Modul 7. METODE NEWTON-RAPHSON (Tangent) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Ukuran: px
Mulai penontonan dengan halaman:

Download "Modul 7. METODE NEWTON-RAPHSON (Tangent) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL"

Transkripsi

1 Modul 7 METODE NEWTON-RAPHSON (Taget utuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pedahulua Pada modul terdahulu, walaupu kecepata kovergesi telah dapat ditigkatka secara lumaya berarti pada metode Regula-Falsi, amu pada dasarya metode tersebut masih memiliki kelemahakelemaha terutama dari persyarata posisi-posisi harga awalya (relati terhadap solusi eksakya, da juga cara meebak 2 buah harga awal yag memeuhi persayarata domai jawab. Di sampig itu juga, kecepata kovergesi superliier (atara liier da kuadratis dari metode Regula-Falsi diperoleh dega cara peroleha solusi pedekata di sekitar domai jawab ataupu akar eksak dari graik y = ( dega batua sebuah garis lurus. Dalam modul 7 ii aka dibahas suatu metode solusi baru utuk PANLT yag bekerja berdasarka GARIS TANGENT (garis siggug yag meyiggug kurva y = ( di suatu titik, sedemikia rupa sehigga akar dari garis lurus yag terbetuk dapat diguaka utuk melakuka pedekata pada akar eksak dari PANLT ( * yag dimaksud. Metode ii dikeal seagai Metode Newto-Raphso, yag kierjaya relati jauh lebih cepat dalam mecapai kovergesi, karea memiliki laju kovergesi kuadrat. Namu, agar supaya metode ii dapat bekerja dega baik, harus dipeuhi beberapa persyarata berikut: Diperluka SATU HARGA AWAL (dapat berupa tebaka, da tebaka harga awal tersebut tidak meyebabka harga ugsi mejadi tak berhigga (, Persamaa y = ( mempuyai turua yag dapat disebut sebagai y = ( da harus kotiyu di daerah domai jawab, Seri Kuliah Metode Numerik (Modul 7: Metode Newto-Raphso utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal (1/1

2 Turua ugsi tersebut tidak berharga ol, y 0, pada harga k (pada iterasi ke-k yag diigika, Kriteria peghetia iterasi dilakuka bilamaa SALAH SATU syarat berikut telah dipeuhi: (a. Selisih harga k (pada iterasi terbaru dega k-1 (pada iterasi sebelumya lebih kecil atau sama dega harga ε, atau dapat dituliska sebagai: k ε, atau (b. Harga ugsi ( k (dega megguaka harga pada iterasi terbaru sudah sagat kecil da meuju ol atau dapat dikataka juga lebih kecil atau sama dega harga ε, yag dapat dituliska sebagai: ( k ε B. Solusi Akar PANLT dega Metode Newto-Raphso Solusi akar (atau akar-akar dega megguaka Metode Newto- Raphso, secara sederhaa, dapat dituruka dari geometri gambar di bawah ii: Gambar 7.1. Represetasi garis taget pada metode Newto-Raphso. Seri Kuliah Metode Numerik (Modul 7: Metode Newto-Raphso utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal (2/2

3 Garis taget yag dimaksudka pada Gb di atas adalah garis AC, yag berarti juga bahwa taget dari CAB (sudut CAB dapat dituliska sebagai berikut: ta( CAB = CB AB Bila diperhatika pada gambar di atas, maka aka diperoleh kesamaa-kesamaa berikut: CB = ( 0 = AB = +1 ta( CAB =, da ( ( Sehigga, persamaa ta( CAB dapat ditulis kembali sebagai: ( = ( + 1 atau setelah disusu-ulag, aka diperoleh ormula rekursi dari Metode Newto-Raphso: + 1 = ( ( Formula rekursi di atas juga dapat diperoleh dega cara pegembaga pegembaga deret Taylor pada titik, sebagai berikut: ( ( + ( ( = ( + ξ 2 2 " ( + L dega ξ berada di atara da. Kemudia, pada saat tercapai solusi eksak, atau = α, yag berarti juga bahwa ( = 0, maka aka deperoleh rumus rekursi berikut: α = ( ( 2 2 " ( α ( ξ ( L Seri Kuliah Metode Numerik (Modul 7: Metode Newto-Raphso utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal (3/3

4 Dari persamaa di atas, jika iterasi masih atau sedag berlagsug maka ormula Newto-Raphso yag legkap (dega ormula sesataya aka diperoleh sebagai berikut: ( ( 2 " ( α ( ξ + ( = L Term ( 2 " α ( ξ + L ( merupaka term ketelitia dari ormula 2 rekursi perhituga yag dikembagka dari deret Taylor, amu dega alasa bahwa term tersebut juga sekaligus berpera sebagai sesata (error dari ormula Newto-Raphso, maka Metode Newto-Raphso tersebut di atas sekaligus dapat dikataka memiliki LAJU KONVERGENSI KUADRATIS, karea adaya term ( α 2. C. Algoritma Metode Newto-Raphso Berbeda dega metode-metode sebelumya, bahka berbeda dega Metode Secat yag aka dibahas pada Modul 8, Metode Newto-Raphso ii haya membutuhka tebaka 1 buah harga awal yag seharusya terletak di sekitar DOMAIN JAWAB (secara ituiti ilai akar α, sedemikia rupa sehigga ormula tersebut koverge (meuju ke titik jawab. Hal lai yag harus diperhatika adalah bahwa Metode Newto- Raphso ii memberika beba tambaha kepada pegguaya, karea adaya keharusa meghitug ugsi turua (, di setiap iterasi (titik. Hal ii merupaka salah satu kekuraga dari metode ii, megigat tidak semua gsi dapat dituruka atau mempuyai turua pada suatu iterval yag kotiyu. Namu, sekali lagi, aalisis tetag kelemaha metode ii masih dapat diterima megigat kecepata kovergesiya yag relati palig baik. Secara rigkas, algoritma Newto-Raphso yag secara prisip Seri Kuliah Metode Numerik (Modul 7: Metode Newto-Raphso utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal (4/4

5 diambil dari Atkiso (1978, adalah sebagai berikut: Algoritma NEWRAP(,d,old,,ε,iter,itma,lag 1. Set harga variabel-variabel: iter = 0, lag = 0; 2. Set = old; 3. = - (/d(; 4. Set iter = iter + 1; 5. Jika abs( old ε maka lag = 1 atau jika iter > itma maka lag = 2 atau jika tidak maka old = ; 6. Jika lag = 0 ulagi ke omor 3; 7. Selesai. Perhatika dega baik-baik: bahwa algoritma di atas tidak memperhitugka adaya kemugkia harga ugsi turua yag berharga ol ( ( = d ( = 0. Cobalah aalisis atau beri kometar saudara tetag masalah tersebut! Jika saudara berpedapat harus ada perigata tetag bahaya ugsi turua yag berharga ol, bagaimaakah betuk algoritmaya meurut saudara? Adapu rigkasa umum tetag siat da karakteristik metode ii adalah sebagai berikut: Memerluka 1 harga awal ( 0 Kovergesi Kuadrat (palig cepat Sesuai utuk ugsi da turuaya yag terdeiisi dega jelas ( kotiyu da dapat dituruka pada ; sebalikya aka mejadi kedala bila ugsiya da turuaya tidak jelas Diverge bila ( = 0 ( titik optimum Seri Kuliah Metode Numerik (Modul 7: Metode Newto-Raphso utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal (5/5

6 Kriteria peghetia iterasi : ε da atau ( ε. Adapu tabel kerja dari metode ii (sesuai dega algoritmaya, dapat disajika secara sistematis sebagai berikut: Tabel 7.1. Tabel Kerja Metode Newto-Raphso ( ( 0 1 D. Listig Program Metode Newto-Raphso Seperti juga problem yag sama pada modul sebelumya, diberika persoala utuk meghitug akar (akar-akar persamaa ( = 0, sebagai berikut: ( e 1 = 0 Listig program sederhaa (o-subroutie da program dega subroutie utuk Metode Newto-Raphso disertaka dalam gambar-gambar 7.2. da 7.3. di bawah ii, yag ditulis dalam Bahasa FORTRAN 77 (kompatibel dega Bahasa FORTRAN 90/95: C Program: Solusi Persamaa Aljabar No-Liier Tuggal (PANLT C dega Metode Newto-Raphso C VARIAN: Program sederhaa/no-subroutie C Kodisi proses diyataka dalam variabel lag C lag = 0; berarti sistem masih dalam proses iterasi C lag = 1; berarti proses telah mecapai kovergesi C lag = 2; berarti jumlah iterasi maksimum telah terlampaui C implicit oe REAL*8 eps,,d,,old INTEGER lag,iter,maiter Seri Kuliah Metode Numerik (Modul 7: Metode Newto-Raphso utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal (6/6

7 WRITE(*,(A,$ Harga awal utu (0 : READ(*,* old WRITE(*,(A,$ Jumlah iterasi maksimum : READ(*,* maiter WRITE(*,(A,$ Epsilo/kriteria proses : READ(*,* eps iter = 0 lag = 0 = old DO WHILE(lag.EQ. 0 = - (/d( IF (ABS( - old.le. eps THEN lag = 1 ELSEIF (iter.gt. maiter THEN lag = 2 ELSE iter = iter + 1 old = IF DO WRITE(*,* old =,old WRITE(*,* =, WRITE(*,* ( =,( WRITE(*,* d( =,d( WRITE(*,* Flag =,lag WRITE(*,* Jumlah iterasi =,iter STOP FUNCTION ( REAL*8, = - ep(1.0d0/ RETURN FUNCTION d( REAL*8 d, d = 1.0D0 + ep(1.0d0//(**2 RETURN Gambar 7.2. Listig program Newto-Raphso sederhaa (tapa subroutie. Seri Kuliah Metode Numerik (Modul 7: Metode Newto-Raphso utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal (7/7

8 C Program: Solusi Persamaa Aljabar No-Liier Tuggal (PANLT C dega Metode Newto-Raphso C VARIAN: Program dega Subroutie C Kodisi proses diyataka dalam variabel lag C lag = 0; berarti sistem masih dalam proses iterasi C lag = 1; berarti proses telah mecapai kovergesi C lag = 2; berarti jumlah iterasi maksimum telah terlampaui C implicit oe eteral,d REAL*8 eps,,d,,old INTEGER lag,iter,maiter WRITE(*,(A,$ Harga awal utu (0 : READ(*,* old WRITE(*,(A,$ Jumlah iterasi maksimum : READ(*,* maiter WRITE(*,(A,$ Epsilo/kriteria proses : READ(*,* eps iter = 0 lag = 0 = old CALL NEWRAP(,d,old,,eps,iter,maiter,lag WRITE(*,* old =,old WRITE(*,* =, WRITE(*,* ( =,( WRITE(*,* d( =,d( WRITE(*,* Flag =,lag WRITE(*,* Jumlah iterasi =,iter STOP SUBROUTINE NEWRAP(,d,old,,eps,itum,itma,prlag C C Sub-program: Solusi PANLT dega metode NEWTON-RAPHSON C : ugsi ( = 0 yag aka dicari akarya C old : ilai -awal di sebelah kiri akar ( C : akar (, ilai paruh (atara 0 da 1 C eps : kriteria atau ketelitia peghituga C itum : jumlah iterasi yag dilakuka proses C itma : jumlah pembatas iterasi utuk proses C prlag : idetiikasi utuk kovergesi, yaitu: C 0 = proses sedag/aka berlagsug C 1 = proses mecapai kovergesiya C 2 = jumlah iterasi maksimum (itma telah C terlampaui C REAL*8 eps,,d,,old INTEGER prlag,itum,itma itum = 0 Seri Kuliah Metode Numerik (Modul 7: Metode Newto-Raphso utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal (8/8

9 prlag = 0 = old DO WHILE(prlag.EQ. 0 = - (/d( itum = itum + 1 IF (ABS( - old.le. eps THEN prlag = 1 ELSEIF (iter.gt. itma THEN prlag = 2 ELSE old = IF DO RETURN FUNCTION ( REAL*8, = - ep(1.0d0/ RETURN FUNCTION d( REAL*8 d, d = 1.0D0 + ep(1.0d0//(**2 RETURN Gambar 7.3. Listig program dega subroutie. Perhatika sekali lagi dega baik-baik: bahwa programprogram di atas juga tidak memperhitugka adaya kemugkia harga ugsi turua yag berharga ol ( ( = d ( = 0! Bila saudara aggap perlu, coba perbaiki atau modiikasi programprogram di atas, agar supaya masalah ugsi turua yag berharga ol dapat dihidari! Seri Kuliah Metode Numerik (Modul 7: Metode Newto-Raphso utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal (9/9

10 Tugas: Cari akar (akar-akar dari persamaa-persamaa berikut: (a. ( = e l( (b. ( = 1 da 6 B 2 (c. ( = + e cos( ; dega harga-harga B = 1, 5, 10, 25 da 50. Aalisislah hasil-hasilya. E. Pustaka yag bersesuaia Atkiso, Kedal E., A Itroductio to Numerical Aalysis, Joh Wiley & Sos, Toroto, pp , Atkiso, L.V., Harley, P.J., A Itroductio to Numerical Methods with Pascal, Addiso-Wesley Publishig Co., Tokyo, pp , Bismo, Setijo, Modul Kuliah Metode Numerik, TGP-FTUI, Seri Kuliah Metode Numerik (Modul 7: Metode Newto-Raphso utuk Solusi PANLT (Persamaa Aljabar No-Liier Tuggal (10/10

Modul 6. METODE REGULA-FALSI (False Position) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 6. METODE REGULA-FALSI (False Position) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 6 METODE REGULA-FALSI (False Positio) utuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pedahulua Seperti telah dijelaska pada modul terdahulu, Metode Bisectio memiliki kelemaha pokok, yaitu:

Lebih terperinci

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan Modul 8 METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Pada modul 7 terdahulu, telah dijelaskan tentang keunggulan komparatif Metode Newton-Raphson dibanding metode-metode

Lebih terperinci

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 5 METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Persamaan Aljabar Non-Linier Tunggal atau PANLT merupakan sembarang fungsi atau persamaan aljabar

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN Supriadi Putra, M,Si Laboratorium Komputasi Numerik Jurusa Matematika FMIPA Uiversitas Riau e-mail : spoetra@yahoo.co.id ABSTRAK Makalah ii

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

Solusi Numerik Persamaan Transport

Solusi Numerik Persamaan Transport Solusi Numerik Persamaa Trasport M. Jamhuri December 16, 2013 Diberika persamaa Trasport u t + 2u x = 0 1) Diberika persamaa Trasport u t + 2u x = 0 1) Diskretka persamaa trasport 1) dega megguaka persamaa

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

Studi Komparatif Metode Newton dan Metode Tali Busur untuk Menghampiri Akar Persamaan f(x)=0

Studi Komparatif Metode Newton dan Metode Tali Busur untuk Menghampiri Akar Persamaan f(x)=0 Lapora Peelitia Studi Komparatif Metode Newto da Metode Tali Busur utuk Meghampiri Akar Persamaa f()= Peeliti: Drs. Sahid, MSc. Jurusa Pedidika Matematika Fakultas Matematika da Ilmu Pebetahua Alam Uiversitas

Lebih terperinci

h h h n 2! 3! n! h h h 2! 3! n!

h h h n 2! 3! n! h h h 2! 3! n! Dieresiasi Numerik Sala satu perituga kalkulus yag serig diguaka adala turua/ dieresial. Coto pegguaa dieresial adala utuk meetuka ilai optimum (maksimum atau miimum) suatu ugsi y x mesyaratka ilai turua

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

BAB II PENCARIAN AKAR PERSAMAAN NON LINIER

BAB II PENCARIAN AKAR PERSAMAAN NON LINIER BAB II PENCARIAN AKAR PERSAMAAN NON LINIER PENDAHULUAN Dalam bab ii, kita aka membahas tetag beberapa metode umerik yag dapat diguaka utuk meemuka akar-akar persamaa o-liier. Masalah yag aka kita bahas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Kompleksitas Waktu untuk Algoritma Rekursif. ZK Abdurahman Baizal

Kompleksitas Waktu untuk Algoritma Rekursif. ZK Abdurahman Baizal Kompleksitas Waktu utuk Algoritma Rekursif ZK Abdurahma Baizal Algoritma Rekursif Betuk rekursif : suatu subruti/fugsi/ prosedur yag memaggil diriya sediri. Betuk dimaa pemaggila subruti terdapat dalam

Lebih terperinci

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU Rahma Dodi 1, Musraii M 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA DAN FAKTOR DISKON

BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARSA DAN FAKTOR DISKON BAB III ECONOMIC ORDER QUANTITY MULTIITEM DENGAN MEMPERTIMBANGKAN WAKTU KADALUARA DAN FAKTOR DIKON 3.1 Ecoomic Order Quatity Ecoomic Order Quatity (EOQ) merupaka suatu metode yag diguaka utuk megedalika

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Dalam duia iformatika, assigmet Problem yag biasa dibetuk dega matriks berbobot merupaka salah satu masalah terbesar, dimaa masalah ii merupaka masalah yag metode peyelesaiaya

Lebih terperinci

Deret dan Aproksimasi. Deret MacLaurin Deret Taylor

Deret dan Aproksimasi. Deret MacLaurin Deret Taylor Deret da Aproksimasi Deret MacLauri Deret Taylor Tujua Keapa perlu perkiraa? Perkiraa dibetuk dari ugsi palig sederhaa polyomial. Kita bisa megitegrasika da medieresiasi dega mudah. Kita bisa guaka saat

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

BAB II TEORI MOTOR LANGKAH

BAB II TEORI MOTOR LANGKAH BAB II TEORI MOTOR LANGKAH II. Dasar-Dasar Motor Lagkah Motor lagkah adalah peralata elektromagetik yag megubah pulsa digital mejadi perputara mekais. Rotor pada motor lagkah berputar dega perubaha yag

Lebih terperinci

Pendiferensialan. Modul 1 PENDAHULUAN

Pendiferensialan. Modul 1 PENDAHULUAN Modul Pediferesiala Prof R Soematri D PENDAHULUAN alam modul ii dibahas fugsi berilai real yag didefiisika pada suatu iterval Defiisi derivatif suatu fugsi dimulai dega derivatif di suatu titik, kemudia

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

C (z m) = C + C (z m) + C (z m) +...

C (z m) = C + C (z m) + C (z m) +... 4.. DERET PANGKAT Deret pagkat dari (x-m) merupaka deret tak higga yag betuk umumya adalah : i= i i C (z m) = C + C (z m) + C (z m) +... ( 4- ) C, C,... = kostata disebut koefisie deret m = kostata disebut

Lebih terperinci

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA Joas Lodewyk H 1, Zulkarai 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM09 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pada metode ii, utuk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Optimasi 2.1.1. Pegertia Optimasi Optimasi (Optimizatio) adalah aktivitas utuk medapatka hasil terbaik di bawah keadaa yag diberika. Tujua akhir dari semua aktivitas tersebut

Lebih terperinci

PENDUGA RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KUARTIL VARIABEL BANTU PADA PENGAMBILAN SAMPEL ACAK SEDERHANA DAN PENGATURAN PERINGKAT MEDIAN

PENDUGA RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KUARTIL VARIABEL BANTU PADA PENGAMBILAN SAMPEL ACAK SEDERHANA DAN PENGATURAN PERINGKAT MEDIAN PEDUGA RASIO UTUK RATA-RATA POPULASI MEGGUAKA KUARTIL VARIABEL BATU PADA PEGAMBILA SAMPEL ACAK SEDERHAA DA PEGATURA PERIGKAT MEDIA ur Khasaah, Etik Zukhroah, da Dewi Reto Sari S. Prodi Matematika Fakultas

Lebih terperinci

DERET Matematika Industri 1

DERET Matematika Industri 1 DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara

Lebih terperinci

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN DALAM SUATU MODEL NON-LINIER Abstrak Nur ei 1 1, Jurusa Matematika FMIPA Uiversitas Tadulako Jl. Sukaro-Hatta Palu,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Permasalaha peugasa atau assigmet problem adalah suatu persoala dimaa harus melakuka peugasa terhadap sekumpula orag yag kepada sekumpula job yag ada, sehigga tepat satu

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan POSITRON, Vol. II, No. (0), Hal. -5 ISSN : 30-4970 Peetua Eergi Osilator Kuatum Aharmoik Megguaka Teori Gaggua Iklas Saubary ), Yudha Arma ), Azrul Azwar ) )Program Studi Fisika Fakultas Matematika da

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES)

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES) rosidig Semirata2015 bidag MIA BKS-TN Barat Uiversitas Tajugpura otiaak BUKTI ALTERNATIF KONVERGENSI DERET ELL DAN ELL-LUCAS (ALTERNATIVE ROOF THE CONVERGENCE OF ELL AND ELL-LUCAS SERIES) Baki Swita 1

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

ANALISIS RIIL I. Disusun oleh Bambang Hendriya Guswanto, S.Si., M.Si. Siti Rahmah Nurshiami, S.Si., M.Si.

ANALISIS RIIL I. Disusun oleh Bambang Hendriya Guswanto, S.Si., M.Si. Siti Rahmah Nurshiami, S.Si., M.Si. ANALISIS RIIL I Disusu oleh Bambag Hedriya Guswato, S.Si., M.Si. Siti Rahmah Nurshiami, S.Si., M.Si. PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM FAKULTAS SAINS DAN TEKNIK UNIVERSITAS

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Galat dan Perambatannya

Galat dan Perambatannya Modul 1 Galat da Perambataya Prof. Dr. Bambag Soedijoo P PENDHULUN ada Modul 1 ii dibahas masalah galat atau derajat kesalaha da perambataya, dega demikia para peggua modul ii diharapka telah memahami

Lebih terperinci

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas.

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas. BAB 1 PENDAHUUAN 1.1 atar Belakag Pada dasarya masalah optimisasi adalah suatu masalah utuk membuat ilai fugsi tujua mejadi maksimum atau miimum dega memperhatika pembatas pembatas yag ada. Dalam aplikasi

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

Kompleksitas dari Algoritma-Algoritma untuk Menghitung Bilangan Fibonacci

Kompleksitas dari Algoritma-Algoritma untuk Menghitung Bilangan Fibonacci Kompleksitas dari Algoritma-Algoritma utuk Meghitug Bilaga Fiboacci Gregorius Roy Kaluge NIM : 358 Program Studi Tekik Iformatika, Istitut Tekologi Badug Jala Gaesha, Badug e-mail: if8@studets.if.itb.ac.id,

Lebih terperinci

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL Khusul Afifa 1, Abdussakir 2 1 Mahasiswa Jurusa Matematika UIN Maulaa Malik Ibrahim Malag 2 Dose Jurusa Matematika

Lebih terperinci

DIFERENSIAL. diferensial pada c. Sehingga dapat kita tulis menjadi f (c) untuk L.

DIFERENSIAL. diferensial pada c. Sehingga dapat kita tulis menjadi f (c) untuk L. DIFERENSIAL 6. Usur Turua 6.. Deiisi Diketahui I R mempuyai iterval : I. Kita dapat megataka bahwa bilaga real L adalah turua dari jika pada c diberika >, maka aka ada > sehigga jika da haya jika x h

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TINJAUAN TEORITIS.1 Pegertia-pegertia Lapaga pekerjaa adalah bidag kegiata dari pekerjaa/usaha/ perusahaa/kator dimaa seseorag bekerja. Pekerjaa utama adalah jika seseorag haya mempuyai satu pekerjaa

Lebih terperinci

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga Modul. (Pertemua s/d ) Deret Takhigga. Deret Tidak Terhigga. Pembicaraa kita sekarag deret pada umumya. Deret yag bayakya suku tak terbatas disebut deret tak higga, otasi : Masalah pokok pada deret tak

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

DERET DAN APROKSIMASI

DERET DAN APROKSIMASI DERET DAN APROKSIMASI D E R E T M A C L A U R I N D E R E T T A Y L O R COURTESY: IDRIS M. KAMIL DAN ROFIQ IQBAL TUJUAN Keapa perlu perkiraa? Perkiraa dibetuk dari ugsi palig sederhaa polyomial. Kita bisa

Lebih terperinci

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI

KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA. Fitriani Agustina, Math, UPI KEKONVERGENAN MODEL BINOMIAL UNTUK PENENTUAN HARGA OPSI EROPA Fitriai Agustia, Math, UPI 1 Fiacial Derivative Opsi Mafaat Opsi Opsi Eropa Peetua Harga Opsi Kekovergea Model Biomial Fitriai Agustia, Math,

Lebih terperinci

PENYAJIAN ISI DAFTAR MATEMATIKA SEBAGAI NILAI FUNGSI POLINOM

PENYAJIAN ISI DAFTAR MATEMATIKA SEBAGAI NILAI FUNGSI POLINOM PENYAJIAN ISI DAFTAR MATEMATIKA SEBAGAI NILAI FUNGSI POLINOM PENDAHULUAN Abdul Hamid ) Email: abdulhamid@yahooom FKIP Uiversitas Tadulako Dalam pelajara matematika maupu terapaya, telah dikeal dua ara

Lebih terperinci

Analisa Komputasi Metode Dua Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear

Analisa Komputasi Metode Dua Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear Prosidig Semirata FMIPA Uiversitas Lampug 03 Aalisa Komputasi Metode Dua Lagkah Bebas Turua Utuk Meelesaika Persamaa Noliear Supriadi Putra MSi Jurusa Matematika FMIPA Uiversitas Riau E-mail:sputra@uriacid

Lebih terperinci

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05.

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05. MA 8 STATISTIKA DASAR SEMESTER I /3 KK STATISTIKA, FMIPA ITB UJIAN AKHIR SEMESTER (UAS) Sei, Desember, 9.3.3 WIB ( MENIT) Kelas. Pegajar: Utriwei Mukhaiyar, Kelas. Pegajar: Sumato Wiotoharjo Jawablah pertayaa

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci