* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES
|
|
- Yandi Santoso
- 5 tahun lalu
- Tontonan:
Transkripsi
1 * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka dagram : a. Dagram batag b. Dagram gars c. Dagram lambag d. Dagram lgkara e. Dagram peta atau kartogram f. Dagram pecar atau dagram ttk * MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES a. Tetuka retag, alah data terbesar dkurag data terkecl b. Tetuka bayak kelas terval yag dperluka Bayak kelas = 1 + (3,3) log c. Tetuka pajag kelas terval (p) re ta g p = bayak kelas d. Plh ujug bawah kelas terval pertama. Utuk bsa dambl sama dega data terkecl atau la yag lebh kecl dar data terkecl tetap selshya harus kurag dar pajag kelas yag telah dtetuka. Perhatka la uja statstka utuk 40 orag mahasswa berkut : Buatlah daftar dstrbus frekuesya? * UKURAN GEJALA PUSAT & UKURAN LETAK Rata-Rata Htug a. Utuk data tuggal x1 + x x x = = b. Utuk data frekues f x x = f = 1 x E-mal :
2 1. Dketahu lma la uja mahasswa utuk mata kulah statstka : 70, 69, 45, 80, da 56. tetuka rata-rataya?. Dberka data sebaga berkut : Daftar I x f Tetuka rata-rataya? Modus > Utuk meyataka feomea yag palg bayak terjad. Jka data dsusu dalam daftar dstrbus frekues, maka modusya : b1 Mo = b + p b 1 + b dega b = batas bawah kelas modus, alah kelas terval dega frekues terbayak p = pajag kelas modus b 1 = frekues kelas modus dkurag frekues kelas terval dega tada kelas yag lebh kecl sebelum tada kelas modus b = frekues kelas modus dkurag frekues kelas terval dega tada kelas yag lebh besar sesudah tada kelas modus 1. Terdapat sampel dega la-la data : 1, 34, 14, 34, 8, 34, 34, 8, 14. Tetuka modusya?. Dberka data la uja statstka 80 mahasswa sebaga berkut : Daftar II Nla Uja f Tetuka modusya? Meda > adalah blaga pembag yag membag sekumpula data mejad dua baga yag sama bayak, sesudah dsusu meurut uruta laya. Jka data dsusu dalam daftar dstrbus frekues, maka medaya : 1 F Me = b + p f E-mal :
3 dega b = batas bawah kelas meda, alah kelas dmaa meda aka terletak p = pajag kelas meda = ukura sampel atau bayak data F = jumlah semua frekues dega tada kelas lebh kecl dar tada kelas meda f = frekues kelas meda 1. Dberka sampel dega data : 4, 1, 5, 7, 8, 10, 10 Tetuka medaya?. Tetuka meda pada daftar II? Kuartl > adalah blaga pembag yag membag sekumpula data mejad empat baga yag sama bayak, sesudah dsusu meurut uruta laya. ( + 1) Letak K = data ke -, dega = 1,, 3 4 Jka data dsusu dalam daftar dstrbus frekues, maka kuartl ke- ya : F K = b + p 4 f dega b = batas bawah kelas K, alah kelas dmaa K aka terletak p = pajag kelas K = ukura sampel atau bayak data F = jumlah semua frekues dega tada kelas lebh kecl dar tada kelas K f = frekues kelas K 1. Tetuka K 1 da K 3 pada sampel data : 75, 8, 66, 57, 64, 56, 9, 94, 86, 5, 60, 70?. Tetuka K 3 pada daftar II? Desl > adalah blaga pembag yag membag sekumpula data mejad sepuluh baga yag sama bayak, sesudah dsusu meurut uruta laya. ( + 1) Letak D = data ke -, dega = 1,,..., 9 10 Jka data dsusu dalam daftar dstrbus frekues, maka desl ke- ya : F D = b + p 10 f dega b = batas bawah kelas D, alah kelas dmaa D aka terletak p = pajag kelas D = ukura sampel atau bayak data F = jumlah semua frekues dega tada kelas lebh kecl dar tada kelas D f = frekues kelas D E-mal :
4 1. Tetuka D 7 pada sampel data : 75, 8, 66, 57, 64, 56, 9, 94, 86, 5, 60, 70?. Tetuka D 3 pada daftar II? Persetl > adalah blaga pembag yag membag sekumpula data mejad seratus baga yag sama bayak, sesudah dsusu meurut uruta laya. ( + 1) Letak P = data ke -, dega = 1,,..., Jka data dsusu dalam daftar dstrbus frekues, maka persetl ke- ya : F P = b + p 100 f dega b = batas bawah kelas P, alah kelas dmaa P aka terletak p = pajag kelas P = ukura sampel atau bayak data F = jumlah semua frekues dega tada kelas lebh kecl dar tada kelas P f = frekues kelas P * UKURAN SIMPANGAN & VARIASI > utuk meggambarka bagamaa berpecarya data kuattatf. Smpaga Baku > pagkat dua dar smpaga baku damaka varas. > utuk sampel, smpaga baku dber smbol s, sedagka utuk populas dber smbol σ (sgma) Jka dketahu sampel berukura dega data x 1, x,..., x, maka x ( x ) s = ( 1) Jka data dar sampel telah dsusu dalam daftar dstrbus frekues, maka s = f x ( f x ) ( 1) 1. Dberka sampel data : 8, 7, 10, 11, 4. Tetuka smpaga baku da varasya?. Tetuka smpaga baku da varas pada daftar II? E-mal :
5 * PENGUJIAN HIPOTESIS Pegerta Peguja Hpotess Hpotess berasal dar bahasa Yua, yatu hupo da thess. Hupo berart lemah, kurag, atau d bawah da thess berart teor, proposs, atau peryataa yag dsajka sebaga bukt. Jad, hpótess dapat dartka sebaga suatu peryataa yag mash lemah kebearaya da perlu dbuktka atau dugaa yag sfatya mash semetara. Prosedur Peguja Hpótess 1. Meetuka Formulas Hpotess Formulas atau perumusa hpótess statstk dapat dbedaka atas dua jes, yatu sebaga berkut : a. Hpótess ol atau hpótess hl Hpótess ol, dsmbolka H 0 adalah hpótess yag drumuska sebaga suatu peryataa yag aka duj. b. Hpótess alteratf atau hpótess tadga Hpótess alteratf dsmbolka H 1 atau H a adalah hpótess yag drumuska sebaga lawa atau tadga dar hpótess ol. Secara umum, formulas hpótess dapat dtulska : H 0 : θ = θ 0 H 1 : θ > θ 0 Peguja dsebut peguja ss kaa H 0 : θ = θ 0 H 1 : θ < θ 0 Peguja dsebut peguja ss kr H 0 : θ = θ 0 H 1 : θ θ 0 Peguja dsebut peguja dua ss. Meetuka Taraf Nyata (Sgfcat Level) Taraf yata adalah besarya batas toleras dalam meerma kesalaha hasl hpotess terhadap la parameter populasya. Taraf yata dlambagka dega α (alpha) Besarya la α bergatug pada keberaa pembuat keputusa yag dalam hal berapa besarya kesalaha yag aka dtolerr. 3. Meetuka Krtera Peguja Krtera peguja adalah betuk pembuata keputusa dalam meerma atau meolak hpotess ol (H 0 ) dega cara membadgka la α tabel dstrbusya (la krts) dega la uj statstkya, sesua dega betuk pegujaya. a. Peermaa H 0 terjad jka la uj statstkya lebh kecl atau lebh besar darpada la postf atau egatf dar α tabel. Atau la uj statstk berada d luar la krts. b. Peolaka H 0 terjad jka la uj statstkya lebh besar atau lebh kecl darpada la postf atau egatf dar α tabel. Atau la uj statstk berada d dalam la krts. E-mal :
6 4. Meetuka Nla Uj Statstk Uj statstk merupaka rumus-rumus yag berhubuga dega dstrbus tertetu dalam peguja hpotess. Uj statstk merupaka perhtuga utuk meduga parameter data sampel yag dambl secara radom dar sebuah populas. 5. Membuat Kesmpula Pembuata kesmpula merupaka peetapa keputusa dalam hal peermaa atau peolaka hpotess ol (H 0 ), sesua dega krtera pegujaya. Pembuata kesmpula dlakuka setelah membadgka la uj stastk dega la α tabel atau al krts. Kesalaha dalam Peguja Hpotess Dalam peguja hpotess, kesmpula yag dperoleh haya peermaa atau peolaka terhadap hpotess yag dajuka, tdak berart kta telah membuktka atau tdak membuktka kebeara hpotess tersebut. Hal dsebabka kesmpula tersebut haya merupaka feres ddasarka sampel. Dalam peguja hpotess dapat terjad dua jes kesalaha, yatu : a. Kesalaha Jes I Kesalaha jes I adalah karea H 0 dtolak padahal keyataaya bear. Artya, kta meolak hpotess tersebut (H 0 ) yag seharusya dterma. b. Kesalaha Jes II Kesalaha jes II adalah kesalaha karea H 0 dterma padahal keyataaya salah. Artya, kta meerma hpotess (H 0 ) yag seharusya dtolak. Tabel 1. Dua Jes Kesalaha dalam Peguja Hpotess Kesmpula Terma Hpotess Tolak Hpotess Keadaa Sebearya H 0 Bear H 0 Salah Tdak membuat kekelrua Kesalaha Jes II Kesalaha Jes 1 Tdak membuat kesalaha Sumber : Hasa, Iqbal Pokok-Pokok Mater Statstk (Statstk Iferesf). Jakarta : Bum Aksara. Sudjaa. 00. Metoda Statstka. Badug : Tarsto. E-mal :
UKURAN GEJALA PUSAT DAN UKURAN LETAK
UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu
SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS
C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah
Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.
Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk
3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut
3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas
BAB 1 STATISTIKA RINGKASAN MATERI
BAB STATISTIKA A RINGKASAN MATERI. Pegerta Data adalah kumpula keteraga-keteraga atau catata-catata megea suatu kejada, dapat berupa blaga, smbol, sat atau kategor. Masg-masg keteraga dar data dsebut datum.
4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data
//203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura
STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis
STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma
S2 MP Oleh ; N. Setyaningsih
S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal
STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi
STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha
b) Untuk data berfrekuensi fixi Data (Xi)
B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm
UKURAN GEJALA PUSAT (UGP)
UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat
TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi.
TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Ftr Yulat, SP. Ms. UKURAN DATA Ukura data Ukura Pemusata data Ukura letak data Ukura peyebara data Mea Meda Jagkaua Meda Kuartl Jagkaua atar
BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska
BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres
Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.
Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda
STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran
Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..
BAB III UKURAN PEMUSATAN DATA
BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah
Pada saat upacara bendera, kita sering memperhatikan teman-teman kita.
Bab Ukura Data Pada saat upacara bedera, kta serg memperhatka tema-tema kta. Terkadag tapa sadar kta membadgka tgg redah sswa dalam upacara tersebut. Ada yag tggya 170 cm, 165 cm, 150 cm atau bahka 140
BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI
BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug
BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai
BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres
Tabel Distribusi Frekuensi
Tabel Dstrbus Frekues Tabel dstrbus frekues adalah susua data meurut kelas-kelas terval tertetu atau meurut kategor tertetu dalam sebuah daftar. Dar dstrbus frekues, dapat dperoleh keteraga atau gambara
BAB 5. ANALISIS REGRESI DAN KORELASI
BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh
9/22/2009. Materi 2. Outline. Graphical Techniques. Penyajian Data. Numerical Techniques
Mater Outle Graphcal Techques Peyaja Data Numercal Techques Tekk Grafk (Graphcal Techques) Secara vsual, grafs merupaka gambar-gambar yag meujukka data berupa agka yag basaya dbuat berdasarka tabel yag
STATISTIKA Matematika Kelas XI MIA
STATISTIKA Matematka Kelas XI MIA 90 0 70 0 50 40 30 0 0 1st Qtr d Qtr 3rd Qtr 4th Qtr East West North Dsusu oleh : Markus Yuarto, S.S Tahu Pelajara 01 017 SMA Sata Agela Jl. Merdeka No. 4 Badug PENGANTAR
STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)
STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.
2.2.3 Ukuran Dispersi
3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka
BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling
BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl
PENDAHULUAN. Tabel nilai statistika Nilai Jumlah Mahasiswa A 5 B 9 C 25 D 3 E
1 PENDAHULUAN 1.1. Pegerta statstk da statstka Statstk adalah kumpula data, blaga maupu o blaga yag dsusu dalam table da atau dagram yag melukska suatu persoala Tabel la statstka Nla Jumlah Mahasswa A
47 Soal dengan Pembahasan, 46 Soal Latihan
Galer Soal 7 Soal dega Pembahasa, Soal Latha Dragkum Oleh: ag Wbowo, S.Pd Jauar 0 MatkZoe s Seres Emal : matkzoe@gmal.com log : www.matkzoe.wordpress.com HP : 0 97 97 Hak pta Dldug Udag-udag. Dlarag megkutp
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut
UKURAN PEMUSATAN & PENYEBARAN
UKURAN PEMUSATAN & PENYEBARAN RATA - RATA UKURAN PEMUSATAN MEDIAN MODUS Rata rata htug (mea) Merupaka hasl bag dar sejumlah skr dega bayakya respde Utuk Data Tdak Berkelmpk x Dmaa : = la samapa x = la
BAB 2. Tinjauan Teoritis
BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut
BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai
BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.
STATISTIKA DASAR. Oleh
STATISTIKA DASAR Oleh Suryo Gurto cara peyaja data - tabel - grak meghtug harga-harga petg : - ukura lokas - ukura sebara/peympaga apabla data mempuya observasya cukup bayak perlu dsusu secara sstematk
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,
BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten
BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar
BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel
BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka
Statistika. Menyajikan Data dalam Bentuk Diagram ;
Statstka Meyajka Data dalam Betuk Dagram ; Meyajka Data dalam Betuk Tabel Dstrbus Frekues ; Meghtug Ukura Pemusata, Ukura Letak, da Ukura ; Peyebara Data Kalau kamu ke kator keluraha, kator pajak, kator
LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)
LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau
BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,
BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga
III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri
III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,
BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.
BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks
TINJAUAN PUSTAKA Evaluasi Pengajaran
TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas
Regresi Linier Sederhana Definisi Pengaruh
Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh
Bab 1. Statistika. A. Penyajian Data B. Penyajian Data Statistik C. Penyajian Data Ukuran menjadi Data Statistik Deskriptif
Bab Statstka Sumber: farm.statc.flckr.com Setelah mempelajar bab, Ada harus mampu melakuka pegolaha, peyaja da peafsra data dega cara membaca da meyajka data dalam betuk tabel da dagram batag, gars, lgkara,
HAND OUT STATISTIKA DASAR (MT308) Oleh : Dewi Rachmatin, S.Si., M.Si.
HAND OUT STATISTIKA DASAR (MT308) Oleh : Dew Rachmat, S.S., M.S. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN IPA UNIVERSITAS PENDIDIKAN INDONESIA 008 Idettas Mata Kulah. Nama Mata
BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam
BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma
Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu
KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua
Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah
Prosdg Statstka ISSN 40-45 Uj Modfkas Pergkat Bertada Wlcoxo Utuk Masalah Dua Sampel Berpasaga 1 Wl Soldayah St Suedar 3 Lsur Wachdah 1, Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl. Tamasar No. 1
Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2
M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe
11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN
// REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA
UKURAN PEMUSATAN DAN LETAK DATA
UKURAN PEMUSATAN DAN LETAK DATA PENDAHULUAN Suatu harga yag dapat dpaka utuk mewakl sekumpula data. Harga rata-rata merupaka suatu la sektar maa blaga-blaga la tersebar. Harga rata-rata serg damaka measure
BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel
BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:
Uji Homogenitas Varians
Uj Homogentas Varans I. DUA VARIANS Pengujan hpotess dua varans dlakukan untuk mengetahu varans dua populas sama (homogen atau tdak (heterogen. S dan S merupakan penduga σ dan σ Rumus varans : x ( x S
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,
BAB 1 STATISTIKA. Gambar 1.1
STANDAR KOMPETENSI: BAB 1 STATISTIKA Megguaka atura statstka, kadah pecacaha, da sat-sat peluag dalam pemecaha masalah. Kompetes Dasar 1. Membaca data dalam betuk tabel da dagram batag, gars, lgkara, da
titik tengah kelas ke i k = banyaknya kelas
STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e
100% r n. besarnya %. n. h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m =. 400
h t t p : / / m a t e m a t r c k. b l o g p o t. c o m Meetuka uur-uur pada dagram lgkara atau batag Rgkaa Mater : Uur uur pada dagram lgkara yag pokok haya hal :. Meetuka bear baga dalam lgkara ( dapat
FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani
FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk
XI. ANALISIS REGRESI KORELASI
I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas
PENDAHULUAN. Gambar (a) diagram lingkaran (b) diagram balok
PENDAHULUAN.. PENGERTIAN STATISTIK DAN STATISTIKA Statstk adalah kumpula data, blaga maupu o blaga yag dsusu dalam table da atau dagram yag melukska suatu persoala. Cotoh tabel da dagram statstk dapat
PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan
Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah
REGRESI LINIER SEDERHANA
MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa
Statistika Deskriptif
Statstka Deskrptf Statstka Deskrptf Statstka deskrptf (descrptve statstcs) berkata dega peerapa metode statstk utuk megumpulka, megolah, meyajka, da megaalss data kuattatf secara deskrptf. Statstka Deskrptf
BAB 6 PRINSIP INKLUSI DAN EKSKLUSI
BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu
Created by Simpo PDF Creator Pro (unregistered version)
Created by Smpo PDF Creator Pro (uregstered verso) http://www.smpopdf.com Statst Bss : BAB V. UKURA PEYEBARA DATA.1 Peyebara Uura peyebara data adalah uura statst yag meggambara bagamaa berpecarya data
8. MENGANALISIS HASIL EVALUASI
8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara
POLIGON TERBUKA TERIKAT SEMPURNA
MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua
BAB III PERSAMAAN PANAS DIMENSI SATU
BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka
9. SOAL-SOAL STATISTIKA
9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra
9. SOAL-SOAL STATISTIKA
9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra
ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:
ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X
STATISTIKA. Penulis Dra. Th. Widyantini, M.Si. Layouter: Titik Sutanti, S.Pd.Si., M.Ed.
STATISTIKA Peuls Dra. Th. Wdyat, M.S. Layouter: Ttk Sutat, S.Pd.S., M.Ed. PUSAT PENGEMBANGAN DAN PENBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN MATEMATIKA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN 015 Daftar
Notasi Sigma. Fadjar Shadiq, M.App.Sc &
Notas Sgma Fadjar Shadq, M.App.Sc (fadjar_pg@yahoo.com & www.fadjarpg.wordpress.com Notas sgma memag jarag djumpa dalam kehdupa sehar-har, tetap otas tersebut aka bayak djumpa pada baga matematka yag la,
MATEMATIKA INTEGRAL RIEMANN
MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk
Beberapa Metode Alternatif untuk Analisis Data Sampel Berpasangan
Prosdg Statstka ISSN 46-6456 Beberapa Metode Alteratf utuk Aalss Data Sampel Berpasaga Rma Rzka Yuar Tet Sofa Yat, 3 Abdul Kudus,,3 Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl Tamasar No Badug 46
Penarikan Contoh Acak Sederhana (Simple Random Sampling)
Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu
INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2
INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas
KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.
KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,
BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu
BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl
III. METODOLOGI PENELITIAN. Metode penelitian merupakan strategi umum yang di anut dalam
III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta merupaka strateg umum yag d aut dalam pegumpula data da aalss data yag dperluka, gua mejawab persoala yag dhadap. Meurut Arkuto (006 : 3) peelta
ANALISIS DATA STATISTIK. Adi Setiawan
ANALISIS DATA STATISTIK Ad Setawa Peerbt Tsara Grafka Salatga 017 Katalog Dalam Terbta 519.5 ADI Ad Setawa a Aalss data statstk/ Ad Setawa. -- Salatga : Tsara Grafka, 017. v, 5 p. ; 5 cm. ISBN 978-60-9493-5-8
BAB IV HASIL PENELITIAN. Hasil penelitian ini berdasarkan data yang diperoleh dari kegiatan penelitian
BAB IV HASIL PENELITIAN Hasl peelta berdasarka data yag dperole dar kegata peelta yag tela dlaksaaka ole peelt d MTs Salafya II Radublatug Blora pada kelas VIII A tau ajara 1 11. Data asl peelta tersebut
BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah
BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,
ISBN : (No. jil lengkap) ISBN : Harga Eceran Tertinggi: Rp8.558,-
ISBN : 978-979-068-858- (No. jl legkap) ISBN : 978-979-068-86- PUSAT PERBUKUAN Departeme Peddka Nasoal Harga Ecera Tertgg: Rp8.558,- Khazaah Matematka utuk Kelas XI SMA da MA Program Bahasa Rosha Ar Y.
Uji Statistika yangb digunakan dikaitan dengan jenis data
Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas
STATISTIK DAN STATISTIKA
STATISTIK DAN STATISTIKA A. Pegerta Statstk da Statstka Statstk berasal dar kata State yag artya egara, megapa demka karea lmu dlham dar peemua para ahl yatu : bahwa d setap egara past mempuya sesuatu
TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP
JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk
UKURAN GEJALA PUSAT &
UKURAN GEJALA PUSAT & UKURAN LETAK UKURAN GEJALA PUSAT & LETAK Untuk mendapatkan gambaran yang jelas mengena suatu populas atau sampel Ukuran yang merupakan wakl kumpulan data mengena populas atau sampel
BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP
BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh
BAB III ISI. x 2. 2πσ
BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)
3 Departemen Statistika FMIPA IPB
Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka
SOLUSI TUGAS I HIMPUNAN
Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real
ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF
ANALISIS ALGORITMA REKURSIF DAN NONREKURSIF KELOMPOK A I GUSTI BAGUS HADI WIDHINUGRAHA (0860500) NI PUTU SINTYA DEWI (0860507) LUH GEDE PUTRI SUARDANI (0860508) I PUTU INDRA MAHENDRA PRIYADI (0860500)
REGRESI SEDERHANA Regresi
P a g e REGRESI SEDERHANA.. Regres Istlah regres dkemukaka utuk pertama kal oleh seorag atropolog da ahl meteorology Fracs Galto dalam artkelya Famly Lkeess Stature pada tahu 886. Ada juga sumber la yag
Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )
Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar
PENGUJIAN HIPOTESIS PROSEDUR UMUM PROSEDUR UMUM PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 )
PENGUJIAN HIPOTESIS PROSEDUR UMUM Lagkah : tetuka hpote 0 (H 0 ) da at hpote (H ) malya: H 0 : µ 00 H : µ 00 atau H : µ > 00 atau H : µ < 00 PROSEDUR UMUM Lagkah : tetuka je dtrbu yag cocok: bla > 30 da
BAB II TINJAUAN PUSTAKA. dua sampel berpasangan akan menggunakan statistik uji T 2 -Hotelling. Untuk itu,
BAB II TINJAUAN PUSTAKA. Pedahulua Dalam bab aka dbahas tetag uj t utuk meguj sebuah parameter rata-rata da selsh dua parameter rata-rata dua sampel berpasaga dbawah asums populas berdstrbus ormal. Pada