan s 3 : s 3 s = s 3 A B s s Substitusikan dengan s = 3: s = 3 4 = B B = 2 2 s Sehingga diperoleh : = 2 s s 3 s s 3 COVER UP RULE (Lanjutan) Contoh 2. Jika P(s) akar-akarnya riil dan sama : Cari fraksi pecahan dari : s2 3s4 s 3 Jawab : s 2 3s4 s 3 = A s B s 2 C s 3 Untuk mencari nilai C, kalikan dengan s 3 s 2 3s 4 s 2 B s C Substitusikan dengan s = : 3 4 = C C = 2 5
6 COVER UP RULE (Lanjutan) Untuk mencari nilai A dan B, digunakan metode substitusi. Ambil s = 0 dan substitusikan ke persamaan. B C 4 B C Substitusikan dengan C = 2 : 2 B Ambil s = dan substitusikan ke persamaan B 2 2 C B 4 C 8 Kalikan dengan 8 : 8 8 = 4A 2B C (a) COVER UP RULE (Lanjutan) Substitusikan dengan C = 2 : 6 = 4A 2B Jika Pers. (a) dan (b) diselesaikan, maka akan didapatkan : A =, B =, C = 2 Sehingga diperoleh : s 2 3s4 s 3 = s s 2 2 s 3 (b) 6
7 COVER UP RULE (Lanjutan) Contoh 3. Jika P(s) akar-akarnya kompleks : Cari fraksi pecahan dari : s 2 2 s 2 Jawab : Karena P(s) mengandung s 2, maka diberikan koefisien Cs D pada bagian pembilang. B CsD s 2 2 s 2 s 2 s 2 2 s 2 s 2 2 s = 2 4 s 2 = B 5 = s 2 A B s 2 2 CsD s 2 COVER UP RULE (Lanjutan) CsD s 2 2 s 2 s 2 5 s 2 2 s 2 Untuk mencari nilai koefisien yang lain (A, C, dan D) digunakan metode substitusi. Untuk s = 0 s = 0 C.0D = A D = 5A 0D (a) 7
8 COVER UP RULE (Lanjutan) Untuk s = s = C.D = A 5 2 C 2 D 3 = 0A 5C 5D Untuk s = 3 s = 3 C.3D C D = 0A 3C D (b) (c) COVER UP RULE (Lanjutan) Jika Pers. (a), (b), dan (c) diselesaikan, maka akan didapatkan : A = 4, B = 4 3, C =, D = Sehingga diperoleh : = 4 4s3 s 2 2 s 2 25 s 2 5 s s 2 8
9 SUBSTITUTION Jika fraksi pecahan adalah : Q b i = a a 2 a n P b i b i α b i α 2 b i α n Maka dilakukan :. Substitusi s = b i, dengan i =, 2,, n 2. Cari nilai a, a 2,..., a n Contoh 4 : Cari nilai koefisien A dan B pada : B s s s (s) Jawab : SUBSTITUTION (Lanjutan) Untuk s =, 2 B B (a) Untuk s = 2, 6 2 B B Jika Pers. (a) dan (b) diselesaikan, maka akan didapatkan : A =, B = Sehingga diperoleh : s s = s (s ) (b) 9
10 EQUATE COEFFICIENT Langkah pengerjaan fraksi pecahan dengan metode ini adalah :. Kalikan kedua ruas dengan P(s). 2. Samakan koefisen s di ruas kanan persamaan dengan di ruas kiri. Contoh 5 : Cari nilai koefisien A, B, dan C pada : Jawab : s s 2 s BsC s 2 EQUATE COEFFICIENT (Lanjutan). Kalikan dengan s s 2, sehingga menjadi : s 2 Bs C s B s 2 B C s A C 2. Penyamaan koefisien s : Untuk s 2 0 B Untuk s 0 = B C Untuk s 0 C (a) (b) (c) 0
11 EQUATE COEFFICIENT (Lanjutan) Jika Pers. (a), (b), dan (c) diselesaikan, maka akan didapatkan : A =, B =, C = Sehingga diperoleh : s s 2 = 2 s (s ) 2 s 2 LATIHAN Cari fraksi pecahan dan nilai koefisiennya :. 2. s 2 (s) s (s2)(s3)
12 Terima kasih dan Semoga Lancar Studinya! 2
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Homogen Tk. 2 (Differential: Linier Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PD linier homogen orde 2 Bentuk
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan
Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel
Vol.14, No., 180-186, Januari 018 Solusi Problem Dirichlet pada Daerah Persegi Metode Pemisahan Variabel M. Saleh AF Abstrak Dalam keadaan distribusi temperatur setimbang (tidak tergantung pada waktu)
II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )
II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan
BAB 2 TINJAUAN PUSTAKA
5 BAB 2 TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen, suatu variabel dependen, dan satu atau lebih turunan dari
Relasi Rekursi. Matematika Informatika 4. Onggo
Relasi Rekursi Matematika Informatika 4 Onggo Wiryawan @OnggoWr Definisi Definisi 1 Suatu relasi rekursi untuk sebuah barisan {a n } merupakan sebuah rumus untuk menyatakan a n ke dalam satu atau lebih
matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA
K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Non Homogen Tk. 2 (Differential: Linier Non Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Solusi umum merupakan jumlah
Prosedur tersebut bisa digambarkan sbb.:
Transformasi Laplace Ditemukan oleh Pierre-Simon Marquis de Laplace (1749-1827), pakar matematika dan astronomi Perancis. Prinsipnya mentransformasi sinyal/sistem kontinyu dari ranah waktu ke ranah-s Mirip
Kalkulus 2. Teknik Pengintegralan ke - 3. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018
Kalkulus 2 Teknik Pengintegralan ke - 3 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 27 Daftar
BAB 3 INVERS LAPLACE Pokok Pembahasan :
BAB 3 Poo Pembahasan : Prinsip Dasar Invers Laplce Fungsi-Fungsi Dasar Espansi Parsial Konvolusi . PRINSIP DASAR Inverse Laplace adalah ebalian dari transformasi Laplace, yaitu transformasi F(s) menjadi
Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL
Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu
Modul 05 Persamaan Linear dan Persamaan Linear Simultan
Modul 05 Persamaan Linear dan Persamaan Linear Simultan 5.1. Persamaan Linear Persamaan adalah pernyataan kesamaan antara dua ekspresi aljabar yang cocok untuk bilangan nilai variable tertentu atau variable
BAB II PERSAMAAN DIFERENSIAL BIASA
BAB II PERSAMAAN DIFERENSIAL BIASA Tujuan Pembelajaran Umum: 1 Mahasiswa mampu memahami konsep dasar persamaan diferensial 2 Mahasiswa mampu menggunakan konsep dasar persamaan diferensial untuk menyelesaikan
KONSEP DASAR PERSAMAAN DIFERENSIAL
KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai
PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE
PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada
Transformasi Laplace
TKS 43 Matematika II Transformasi Laplace (Laplace Transform) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PENDAHULUAN Pengertian Transformasi Transformasi adalah teknik atau formula
BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL
BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL Bila persamaan diferensial linear homogen memiliki koefisien constant maka persamaan tersebut dapat diselesaikan dengan metoda aljabar (seperti yang
Solusi Pengayaan Matematika Edisi 14 April Pekan Ke-2, 2006 Nomor Soal:
Solusi Pengayaan Matematika Edisi 4 April Pekan Ke-, 006 Nomor Soal: 3-40 3. Manakah yang paling besar di antara bilangan-bilangan 0 9 b, 5 c, 0 d 5, dan 0 e 4 3? A. e B. d C. c D. b E. a Solusi: [E] 5
5. INTERPOLASI. orde 1 orde 2 orde 3 menghubungkan 2 titik menghubungkan 3 titik menghubungkan 4 titik. Gambar 5.1
5. INTERPOLASI PENDAHULUAN Bentuk umum persamaan polinomial orde n adalah: f() = a + a. + a. +.. + a n. n Untuk n+ titik data, hanya terdapat satu polinomial orde n atau kurang yang melalui semua titik.
Pengertian limit secara intuisi
Pengertian it secara intuisi Perhatikan fungsi f ( ) = Fungsi diatas tidak terdefinisi di =, karena di titik tersebut f() berbentuk 0/0. Tapi masih bisa ditanyakan berapa nilai f() jika mendekati Dengan
matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL
K-3 Kelas X matematika Wajib PERSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi dan solusi persamaan linear
Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir
Relasi Rekursi *recurrence rekurens rekursi perulangan. Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir menuliskan definisi dari
BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN)
PENDAHULUAN BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN) (Pertemuan ke 11 & 12) Diskripsi singkat Pada bab ini dibahas tentang integral tak tentu, integrasi parsial dan beberapa metode integrasi lainnya yaitu
METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT
METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL Marpipon Haryandi 1, Asmara Karma 2, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika
BAB I PENDAHULUAN. Karena penyelesaian partikular tidak diketahui, maka diadakan subtitusi: = = +
BAB I PENDAHULUAN 1.1 Latar Belakang Peran matematika sebagai suatu ilmu pada dasarnya tidak dapat dipisahkan dari ilmu lainnya. Dalam ilmu fisika, industri, ekonomi, keuangan, teknik sipil peran matematika
II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan
II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi
BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :
BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi
BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK
Matematika Peminatan SMA kelas X Kurikulum 2013 BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK I. Pertidaksamaan Rasional (Bentuk Pecahan) A. Pengertian Secara umum, terdapat empat macam bentuk umum
PERTIDAKSAMAAN PECAHAN
PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.
matematika WAJIB Kelas X PERTIDAKSAMAAN LINEAR SATU VARIABEL K-13 A. PENDAHULUAN
K-1 Kelas X matematika WAJIB PERTIDAKSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan linear
METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT
METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT Agusman Sahari. 1 1 Jurusan Matematika FMIPA UNTAD Kampus Bumi Tadulako Tondo Palu Abstrak Dalam paper ini mendeskripsikan tentang solusi masalah transport polutan
BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak
BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi
Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb
Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial
FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU ABSTRACT
FORMULA PENGGANTI METODE KOEFISIEN TAK TENTU Syofia Deswita 1, Syamsudhuha 2, Agusni 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U
Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.
4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan
SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini.
SOAL DAN JAWABAN TENTANG NILAI MUTLAK Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. Jawaban: Bentuk-Bentuk persamaan nilai mutlak di atas dapat diselesaikan sebagai berikut.
PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran
Kurikulum 1 Kelas matematika PEMINATAN PERTIDAKSAMAAN RASIONAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan rasional..
PENYELESAIAN PERSAMAAN LINEAR-NON LINEAR DAN PERSAMAAN DIFFERENSIAL DENGAN METODE KESAMAAN
309 Jurnal KIP Vol II No. 3, Nopember 2013 Februari 2014 PENYELESAIAN PERSAMAAN LINEAR-NON LINEAR DAN PERSAMAAN DIFFERENSIAL DENGAN METODE KESAMAAN Abraham Salusu [email protected] Program Studi
METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL
METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL oleh ASRI SEJATI M0110009 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar
1. Variabel, Konstanta, dan Faktor Variabel Konstanta Faktor
ALJABAR BENTUK ALJABAR adalah suatu bentuk matematika yang dalam penyajiannya memuat huruf-huruf untuk mewakili bilangan yang belum diketahui Bentuk aljabar dapat dimanfaatkan untuk menyelesaikan masalah
BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di
BAB II TINJAUAN PUSTAKA 2.1 Pemrograman Linier (Linear Programming) Pemrograman linier (linear programming) merupakan salah satu teknik riset operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan
Transformasi Laplace BDA, RYN MATERI KULIAH KALKULUS TEP FTP UB
Transformasi Laplace BDA, RYN Referensi Desjardins S J, Vaillancourt R, 11, Ordinary Differential Equations Laplace Transforms and Numerical Methods for Engineers, University of Ottawa, anada. Poularikas
Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih
Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint
Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT
Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui
METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI
METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36
BAB III : SISTEM PERSAMAAN LINIER
3.1 PENDAHULUAN BAB III : SISTEM PERSAMAAN LINIER Penyelesaian suatu sistem n persamaan dengan n bilangan tak diketahui banyak dijumpai dalam permasalahan teknik. Di dalam Bab ini akan dipelajari sistem
REKAYASA GEMPA GETARAN BEBAS SDOF. Oleh Resmi Bestari Muin
MODUL KULIAH REKAYASA GEMPA Minggu ke 3 : GETARAN BEBAS SDOF Oleh Resmi Bestari Muin PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL dan PERENCANAAN UNIVERSITAS MERCU BUANA 010 DAFTAR ISI DAFTAR ISI i III GERAK
FUNGSI BESSEL. 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial.
FUNGSI BESSEL 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial. x 2 y ''+xy'+(x 2 - n 2 )y = 0, n ³ 0 (1) yang dinamakan persamaan diferensial Bessel. Penyelesaian
BAHAN AJAR MATEMATIKA WAJIB KELAS X MATERI POKOK: PERTIDAKSAMAAN RASIONAL DAN IRASIONAL
BAHAN AJAR MATEMATIKA WAJIB KELAS X MATERI POKOK: PERTIDAKSAMAAN RASIONAL DAN IRASIONAL A. Pertidaksamaan Rasional Pada sistem bilangan, terdapat dua jenis bilangan yaitu bilangan real dan imajiner. Jika
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam beberapa tahun terakhir, para pakar matematika telah banyak mencoba melakukan pendekatan untuk memecahkan permasalahan Program Linier Pecahan (PLP). Dalam tulisan
Deret Fourier. (Pertemuan XI) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya. Fungsi Genap dan Fungsi Ganjil
TKS 4007 Matematika III Deret Fourier (Pertemuan XI) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Fungsi Genap dan Fungsi Ganjil Perhitungan koefisien-koefisien Fourier sering kali
KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I
7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi
ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 2 (2016), hal 103-112 ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL
Penyelesaian Persamaan Differensial dan Persamaan Linear - non Linear dengan Metode Kesamaan.
Penyelesaian Persamaan Differensial dan Persamaan Linear - non Linear dengan Metode Kesamaan. Oleh : Jurusan Matematika, Binus University, Jakarta Barat Kampus Angrek, Jl. Kebon Jeruk Raya 27 Jakarta Barat
PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A
PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan
MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012
MODUL MATEMATIKA PERSIAPAN UJIAN NASIONAL 0 TAHUN AJARAN 0/0 MATERI PERSAMAAN KUADRAT DAN PERTIDAKSAMAAN KUADRAT UNTUK KALANGAN MA AL-MU AWANAH MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 0 Jalan RH. Umar
http://www. Cara Mudah Matematika Abdul Hanan Materi Pelajaran Cara Mudah Matematika Oleh : Abdul Hanan Document License : copyright 2004 Dokumen ini diperkenankan untuk digunakan, disalin dan diperbanyak
MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI
MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT
Persamaan dan Pertidaksamaan Linear
MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai
TE Sistem Linier. Sistem Waktu Kontinu
TE 226 - Sistem Linier Jimmy Hasugian Electrical Engineering - Maranatha Christian University [email protected] - http://wp.me/p4scve-g Sistem Waktu Kontinu Jimmy Hasugian (MCU) Sistem Waktu Kontinu
GENERALISASI FUNGSI AIRY SEBAGAI SOLUSI ANALITIK PERSAMAAN SCHRODINGER NONLINIER
GENERALISASI FUNGSI AIRY SEBAGAI SOLUSI ANALITIK PERSAMAAN SCHRODINGER NONLINIER Lukman Hakim ) dan Ari Kusumastuti 2) ) Mahasiswa Pascasarjana Jurusan Matematika Universitas Brawijaya Malang 2) Jurusan
Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom
BAB 9 RING POLINOM Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom Tujuan Instruksional Khusus : Setelah diberikan
BAB V. PERTIDAKSAMAAN
BAB V. PERTIDAKSAMAAN Pengertian: Pertidaksamaan adalah kalimat terbuka dimana ruas kiri dan kanannya dihubungkan dengan tanda pertidaksamaan > (lebih dari), < (kurang dari), (lebih besar dari dan sama
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi
PD Orde 2 Lecture 3. Rudy Dikairono
PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order
PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 BALONGAN
PEMERINTAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI BALONGAN RENCANA PELAKSANAAN PEMBELAJARAN Kode. Dok PBM.0 Edisi/Revisi A/0 Tanggal 7 Juli 207 Halaman dari RENCANA PELAKSANAAN PEMBELAJARAN (RPP)
1 BAB 4 ANALISIS DAN BAHASAN
1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan
Teknik Kompiler 7. oleh: antonius rachmat c, s.kom
Teknik Kompiler 7 oleh: antonius rachmat c, s.kom Transformasi TBBK Dimaksudkan untuk memperoleh TBBK yang memenuhi kriteria-kriteria tertentu yang lebih efisien. Transformasi boleh dilakukan asalkan tidak
BILANGAN BERPANGKAT DAN BENTUK AKAR
BILANGAN BERPANGKAT DAN BENTUK AKAR 1. Bilangan Berpangkat Sederhana Dalam kehidupan sehari-hari kita sering menemui perkalian bilangan-bilangan dengan faktorfaktor yang sama. Misalkan kita temui perkalian
BAB I PENDAHULUAN. perkalian dan pembagian. Operasi aritmatika dalam pecahan tidak sesederhana
BAB I PENDAHULUAN 1.1 Latar Belakang Untuk menguasai matematika maka diperlukan konsep dasar dari matematika itu sendiri yaitu aritmatika. Pada umumnya para siswa kurang memahami konsep operasi aritmatika
BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK
BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah
PENYELESAIAN PERSAMAAN LINEAR-NON LINEAR DAN PERSAMAAN DIFFERENSIAL DENGAN METODE KESAMAAN
PENYELESAIAN PERSAMAAN LINEAR-NON LINEAR DAN PERSAMAAN DIFFERENSIAL DENGAN METODE KESAMAAN Abraham Salusu Jurusan Teknik Elektro, Fakultas Teknik UKI-Jakarta Jl.Letjen Suprapto, Cawang Jakarta-Timur [email protected]
PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH
PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH 1105 100 056 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT
SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL
LA - WB (Lembar Aktivitas Warga Belajar) SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X
Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n!
Analisa Numerik Teknik Sipil 1 PENDAHULUAN 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah Dalam matematika, dikenal adanya fungsi transenden (fungsi eksponen, logaritma natural, invers dan sebagainya),
BAB 3 SISTEM DINAMIK ORDE SATU
BAB 3 SISTEM DINAMIK ORDE SATU Isi: Pengantar pengembangan model sederhana Arti fisik parameter-parameter proses 3. PENGANTAR PENGEMBANGAN MODEL Pemodelan dibutuhkan dalam menganalisis sisten kontrol (lihat
BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN. Pada BAB V ini, peneliti akan membahas hasil penelitian dan diskusi hasil
67 BAB V PEMBAHASAN DAN DISKUSI HASIL PENELITIAN Pada BAB V ini, peneliti akan membahas hasil penelitian dan diskusi hasil penelitian. Pembahasan hasil penelitian berdasarkan deskripsi data tentang strategi
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE - II.Persamaan Homogen dengan Koefisien Konstan Suatu persamaan linier homogen y + ay + by = 0 (1) mempunyai koefisien a dan b adalah konstan. Persamaan ini mempunyai
MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS
MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan
Institut Teknologi Sepuluh Nopember Surabaya. Model Matematik Sistem Mekanik
Institut Teknologi Sepuluh Nopember Surabaya Model Matematik Sistem Mekanik Gerak Translasi Gerak Rotasi 2 Pada bagian ini akan dibahas mengenai pembuatan model matematika dari sistem mekanika baik dalam
Perluasan Teorema Cayley-Hamilton pada Matriks
Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan
matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran
Kurikulum 6/1 matematika K e l a s XI LIMIT ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Dapat mendeskripsikan konsep it fungsi aljabar dengan
PENYELESAIAN PERSAMAAN DIFERENSIAL TUNDA LINIER ORDE 1 DENGAN METODE KARAKTERISTIK
Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 45 49 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN DIFERENSIAL TUNDA LINIER ORDE 1 DENGAN METODE KARAKTERISTIK FEBBY RAHMI ALFIONITA,
Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi
Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi II.1 Gambaran Umum Model Pada bab ini, kita akan merumuskan model matematika dari masalah ketidakstabilan lapisan fluida tipis yang bergerak
B A B I I K A J I A N T E O R I D A N H I P O T E S I S T I N D A K A N
B A B I I K A J I A N T E O R I D A N H I P O T E S I S T I N D A K A N 2. 1 K a j i a n T e o r i 2. 1. 1 P e r m a i n a n B o l a B a s k e t P e r m a i n a n b o l a b a s k e t t e r c e t u s d
Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO
Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.
PEMBAHASAN UN 2009/2010
PEMBAHASAN UN 009/00. Konsep: Operasi Bilangan Real (Perbandingan Berbalik Nilai) Suatu pekerjaan dikerjakan orang dapat selesai 0 hari. Pekerjaan akan diselesaikan dalam waktu hari. Pekerja Hari 0 y y
MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT
MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)
SATUAN ACARA PERKULIAHAN. Sub pokok bahasan dan Rincian materi 1. Sistem Bilangan Riil 2. Ketaksamaan bilangan riil 3. Harga mutlak 4.
: Bilangan Riil : Mahasiswa memahami tentang Bilangan Riil :1 (Satu)...kali 1 1. Menjelaskan Sistem bilangan riil 2. Mengerjakan persoalan taksamaan bilangan riil. 3. Menentukan harga mutlak suatu bilangan
B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)
1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat
Arief Ikhwan Wicaksono, S.Kom, M.Cs
Arief Ikhwan Wicaksono, S.Kom, M.Cs [email protected] masawik.blogspot.com @awik1212 Kalkulus (Bahasa Latin: calculus, artinya "batu kecil", untuk menghitung) adalah cabang ilmu matematika
Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi
Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara
matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT
K-13 Kelas X matematika PEMINATAN PERSAMAAN KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum persamaan kuadrat..
Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan
Persamaan dan pertidaksamaan kuadrat BAB II
BAB II Misalkan a,b,c Є R dan a 0 maka persamaan yang berbentuk dinamakan persamaan kuadrat dalam peubah x. Dalam persamaan kuadrat ax bx c 0, a adalah koefisien dari x, b adalah koefisien dari x dan c
MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri
MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri MATEMATIKA LIMIT FUNGSI SMK NEGERI 1 SURABAYA Halaman 1 BAB LIMIT FUNGSI A. Limit Fungsi Aljabar PENGERTIAN
