BAB I TEGANGAN DAN REGANGAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I TEGANGAN DAN REGANGAN"

Transkripsi

1 BAB I TEGANGAN DAN REGANGAN.. Tegangan Mekanika bahan merupakan salah satu ilmu yang mempelajari/membahas tentang tahanan dalam dari sebuah benda, yang berupa gaya-gaya yang ada di dalam suatu benda yang menyeimbangi gaya-gaya luar terpakai. Contoh : tegangan dan regangan. Tegangan dapat didefinisikan sebagai besarnya gaya-gaya yang bekerja pada tiap satuan luas tampang benda yang dikenai suatu besaran gaya tertentu. Tegangan dan regangan hubungannya selalu dipermasalahkan, dihitung dan ditentukan. Hal ini sudah ada sejak hokum Hook dicanangkan, besaran yang menjadi penyambungnya dikenal dengan Modulus Elastis. Untuk membahas permasalahan ini diambil suatu potongan balok sebagaimana tergambar pada gambar. yang dipotong melintang. Jika balok tersebut dikenai satu gaya diagonal sebesar p dengan kemiringan sebesar sudut, maka akan didapat gaya normal sebesar p sin dan gaya geser sebesar p cos p sin p A= x.y p cos Gambar.. Potongan balok yang menerima beban normal dan geser Besar tegangan rata-rata pada suatu bidang dapat didefinisikan sebagai intensitas gaya yang bekerja pada bidang tersebut. Sehingga secara matematis tegangan normal rata-rata dapat dinyatakan sebagai lim Psin, (.) A 0 A

2 Dimana : = tegangan normal rata-rata (N/mm = MPa) P = gaya yang bekerja (N) A = luas bidang (mm ) = sudut kemiringan Sedangkan tegangan geser dapat dinyatakan sebagai lim P cos (.) A 0 A y yz yx zz y yx xz zx zy x z zz yx zy zx yz xz x yx (a) 3 Dimensi (b) Dimensi Gambar.. Keadaan Tegangan pada Suatu Titik Dari gambar. jika diambil satu satuan luasan yang sangat kecil maka dapat digambarkan tegangannya seperti terlihat pada gambar.. Tegangan tidak sama dengan vektor tegangan. Tegangan merupakan tensor derajat dua, sedangkan vektor, vektor apapun, merupakan tensor derajat satu. Besaran skalar merupakan tensor derajat nol. Tensor ialah besaran fisik yang keadaannya pada suatu titik dalam ruang, tiga dimensi, dapat dideskripsikan dengan 3 n komponennya, dengan n ialah derajat tensor tersebut. Dengan demikian, untuk persoalan tegangan tiga dimensi pada suatu titik dalam ruang dapat dideskripsikan dengan 3 komponennya. Pada sistem koordinat sumbu silang, tegangan tersebut adalah,, zz,, yx, xz, zx, yz, dan zy seperti ditunjukkan pada Gambar.(a). Namun demikian, karena = yx, xz = zx dan yz = zy, maka keadaan tegangan

3 3 tersebut dapat dinyatakan dengan enam komponennya,,, zz,, xz, yz. Sedangkan untuk tegangan bidang, dua dimensi, pada suatu titik dapat dideskripsikan dengan komponennya, Gambar.(b), dan karena ij = ji untuk i j maka tiga komponen telah dapat mendeskripsikan tegangan bidang pada titik itu. Pada dasarnya, tegangan secara garis besar dapat diklasifikasikan menjadi dua, yakni tegangan normal, dengan notasi ij, i = j, serta tegangan geser dengan notasi ij, i j. Perhatikan penulisan pada paragrap di atas. Karakter indek yang pertama menyatakan bidang tempat bekerjanya gaya, sedangkan karekter indek yang kedua menyatakan arah bekerjanya vektor tegangan tersebut. Tegangan normal ialah tegangan yang bekerja tegak lurus terhadap bidang pembebanan. Sedangkan tegangan geser ialah tegangan yang bekerja sejajar dengan bidang pembebanan. Jadi keenam tegangan yang mendeskripsikan tegangan pada suatu titik terdiri atas tiga tegangan normal,,, dan zz, serta tiga tegangan geser,, yz, dan zx. Nilai tegangan bisa positif dan bisa pula negatif. Tegangan bernilai positif bila tegangan tersebut bekerja pada bidang positif dengan arah positif, atau bekerja pada bidang negatif dengan arah negatif. Selain itu, nilainya negatif... Regangan y dx x y y y z dz x x z dx x (a) 3 Dimensi (b) Dimensi Gambar.3. Keadaan Regangan Normal pada Suatu Titik

4 4 Seperti halnya tegangan, regangan juga merupakan tensor derajat dua. Dengan demikian keadaan regangan ruang, tiga dimensi, pada suatu titik dapat dideskripsikan dengan kesembilan komponennya. Pada sistem koordinat sumbu silang, regangan tersebut adalah,, zz,, yx, xz, zx, yz, dan zy, sebagaimana ditunjukkan pada Gambar.3(a). Regangan juga dapat diklasifikasikan menjadi dua, yakni regangan normal, dengan notasi ij, i = j, serta regangan geser dengan simbul ij i j.sebagaimana dengan tegangan, = yx, xz = zx dan yz = zy, maka keadaan regangan ruang pada suatu titik dapat dinyatakan oleh enam komponen, yakni,, zz,, yz, zx. Sedangkan regangan bidang, dua dimensi, dapat dideskripsikan dengan komponennya, dan karena ij = ji maka regangan bidang pada suatu titik dapat dideskripsikan dengan hanya tiga komponen, Gambar.4(b). y y x xz x 0.5 yz z (a) Tiga Dimensi (b) Dua Dimensi Gambar.4. Kondisi Regangan Geser Pada Suatu Titik Regangan normal merupakan perubahan panjang spesifik. Regangan normal rata-rata dinyatakan oleh perubahan panjang dibagi dengan panjang awal, atau secara matematis dapat dituliskan

5 5 li ui ij, i = j (.3) li li Dimana : ij = regangan normal rata-rata l = u = perubahan panjang pada arah (mm) l = panjang awal pada arah (mm) i, j = sumbu koordinat pada sistem sumbu silang, x, y, z. Sedangkan regangan geser merupakan perubahan sudut dalam radial. Regangan geser bernilai positif bila sudut pada kuadran I dan atau kuadran III pada sistem koordinat sumbu silang mengecil, Gambar.4(a), sedangkan selain itu bernilai negatif..3. Transformasi Tegangan Bidang Tegangan dapat ditransformasi dari suatu set sumbu koordinat ke set sumbu koordinat lainnya. Dengan transformasi pula dapat dicari set sumbu koordinat pada suatu titik yang memberikan tegangan utama dari kondisi tegangan yang telah diketahui di titik itu. Yang dimaksud dengan tegangan utama ialah tegangan yang hanya memiliki nilai tidak nol untuk tegangan normal saja, sedangkan nilai tegangan gesernya nol. Dengan demikian juga dimungkinkan transformasi tegangan dari sistem koordinat sumbu silang (x, y, z), Gambar.5(a), ke sistem koordinat polar (r,, z), Gambar.5(b). y dz x r dz z dx z (a) Sumbu Silang (b) Polar Gambar.5. Sistem Koordinat

6 6 Transformasi tegangan bidang berdasarkan pada keseimbangan gaya-gaya yang bekerja pada elemen. Perhatikan Gambar.6(b). y y y x x x x (a) (b) Gambar.6. Transformasi Tegangan Bidang x F ' 0 x' x'. A (. Asin )cos (. Asin )sin (. Acos )sin x' x' cos sin sincos. Acos cos 0 (.4a) Dengan memasukkan harga (90 o + ) untuk harga pada persamaan (.4a), sehingga dengan identitas-identitas: o o o cos ( 90 ) (cos90 cos sin90 sin ) si n o o o sin ( 90 ) (sin 90 cos cos90 sin ) cos o o o o o o sin( 90 )cos( 90 ) (sin 90 cos cos90 sin )(cos 90 cos sin90 sin ) akan didapat = sin cos y y ' ' cos sin sincos (.4b)

7 7 F y ' 0. A (. Asin )sin (. Asin )cos (. Acos )cos (cos sin ) ( )sincos. Acos sin 0 (.4c) Dengan substitusi identitas trigonometri, persamaan (.4a, b, c) bisa ditulis x' x' cos sin y' y' cos sin sin cos (.5a) (.5b) (.5c).4. Transformasi Regangan Bidang Perhatikan Gambar.7(a). Elemen OABC pada keadaan awal tanpa beban, lalu mengalami deformasi dan distorsi menjadi O A B C akibat mendapat beban, dan. Analisis transformasi regangannya ditunjukkan pada Gambar.7(b,c,d) yang berturut-turut untuk regangan normal arah sumbu x, regangan normal arah sumbu y serta regangan geser pada bidang. Dari Gambar.7(b) didapat dx' Dari Gambar.7(c) akan didapat x Dan dari Gambar.7(d) diperoleh x 3 dx cos sin, ' y.sin, '..cos, x' x.cos, Dengan demikian total perubahan panjang dx akibat adanya regangan pada sistem koordinat awalnya adalah x = x + x + x 3

8 8 Sedangkan Sehingga x' x' x x x' x.cos y.sin dx' dx cos sin..cos sin ' '.cos.sin.cos.sin (.6a) y x y 0,5 x y y x y dx x 0,5 x x x dx x dx x (a) Deformasi Total (b) Deformasi Arah Sumbu x x x 3 x 3 y dx y dx y x y y x x y x dx dx x (c) Deformasi Normal Arah y (d) Deformasi Geser Bidang Gambar.7. Transformasi Regangan Normal -Dimensi

9 9 Selanjutnya, y dapat diperoleh dengan mensubstitusikan harga (90 o + ) untuk harga pada persamaan (.6) di atas, kemudian menerapkan identitas trigonometri. Sehingga akan didapat o o o o y y ' '.cos ( ).sin ( ).cos( ).sin( ) ' '.cos.sin.cos.sin (.6b) y y Analisis transformasi regangan gesernya ditunjukkan pada Gambar.8. Sebagaimana pada regangan normal, dalam hal ini perubahan regangan geser oleh masing-masing regangan yang terjadi ditinjau satu per satu. Pada analisis ini, panjang dx dibagi dua oleh sumbu y menjadi dx dan dx. Dari Gambar.8 didapat d y' d x sin cos dan d x ' dx cos sin. Selanjutnya perhatikan Gambar.8(a), akibat terjadinya deformasi normal pada arah sumbu x saja. ' a AD x.cos sin.cos ' d x d x sin.cos d x a b x sin CE x.sin x ' b dx' d x cos '.sin.cos.sin.cos.sin.cos Akibat deformasi normal arah sumbu y saja seperti ditunjukkan pada Gambar.8(b) akan diperoleh ' ' a b AD y.sin y.sin.cos.sin.cos ' cos CE y.cos y.sin.cos.sin.cos dx' sin '.sin.cos a b

10 0 Gambar..8. Transformasi Regangan Geser Sedangkan dari Gambar.8(c), akibat terjadinya regangan geser saja, akan didapat 3a 3b A' D AA'.cos..cos.cos d y' cos CE CC''.sin..sin d x.sin ' sin 3 3a 3b (cos sin ) Dengan demikian akan diperoleh besarnya regangan geser pada set sumbu koordinat yang baru, sebagai berikut 3 ( )sin.cos (cos sin ) (.6c) Selanjutnya, dengan menggunakan identitas trigonometri persamaanpersamaan (.6a, b, c) dapat ditulis dalam bentuk lain sebagai berikut

11 x' x' cos.sin (.7a) y' y' cos.sin (.7b) sin.cos (.7c).5. Tegangan Utama (Principal Stress) dan Tegangan Geser Maksimum Tegangan Utama (principal stress) adalah tegangan normal yang terjadi pada set sumbu koordinat baru setelah transformasi yang menghasilkan tegangan geser nol. Tegangan-tegangan tersebut ditunjukkan sebagai dan pada Gambar.0. Perlu dicatat bahwa selalu diambil lebih besar dari. Sudut transformasi yang menghasilkan tegangan utama tersebut dengan sudut utama (principal angle). Secara analitik, besar tegangan utama dan sudut utama dapat diturunkan dari persamaan-persamaan (.5a, b, c). Panjang sisi miring = 4 ( ) sin p 4 ( ) p cos p 4 ( ) Gambar.9. Sisi-sisi Pada Sudut Utama Menurut pengertian tentang tegangan utama, dari persamaan (.5c) akan didapat atau 0.sin.cos

12 sin cos p p tan p (.8) Dari persamaan.8 dapat dilukiskan segitiganya sebagaimana gambar.9. Dengan substitusi harga-harga sin dan cos pada gambar.9 ke persamaan (.5a) akan didapat x' x' x' x' ( xy) 4 ( ) ( xy) 4. ( xy) 4 4 Sehingga x' x' ( ). 4 Substitusi dan penerapan prosedur yang sama terhadap persamaan (.5b), akan didapat y' y' ( ). 4 Dengan mengingat bahwa secara matematik haruslah, maka kedua persamaan tersebut di atas dapat dituliskan menjadi satu dengan, ( ). 4 (.9) Selanjutnya, perhatikan persamaan (.5c). Untuk suatu titik dan jenis pembebanan tertentu dari suatu bagian konstruksi, harga-harga, dan adalah tetap atau konstan, sehingga x y merupakan suatu fungsi, atau x y = f().harga ekstrim fungsi tersebut akan diperoleh bila turunan pertama fungsi tersebut terhadap sama dengan nol. Jadi d d atau sin cos max max tan.sin.cos 0 max (.0) Dari persamaan.0 dapat dilukiskan segitiganya pada gambar.0.

13 3 Panjang sisi miring = 4 ( ) max sin - ( ) max ( ) 4 cos max ( ) 4 Gambar.0. Sisi-sisi Pada Sudut Tegangan Geser Maksimum Dengan substitusi harga-harga sin dan cos pada gambar di atas ke persamaan (.5c) akan didapat 4 ( ) ( xy) 4 ( ). ( ) 4 Sehingga. ( ) 4 ( ) 4 Persamaan (.0) juga dipenuhi bila panjang sisi di depan sudut adalah ( ) dan panjang sisi di sampingnya adalah -. Kondisi ini akan memberikan. ( ) 4 Dengan demikian kedua persamaan tersebut dapat dituliskan menjadi satu sebagai. max ( xy) 4 (.).6. Regangan Utama dan Regangan Geser Maksimum Sebagaimana pengertian tentang tegangan utama, maka regangan utama (principal strain) adalah regangan normal yang terjadi pada set sumbu koordinat baru setelah transformasi yang menghasilkan setengah regangan geser nol.

14 4 Regangan-regangan tersebut ditunjukkan sebagai dan pada Gambar.. Demikian juga, selalu diambil lebih besar dari, serta sudut transformasinya juga disebut sudut utama (principal angle). Secara analitik, dengan penerapan prosedur yang sama dengan yang diterapkan untuk persamaan-persamaan (.7a, b, c), maka akan didapat hasil-hasil berikut. sin cos, p p tan p Dengan p = sudut utama, = regangan-regangan utama = = regangan geser (.a) ( xy) (.b). sin cos max max max tan max (.3a) ( xy) (.3b). Dengan max = sudut regangan geser maksimum = = regangan geser.7. Lingkaran Mohr untuk Tegangan Bidang dan Regangan Bidang Lingkaran Mohr diperkenalkan oleh seorang insinyur Jerman, Otto Mohr (835-93). Lingkaran ini digunakan untuk melukis transformasi tegangan maupun regangan, baik untuk persoalan-persoalan tiga dimensi maupun dua dimensi. Yang perlu dicatat adalah bahwa perputaran sumbu elemen sebesar ditunjukkan oleh perputaran sumbu pada lingkaran Mohr sebesar.dan sumbu tegangan geser positif adalah menunjuk ke arah bawah. Pengukuran dimulai dari titik A, positif bila berlawanan arah jarum jam, dan negatif bila sebaliknya. Pada bagian ini kita hanya akan membahas lingkaran Mohr untuk tegangan dan regangan dua dimensi.

15 5.7.. Lingkaran Mohr untuk Tegangan Bidang x y Pada persamaan (.5a), bila suku dipindahkan ke ruas kiri dan kemudian kedua ruasnya dikuadratkan, maka akan didapat x y x y x' cos si n x y sin cos (.4a) Sedangkan pada persamaan (.5c), bila dikuadratkan akan didapat cos si n x y sin cos (.4b) Penjumlahan persamaan-persamaan (.4a) dan (.4b) menghasilkan x y x y x' (.5) Persamaan (.5) merupakan persamaan lingkaran pada bidang yang pusatnya di x y, 0 dengan jari-jari. Lingkaran tersebut ditunjukkan pada Gambar., yang dilukis dengan prosedur sebagai berikut:. Buatlah sumbu ij, horisontal.. Periksa harga tegangan normal, atau, yang secara matematis lebih kecil. Bila bernilai negatif jadikanlah tegangan tersebut sebagai titik yang mendekati tepi kiri batas melukis, sedangkan bila positif maka titik yang mendekati batas kiri adalah titik ij = Periksa harga tegangan normal, atau, yang secara matematis lebih besar. Bila bernilai positif jadikanlah tegangan tersebut sebagai titik yang mendekati tepi kanan batas melukis, sedangkan bila negatif maka titik yang mendekati batas kanan adalah titik ij = Tentukan skala yang akan digunakan sehingga tempat melukis bisa memuat kedua titik tersebut dan masih tersisa ruangan di sebelah kiri dan kanannya. Tentukan titik-titik batas tersebut sesuai dengan skala yang telah ditentukan. 5. Tentukan letak titik-titik ij = 0 dan sumbu, serta ij terkecil dan ij terbesar bila belum terlukis pada sumbu ij. 6. Bagi dua jarak antara tegangan terkecil dan tegangan terbesar sehingga diperoleh pusat lingkaran, P.

16 6 7. Tentukan letak titik A pada koordinat ( ij terbesar, ). 8. Lukis lingkaran Mohr dengan pusat P dan jari-jari PA. 9. Tarik garis dari A melalui P sehingga memotong lingkaran Mohr di B. Maka titik B akan terletak pada koordinat ( ij terkecil, ). Garis AB menunjukkan sumbu asli, = 0, elemen tersebut. Gambar.. Lingkaran Mohr untuk Tegangan Bidang Contoh.: Sebuah elemen dari bagian konstruksi yang dibebani, menerima tegangan tarik pada arah sumbu x sebesar 80 MPa, tegangan tekan pada arah sumbu y sebesar 40 MPa serta tegangan geser pada bidang tersebut sebesar 0 MPa. Diminta: a. Lukisan lingkaran Mohr. b. Besar rotasi mengelilingi sumbu z untuk mendapatkan tegangan geser maksimum, menurut lingkaran Mohr. Periksa hasil tersebut dari persamaan (.0). c. Besar tegangan geser maksimum menurut lingkaran Mohr. Periksa hasil tersebut dengan rumus (.) dan hasil yang didapat pada b. di atas.

17 7 d. Besar perputaran mengelilingi sumbu z untuk mendapatkan tegangan geser bernilai nol, menurut lingkaran Mohr. Periksa hasil ini dengan persamaan (.8). e. Besar tegangan-tegangan utama menurut lingkaran Mohr. Periksa hasil tersebut dengan persamaan-persamaan (.9) dan dari hasil pada pada d. di atas. Penyelesaian: a. Lingkaran Mohr: ) Buat sumbu ij, horisontal. ) Tegangan normal terkecil, = -40 MPa, negatif, sehingga digunakan sebagai titik di dekat batas kiri. 3) Tegangan normal terbesar = 80 MPa, positif, sehingga digunakan sebagai titik di dekat batas kanan. 4) Diambil skala cm = 40 MPa. Kemudian ditentukan titik = -40 MPa di sebelah kiri, dan = 80 MPa di sebelah kanan yang berjarak ( + ) dari titik di sebelah kiri. 5) Lukis sumbu yang berjarak 40 MPa di sebelah kanan titik. 6) Dengan membagi dua sama panjang jarak ke akan didapat titik P. 7) Menentukan letak titik A pada koordinat (, ) = (80,0). 8) Dengan mengambil titik pusat di P dan jari-jari sepanjang PA, lingkaran Mohr dapat dilukis. 9) Dengan menarik garis dari A lewat P yang memotong lingkaran Mohr di B, akan didapat kedudukan titik (, ) = (-40,0). b. Besar rotasi mengellilingi sumbu z menurut lingkaran Mohr, dengan mengukur, didapat max = 0,5 x max = 0,5 x (-53 o ) = 6 o 30. Sedangkan menurut persamaan (.0) didapat tan max = ( ) / ( x 0) = max = 53 o 08 atau max = 6 o 34 c. Besar tegangan geser maksimum menurut lingkaran Mohr max = 5 x 40 MPa = 00 MPa. Sedangkan menurut persamaan (.) akan didapat max MPa d. Besar rotasi mengellilingi sumbu z menurut lingkaran Mohr, dengan mengukur, didapat p = 0,5 x p = 0,5 x 37 o = 8 o 30. Sedangkan menurut persamaan (.0) didapat tan p = ( x 0) / ( ) = p = 36 o 5 atau max = 8 o 6

18 8 e. Besar tegangan-tegangan utama menurut lingkaran Mohr = 8 x 40 MPa = 30 MPa. = - x 40 MPa = -80 MPa. Sedangkan menurut persamaan (.) akan didapat MPa MPa.7.. Lingkaran Mohr untuk Regangan Bidang Pada persamaan (.7a), bila suku dipindahkan ke ruas kiri dan kemudian kedua ruasnya dikuadratkan, maka akan didapat xy xy x' x' cos sin sin cos Sedangkan pada persamaan (.7c), bila dikuadratkan akan didapat xy cos sin sin cos (.6a) (.6b) Penjumlahan persamaan-persamaan (.6a) dan (.6b) menghasilkan x' x' (.7) Persamaan (.7) merupakan persamaan lingkaran pada bidang yang pusatnya di 0, dengan jari-jari. Lingkaran tersebut ditunjukkan pada Gambar.9 di bawah ini, yang dilukis dengan prosedur sebagaimana melukis lingkaran Mohr untuk tegangan dengan mengganti, dan berturut-turut menjadi, dan /. Penerapannya, lihat Contoh..8. Hubungan Antara Tegangan Dengan Regangan Untuk deformasi normal, geser maupun gabungan keduanya, hubungan antara tegangan dan regangan untuk bahan-bahan isotropis pada pembebanan dalam batas proporsional diberikan oleh hukum Hooke. Jadi hukum Hooke tidak berlaku

19 9 untuk pembebanan di luar batas proporsional. Hukum Hooke diturunkan dengan berdasarkan pada analisis tentang energi regangan spesifik. Apabila besar tegangan-tegangannya yang diketahui, maka hukum Hooke untuk persoalan-persoalan tiga dimensi, hubungan antara tegangan normal dengan regangan normal dapat dituliskan secara matematis sebagai berikut: E E E zz zz zz zz (.8) Dengan E dan v berturut-turut adalah modulus alastis atau modulus Young dan angka perbandingan Poisson. Sedangkan pada deformasi geser untuk G adalah modulus geser, hubungannya adalah: xz yz G E G E G E xz xz xz yz yz yz (.9) Sedangkan untuk mencari tegangan normal yang terjadi bila regangan normal dan sifat-sifat mekanis bahannya diketahui, digunakan persamaan-persamaan: E zz E zz E zz zz Selanjutnya untuk deformasi geser, bentuk hukum Hooke adalah: (.0)

20 0 E E G E E G xz xz xz xz E E G yz yz yz yz (.) Persamaan-persamaan (.8) sampai dengan (.) dapat juga diberlakukan untuk persoalan-persoalan dua dan satu dimensi, yakni dengan memasukkan harga nol untuk besaran-besaran di luar dimensi yang dimaksud. Contoh : Pembebanan seperti pada Contoh, untuk bahan dengan sifat-sifat mekanis: modulus Young, E = 00 GPa dan angka perbanding-an Poisson, = 0,9. Modulus geser ditentukan dengan, G = E / ( + ). Diminta: a. Hitunglah regangan-regangan yang terjadi. Penyelesaian: b. Lukisan lingkaran Mohr untuk regangan yang terjadi. c. Besar rotasi mengelilingi sumbu z untuk mendapatkan regangan geser maksimum, menurut lingkaran Mohr. Periksa hasil tersebut dari persamaan (.0). d. Besar regangan geser maksimum menurut lingkaran Mohr. Periksa hasil tersebut dengan rumus (.) dan hasil yang didapat pada b. di atas. e. Besar perputaran mengelilingi sumbu z untuk mendapatkan regangan geser bernilai nol, menurut lingkaran Mohr. Periksa hasil ini dengan persamaan (.8). f. Besar regangan-regangan utama menurut lingkaran Mohr. Periksa hasil tersebut dengan persamaan-persamaan (.9) dan dari hasil pada pada d. di atas. a) Dari persamaan (.8) dan (.9) akan didapat: 800,9.400,9.0 0, ,9.800,9.0 0, b. Lingkaran Mohr: ) Buat sumbu ij horisontal. 0,9. 0 0, atau ) Regangan normal terkecil, = -606, sehingga merupakan titik di dekat batas kiri. 3) Regangan normal terbesar = 458, sehingga merupakan titik di dekat batas kanan. 4) Diambil skala cm = 50. Kemudian ditentukan titik = -606 di sebelah kiri, = 458 di sebelah kanan dan berjarak ( + ) dari titik di sebelah kiri.

21 5) Lukis sumbu yang berjarak 606 di sebelah kanan titik. 6) Dengan membagi dua sama panjang jarak ke akan didapat titik P. 7) Menentukan letak titik A pada koordinat (, ) = (458,774). 8) Dengan mengambil titik pusat di P dan jari-jari sepanjang PA, lingkaran Mohr dapat di-lukis. 9) Dengan menarik garis dari A lewat P yang memotong lingkaran Mohr di B, akan di dapat kedudukan titik (, ) = (-606,-774). -max ( ) 0 p max ( ) min Gambar.3. Lingkaran Mohr untuk Regangan Bidang c. Besar rotasi mengellilingi sumbu z menurut lingkaran Mohr, dengan mengukur, didapat max = 0,5 x max = 0,5 x (-53 o ) = 6 o 30. Sedangkan menurut persamaan (.0) didapat tan max = ( ) / ( x 774) = max = 53 o 08 atau max = 6 o 34 d. Besar regangan geser maksimum menurut lingkaran Mohr -max = 5, x 50 = 300.

22 Sedangkan menurut persamaan (.) akan didapat max max ( ) e. Besar rotasi mengellilingi sumbu z menurut lingkaran Mohr, dengan mengukur, didapat p = 0,5 x p = 0,5 x 37 o = 8 o 30. Sedangkan menurut persamaan (.0) didapat tan p = ( x 0) / ( ) = p = 36 o 5 atau max = 8 o 6 f. Besar regangan-regangan dasar menurut lingkaran Mohr = 6,9 x 50 = 75. = -3,5 x 50 = -875 Sedangkan menurut persamaan (.) akan didapat Elastis Plastis Sempurna Strain Hardening Gambar.4. Grafik Tegangan-Regangan Baja.9. Modulus Elastis (Modulus Young) Modulus Elastis, sering disngkat E, menyatakan nilai tangent (tg) sudut pada diagram tegangan-regangan sebagaimana digambarkan pada gambar.4, atau dapat ditulis dengan rumus : E tg (.) Rumus tersebut ditulis menurut hokum Hook pada daerah elastis, dimana pada daerah tersebut merupakan batas proporsional, yaitu batas daerah dimana antara tegangan dan regangan adalah sebanding, daerah tersebut disebut daerah Elastik.

BAB I TEGANGAN DAN REGANGAN

BAB I TEGANGAN DAN REGANGAN BAB I TEGANGAN DAN REGANGAN.. Tegangan Dalam mekanika bahan, pengertian tegangan tidak sama dengan vektor tegangan. Tegangan merupakan tensor derajat dua, sedangkan vektor, vektor apapun, merupakan tensor

Lebih terperinci

.1. Kekuatan Bahan BAB ANALISIS TEGANGAN DAN REGANGAN Suatu sistem struktur yang menanggung beban luar (external forces) akan menyebabkan timbulnya gaya dalam (internal forces) pada elemen-elemen penyusun

Lebih terperinci

Pertemuan I,II,III I. Tegangan dan Regangan

Pertemuan I,II,III I. Tegangan dan Regangan Pertemuan I,II,III I. Tegangan dan Regangan I.1 Tegangan dan Regangan Normal 1. Tegangan Normal Konsep paling dasar dalam mekanika bahan adalah tegangan dan regangan. Konsep ini dapat diilustrasikan dalam

Lebih terperinci

l l Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial

l l Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial 2.1. Umum Akibat beban luar, struktur akan memberikan respons yang dapat berupa reaksi perletakan tegangan dan regangan maupun terjadinya perubahan bentuk.

Lebih terperinci

DIKTAT MEKANIKA KEKUATAN MATERIAL

DIKTAT MEKANIKA KEKUATAN MATERIAL 1 DIKTAT MEKANIKA KEKUATAN MATERIAL Disusun oleh: Asyari Darami Yunus Teknik Mesin Universitas Darma Persada Jakarta 010 KATA PENGANTAR Untuk memenuhi buku pegangan dalam perkuliahan, terutama yang menggunakan

Lebih terperinci

II. LENTURAN. Gambar 2.1. Pembebanan Lentur

II. LENTURAN. Gambar 2.1. Pembebanan Lentur . LENTURAN Pembebanan lentur murni aitu pembebanan lentur, baik akibat gaa lintang maupun momen bengkok ang tidak terkombinasi dengan gaa normal maupun momen puntir, ditunjukkan pada Gambar.. Gambar.(a)

Lebih terperinci

BAB 21 TRANSFORMASI GEOMETRI 1. TRANSLASI ( PERGESERAN) Contoh : Latihan 1.

BAB 21 TRANSFORMASI GEOMETRI 1. TRANSLASI ( PERGESERAN) Contoh : Latihan 1. TRANSFORMASI GEOMETRI BAB Suatu transformasi bidang adalah suatu pemetaan dari bidang Kartesius ke bidang yang lain atau T : R R (x,y) ( x', y') Jenis-jenis transformasi antara lain : Transformasi Isometri

Lebih terperinci

Analisis Tegangan dan Regangan

Analisis Tegangan dan Regangan a home base to ecellence Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : 3 SKS Analisis Tegangan dan Regangan Pertemuan - 10 a home base to ecellence TIU : Mahasiswa dapat menganalisis tegangan normal

Lebih terperinci

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang

Lebih terperinci

Bab 3 (3.1) Universitas Gadjah Mada

Bab 3 (3.1) Universitas Gadjah Mada Bab 3 Sifat Penampang Datar 3.1. Umum Didalam mekanika bahan, diperlukan operasi-operasi yang melihatkan sifatsifat geometrik penampang batang yang berupa permukaan datar. Sebagai contoh, untuk mengetahui

Lebih terperinci

PENDAHULUAN TEGANGAN (STRESS) r (1)

PENDAHULUAN TEGANGAN (STRESS) r (1) HND OUT FISIK DSR I/LSTISITS LSTISITS M. Ishaq PNDHULUN Dunia keteknikan khususnya Material ngineering, Studi geofisika, Civil ngineering dll adalah beberapa cabang keilmuan yang amat membutuhkan pemahaman

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat.

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat. .. esaran Vektor Dan Skalar II V E K T O R da beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. da juga besaran fisis yang tidak cukup hanya

Lebih terperinci

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY SISTEM-SISTEM KOORDINAT Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Sistem Koordinat Kartesian Dalam sistem koordinat Kartesian, terdapat tiga sumbu koordinat yaitu sumbu x, y, dan z. Suatu titik

Lebih terperinci

BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser

BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser 4.1 Tegangan dan Regangan Balok akibat Lentur Murni Pada bab berikut akan dibahas mengenai respons balok akibat pembebanan. Balok

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Torsi. Pertemuan - 7

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Torsi. Pertemuan - 7 Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : 3 SKS Torsi Pertemuan - 7 TIU : Mahasiswa dapat menghitung besar tegangan dan regangan yang terjadi pada suatu penampang TIK : Mahasiswa dapat menghitung

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA II.1. Konsep Elemen Hingga BAB II TINJAUAN PUSTAKA Struktur dalam istilah teknik sipil adalah rangkaian elemen-elemen yang sejenis maupun yang tidak sejenis. Elemen adalah susunan materi yang mempunyai

Lebih terperinci

VII ELASTISITAS Benda Elastis dan Benda Plastis

VII ELASTISITAS Benda Elastis dan Benda Plastis VII EASTISITAS Kompetensi yang diharapkan dicapai oleh mahasiswa setelah mempelajari bab elastisitas adalah kemampuan memahami, menganalisis dan mengaplikasikan konsep-konsep elastisitas pada kehidupan

Lebih terperinci

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor BAB 1 BESARAN VEKTOR Tujuan Pembelajaran 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahkan vektor secara grafis dan dengan vektor komponen 3. Melakukan

Lebih terperinci

BAB IV TEGANGAN, REGANGAN, DAN DEFLEKSI

BAB IV TEGANGAN, REGANGAN, DAN DEFLEKSI BAB IV TEGANGAN, REGANGAN, DAN DEFLEKSI 4.1. Tegangan Salah satu masalah fundamental dalam mechanical engineering adalah menentukan pengaruh beban pada komponen mesin atau peralatan. Hal ini sangat essensial

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan Silabus Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMK : MATEMATIKA : XI / TEKNOLOGI, KESEHATAN, DAN PERTANIAN : GANJIL Standar Kompetensi:7. Menerapkan perbandingan, fungsi,, dan identitas

Lebih terperinci

Kinematika Gerak KINEMATIKA GERAK. Sumber:

Kinematika Gerak KINEMATIKA GERAK. Sumber: Kinematika Gerak B a b B a b 1 KINEMATIKA GERAK Sumber: www.jatim.go.id Jika kalian belajar fisika maka kalian akan sering mempelajari tentang gerak. Fenomena tentang gerak memang sangat menarik. Coba

Lebih terperinci

Mekanika Bahan TEGANGAN DAN REGANGAN

Mekanika Bahan TEGANGAN DAN REGANGAN Mekanika Bahan TEGANGAN DAN REGANGAN Sifat mekanika bahan Hubungan antara respons atau deformasi bahan terhadap beban yang bekerja Berkaitan dengan kekuatan, kekerasan, keuletan dan kekakuan Tegangan Intensitas

Lebih terperinci

BESARAN VEKTOR B A B B A B

BESARAN VEKTOR B A B B A B Besaran Vektor 8 B A B B A B BESARAN VEKTOR Sumber : penerbit cv adi perkasa Perhatikan dua anak yang mendorong meja pada gambar di atas. Apakah dua anak tersebut dapat mempermudah dalam mendorong meja?

Lebih terperinci

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh ujian sarjana Teknik Sipil Disusun oleh: SURYADI

Lebih terperinci

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor

Lebih terperinci

Bab 1 : Skalar dan Vektor

Bab 1 : Skalar dan Vektor Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Analisis Penampang. Pertemuan 4, 5, 6

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Analisis Penampang. Pertemuan 4, 5, 6 Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS nalisis Penampang Pertemuan 4, 5, 6 TU : Mahasiswa dapat menghitung properti dasar penampang, seperti luas, momen statis, momen inersia TK : Mahasiswa

Lebih terperinci

BAB 6 SIFAT MEKANIK BAHAN

BAB 6 SIFAT MEKANIK BAHAN 143 BAB 6 SIFAT MEKANIK BAHAN Bahan-bahan terdapat disekitar kita dan telah menjadi bagian dari kebudayaan dan pola berfikir manusia. Bahan telah menyatu dengan peradaban manusia, sehingga manusia mengenal

Lebih terperinci

Diktat-elmes-agustinus purna irawan-tm.ft.untar BAB 2 BEBAN, TEGANGAN DAN FAKTOR KEAMANAN

Diktat-elmes-agustinus purna irawan-tm.ft.untar BAB 2 BEBAN, TEGANGAN DAN FAKTOR KEAMANAN Diktat-elmes-agustinus purna irawan-tm.ft.untar BAB 2 BEBAN, TEGANGAN DAN AKTOR KEAMANAN Beban merupakan muatan yang diterima oleh suatu struktur/konstruksi/komponen yang harus diperhitungkan sedemikian

Lebih terperinci

Koordinat Kartesius, Koordinat Tabung & Koordinat Bola. Tim Kalkulus II

Koordinat Kartesius, Koordinat Tabung & Koordinat Bola. Tim Kalkulus II Koordinat Kartesius, Koordinat Tabung & Koordinat Bola Tim Kalkulus II Koordinat Kartesius Sistem Koordinat 2 Dimensi Sistem koordinat kartesian dua dimensi merupakan sistem koordinat yang terdiri dari

Lebih terperinci

Bab 1 Vektor. A. Pendahuluan

Bab 1 Vektor. A. Pendahuluan Bab 1 Vektor A. Pendahuluan Dalam mata kuliah Listrik Magnet A, maupun mata kuliah Listrik Magnet B sebagaii lanjutannya, penyajian konsep dan pemecahan masalah akan banyak memerlukan pengetahuan tentang

Lebih terperinci

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor

ANALISIS VEKTOR. Aljabar Vektor. Operasi vektor ANALISIS VEKTOR Aljabar Vektor Operasi vektor Besaran yang memiliki nilai dan arah disebut dengan vektor. Contohnya adalah perpindahan, kecepatan, percepatan, gaya, dan momentum. Sementara itu, besaran

Lebih terperinci

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis BAB II RESULTAN (JUMLAH) DAN URAIAN GAYA A. Pendahuluan Pada bab ini, anda akan mempelajari bagaimana kita bekerja dengan besaran vektor. Kita dapat menjumlah dua vektor atau lebih dengan beberapa cara,

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

2.2 kinematika Translasi

2.2 kinematika Translasi II KINEMATIKA PARTIKEL Kompetensi yang akan diperoleh setelah mempelajari bab ini adalah pemahaman dan kemampuan menganalisis serta mengaplikasikan konsep kinematika partikel pada kehidupan sehari-hari

Lebih terperinci

PUNTIRAN. A. pengertian

PUNTIRAN. A. pengertian PUNTIRAN A. pengertian Puntiran adalah suatu pembebanan yang penting. Sebagai contoh, kekuatan puntir menjadi permasalahan pada poros-poros, karena elemen deformasi plastik secara teori adalah slip (geseran)

Lebih terperinci

BAB II METODE ELEMEN HINGGA PADA STRUKTUR. 2.1 Jenis - Jenis Struktur pada Bangunan Teknik Sipil

BAB II METODE ELEMEN HINGGA PADA STRUKTUR. 2.1 Jenis - Jenis Struktur pada Bangunan Teknik Sipil BAB II METODE ELEMEN HINGGA PADA STRUKTUR 2.1 Jenis - Jenis Struktur pada Bangunan Teknik Sipil Struktur 1D (satu dimensi) adalah suatu idealisasi dari bentuk struktur yang sebenarnya dimana struktur dianggap

Lebih terperinci

Session 1 Konsep Tegangan. Mekanika Teknik III

Session 1 Konsep Tegangan. Mekanika Teknik III Session 1 Konsep Tegangan Mekanika Teknik III Review Statika Struktur didesain untuk menerima beban sebesar 30 kn Struktur tersebut terdiri atas rod dan boom, dihubungkan dengan sendi (tidak ada momen)

Lebih terperinci

Perkalian Titik dan Silang

Perkalian Titik dan Silang PERKALIAN TITIK DAN SILANG Materi pokok pertemuan ke 3: 1. Perkalian titik URAIAN MATERI Perkalian Titik Perkalian titik dari dua buah vektor dan dinyatakan oleh (baca: titik ). Untuk lebih jelas, berikut

Lebih terperinci

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran Bab 5 Puntiran 5.1 Pendahuluan Pada bab ini akan dibahas mengenai kekuatan dan kekakuan batang lurus yang dibebani puntiran (torsi). Puntiran dapat terjadi secara murni atau bersamaan dengan beban aksial,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Definisi Torsi Erwin (2009) berpendapat bahwa torsi adalah puntir yang terjadi pada batang lurus apabila batang tersebut dibebani momen yang cenderung menghasilkan rotasi terhadap

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari BAB 2 TINJAUAN PUSTAKA II.1. Material baja Baja yang akan digunakan dalam struktur dapat diklasifikasikan menjadi baja karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

Lebih terperinci

BAB II TEORI DASAR II.I.HUBUNGAN TEGANGAN DAN REGANGAN. Hooke pada tahun Dalam hukum hooke dijelaskan bahwa apabila suatu baja

BAB II TEORI DASAR II.I.HUBUNGAN TEGANGAN DAN REGANGAN. Hooke pada tahun Dalam hukum hooke dijelaskan bahwa apabila suatu baja BAB II TEORI DASAR II.I.HUBUNGAN TEGANGAN DAN REGANGAN Hubungan tegangan dan regangan pertama kali dikemukakan oleh Robert Hooke pada tahun 1678. Dalam hukum hooke dijelaskan bahwa apabila suatu baja lunak

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 4 MODULUS ELASTISITAS

LAPORAN PRAKTIKUM FISIKA DASAR MODUL 4 MODULUS ELASTISITAS LAPORAN PRAKTIKUM FISIKA DASAR MODUL 4 MODULUS ELASTISITAS Nama : Nova Nurfauziawati NPM : 240210100003 Tanggal / jam : 21 Oktober 2010 / 13.00-15.00 WIB Asisten : Dicky Maulana JURUSAN TEKNOLOGI INDUSTRI

Lebih terperinci

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B Amran Shidik MATERI FISIKA KELAS X 11/13/2016 VEKTOR A. Vektor Vektor adalah jenis besaran yang mempunyai nilai dan arah. Besaran yang termasuk besaran vektor antara lain perpindahan, gaya, kecepatan,

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

Hukum Hooke. Diktat Kuliah 4 Mekanika Bahan. Ir. Elisabeth Yuniarti, MT

Hukum Hooke. Diktat Kuliah 4 Mekanika Bahan. Ir. Elisabeth Yuniarti, MT Hukum Hooke Diktat Kuliah 4 Mekanika Bahan Ir. lisabeth Yuniarti, MT Hubungan Tegangan dan Regangan (Stress-Strain Relationship) Untuk merancang struktur yang dapat berfungsi dengan baik, maka kita memerlukan

Lebih terperinci

KESEIMBANGAN BENDA TEGAR

KESEIMBANGAN BENDA TEGAR KESETIMBANGAN BENDA TEGAR 1 KESEIMBANGAN BENDA TEGAR Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : a. KINEMATIKA = Ilmu gerak Ilmu yang mempelajari

Lebih terperinci

Tegangan Dalam Balok

Tegangan Dalam Balok Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS Tegangan Dalam Balok Pertemuan 9, 0, TIU : Mahasiswa dapat menghitung tegangan yang timbul pada elemen balok akibat momen lentur, gaya normal, gaya

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut. BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan

Lebih terperinci

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu :

A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : BAB VI KESEIMBANGAN BENDA TEGAR Standar Kompetensi 2. Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar 2.1 Menformulasikan hubungan antara konsep

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

LATIHAN ULANGAN BAB. INTEGRAL

LATIHAN ULANGAN BAB. INTEGRAL LATIHAN ULANGAN BAB. INTEGRAL A. PILIHAN GANDA 4( ). d... A. 4( ) 5 B. 4( ) 4 C. + 8 9 4 + C D. + 8 + C E. 4 5 + C 5. Nilai ( 4 ) d... A. 6 D. B. 4 6 E. C. 8. Hasil dari. cos d... (UAN 4) A. (.sin.cos

Lebih terperinci

Bab III Elastisitas. Sumber : Fisika SMA/MA XI

Bab III Elastisitas. Sumber :  Fisika SMA/MA XI Bab III Elastisitas Sumber : www.lib.ui.ac Baja yang digunakan dalam jembatan mempunyai elastisitas agar tidak patah apabila dilewati kendaraan. Agar tidak melebihi kemampuan elastisitas, harus ada pembatasan

Lebih terperinci

X. TEGANGAN GESER Pengertian Tegangan Geser Prinsip Tegangan Geser. [Tegangan Geser]

X. TEGANGAN GESER Pengertian Tegangan Geser Prinsip Tegangan Geser. [Tegangan Geser] X. TEGNGN GESER 10.1. engertian Tegangan Geser Tegangan geser merupakan tegangan yang bekerja sejajar atau menyinggung permukaan. erjanjian tanda untuk tegangan geser sebagai berikut: Tegangan geser yang

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

GAMBAR PROYEKSI ORTOGONAL

GAMBAR PROYEKSI ORTOGONAL GAMBAR PROYEKSI ORTOGONAL Berikut ini akan dibicarakan tentang Gambar Proyeksi Ortogonal secara terinci. Gambar proyeksi ortogonal yang lazim digunakan ada dua cara yaitu cara Eropa dan cara Amerika. Pada

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ayah tidak memarahi Badu, maka Badu bahagia dan tidak nakal () Jika Ayah tidak menyayangi Badu, maka Badu tidak bahagia atau nakal Kesimpulan yang sah adalah. a. Jika

Lebih terperinci

Laporan Praktikum MODUL C UJI PUNTIR

Laporan Praktikum MODUL C UJI PUNTIR Laporan Praktikum MODUL C UJI PUNTIR Oleh : Nama : SOMAWARDI NIM : 23107012 Kelompok : 13 Tanggal Praktikum : November 2007 Nama Asisten (Nim) : Program Studi Teknik Mesin Fakultas Teknologi Industri Institut

Lebih terperinci

BAB II BESARAN VEKTOR

BAB II BESARAN VEKTOR BAB II BESARAN VEKTOR.1. Besaran Skalar Dan Vektor Dalam fisika, besaran dapat dibedakan menjadi dua kelompok yaitu besaran skalar dan besaran vektor. Besaran skalar adalah besaran yang dinyatakan dengan

Lebih terperinci

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010 . Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA B Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang

Lebih terperinci

Bab II Fungsi Kompleks

Bab II Fungsi Kompleks Bab II Fungsi Kompleks Variabel kompleks z secara fisik ditentukan oleh dua variabel lain, yakni bagian realnya x dan bagian imajinernya y, sehingga dituliskan z z(x,y). Oleh sebab itu fungsi variabel

Lebih terperinci

TRANSFORMASI GEOMETRI

TRANSFORMASI GEOMETRI TRNSFORMSI GEOMETRI. TRNSLSI Minggu lalu, Candra duduk di pojok kanan baris pertama di kelasnya. Minggu ini, ia berpindah ke baris ketiga lajur keempat yang minggu lalu ditempati Dimas. Dimas sendiri berpindah

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

A x pada sumbu x dan. Pembina Olimpiade Fisika davitsipayung.com. 2. Vektor. 2.1 Representasi grafis sebuah vektor

A x pada sumbu x dan. Pembina Olimpiade Fisika davitsipayung.com. 2. Vektor. 2.1 Representasi grafis sebuah vektor . Vektor.1 Representasi grafis sebuah vektor erdasarkan nilai dan arah, besaran dibagi menjadi dua bagian aitu besaran skalar dan besaran vektor. esaran skalar adalah besaran ang memiliki nilai dan tidak

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu.

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu. VEKTOR Kata vektor berasal dari bahasa Latin yang berarti "pembawa" (carrier), yang ada hubungannya dengan "pergeseran" (diplacement). Vektor biasanya digunakan untuk menggambarkan perpindahan suatu partikel

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

Mata Kuliah: Statika Struktur Satuan Acara Pengajaran:

Mata Kuliah: Statika Struktur Satuan Acara Pengajaran: Mata Kuliah: Statika Struktur Satuan Acara engajaran: Minggu I II III IV V VI VII VIII IX X XI Materi Sistem aya meliputi Hk Newton, sifat, komposisi, komponen, resultan, keseimbangan gaya, Momen dan Torsi

Lebih terperinci

BAB II METODE KEKAKUAN

BAB II METODE KEKAKUAN BAB II METODE KEKAKUAN.. Pendahuluan Dalam pertemuan ini anda akan mempelajari pengertian metode kekakuan, rumus umum dan derajat ketidak tentuan kinematis atau Degree Of Freedom (DOF). Dengan mengetahui

Lebih terperinci

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto Buku Pendalaman Konsep Trigonometri Tingkat SMA Doddy Feryanto Kata Pengantar Trigonometri merupakan salah satu jenis fungsi yang sangat banyak berguna di berbagai bidang. Di bidang matematika sendiri,

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Sambungan Sambungan-sambungan pada konstruksi baja hampir tidak mungkin dihindari akibat terbatasnya panjang dan bentuk dari propil propil baja yang diproduksi. Sambungan bisa

Lebih terperinci

Pembahasan SNMPTN 2011 Matematika IPA Kode 576

Pembahasan SNMPTN 2011 Matematika IPA Kode 576 Pembahasan SNMPTN 011 Matematika IPA Kode 576 Oleh Tutur Widodo Juni 011 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus pada v, maka nilai a adalah... a. 1 b. 0 c. 1 d. e.

Lebih terperinci

Pertemuan XV X. Tegangan Gabungan

Pertemuan XV X. Tegangan Gabungan Pertemuan XV X. Tegangan Gabungan 0. Beban Gabungan Pada kebanakan struktur, elemenna harus mampu menahan lebih dari satu jenis beban, misalna suatu balok dapat mengalami aksi simultan momen lentur dan

Lebih terperinci

Matematika Ujian Akhir Nasional Tahun 2004

Matematika Ujian Akhir Nasional Tahun 2004 Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke

Lebih terperinci

KINEMATIKA GERAK 1 PERSAMAAN GERAK

KINEMATIKA GERAK 1 PERSAMAAN GERAK KINEMATIKA GERAK 1 PERSAMAAN GERAK Posisi titik materi dapat dinyatakan dengan sebuah VEKTOR, baik pada suatu bidang datar maupun dalam bidang ruang. Vektor yang dipergunakan untuk menentukan posisi disebut

Lebih terperinci

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Analisis vektor meliputi bidang matematika dan fisika sekaligus dalam pembahasannya Skalar dan Vektor Skalar Skalar ialah

Lebih terperinci

Pertemuan I, II I. Gaya dan Konstruksi

Pertemuan I, II I. Gaya dan Konstruksi Pertemuan I, II I. Gaya dan Konstruksi I.1 Pendahuluan Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Dalam mekanika teknik,

Lebih terperinci

2 Mekanika Rekayasa 1

2 Mekanika Rekayasa 1 BAB 1 PENDAHULUAN S ebuah konstruksi dibuat dengan ukuran-ukuran fisik tertentu haruslah mampu menahan gaya-gaya yang bekerja dan konstruksi tersebut harus kokoh sehingga tidak hancur dan rusak. Konstruksi

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS 1 KEGIATAN BELAJAR 3 PERSAMAAN GARIS LURUS Setelah mempelajari kegiatan belajar 3 ini, mahasiswa diharapkan mampu: 1. menentukan persamaan gradien garis lurus, 2. menentukan persamaan vektoris dan persamaan

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)

Lebih terperinci

a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1

a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1 1. Koordinat Cartesius Sistem koordinat Cartesius terdiri dari dua garis yang saling tegak lurus yang disebut sumbu Sumbu horizontal disebut sumbu X dan sumbu vertikal disebut sumbu Y Tiap sumbu mempunyai

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,

Lebih terperinci

Ukuran Sudut. Perbandingan trigonometri. 1 putaran = 360 derajat (360 ) = 2π radian. Catatan:

Ukuran Sudut. Perbandingan trigonometri. 1 putaran = 360 derajat (360 ) = 2π radian. Catatan: Ukuran Sudut 1 putaran = 360 derajat (360 ) = 2π radian Perbandingan trigonometri Catatan: Sin = sinus Cos = cosinus Tan/Tg = tangens Sec = secans Cosec/Csc = cosecans Cot/Ctg = cotangens Dari gambar tersebut

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

1.1. Mekanika benda tegar : Statika : mempelajari benda dalam keadaan diam. Dinamika : mempelajari benda dalam keadaan bergerak.

1.1. Mekanika benda tegar : Statika : mempelajari benda dalam keadaan diam. Dinamika : mempelajari benda dalam keadaan bergerak. BAB I. PENDAHULUAN Mekanika : Ilmu yang mempelajari dan meramalkan kondisi benda diam atau bergerak akibat pengaruh gaya yang bereaksi pada benda tersebut. Dibedakan: 1. Mekanika benda tegar (mechanics

Lebih terperinci

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian 1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan

Lebih terperinci

I. TEGANGAN NORMAL DAN TEGANGAN GESER

I. TEGANGAN NORMAL DAN TEGANGAN GESER I. TEGNGN NORML DN TEGNGN GESER.. Tegangan Normal (Normal Stress) Gaya internal yang bekerja pada sebuah potongan dengan luasan yang sangat kecil akan bervariasi baik besarnya maupun arahnya. ada umumnya

Lebih terperinci

kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara

kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara Sistem Koordinat Cartesius.. Geometri Analitik Geometri analitik adalah suatu cabang ilmu matematika yang merupakan kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara persamaan

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

TRAINING CENTER OLIMPIADE INTERNASIONAL

TRAINING CENTER OLIMPIADE INTERNASIONAL TRAINING CENTER OLIMPIADE INTERNASIONAL 7 th International Junior Science Olympiad (IJSO) 11 th Initational World Youth Mathematics Intercity Competition (IWYMIC) MODUL FISIKA GERAK (Sumber: College Physics,

Lebih terperinci

PEMBAHASAN SOAL SESUAI KISI-KISI UAS

PEMBAHASAN SOAL SESUAI KISI-KISI UAS PEMBAHASAN SOAL SESUAI KISI-KISI UAS MATEMATIKA PEMINATAN XI - IPA SOAL Perhatikan segitiga di bawah ini! Tentukan nilai sec cosec cot INGAT definisi: sin depan miring cosec sin miring depan cos samping

Lebih terperinci