PRAKTIKUM 2 SOLUSI MATEMATIKA DENGAN MAPLE (BAGIAN 1)
|
|
|
- Adi Sudirman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 PRAKTIKUM SOLUSI MATEMATIKA DENGAN MAPLE (BAGIAN 1) 1. MINGGU KE : 3. PERALATAN : LCD, E-LEARNING 3. SOFTWARE : MAPLE 4. TUJUAN Dengan menggunakan Maple, mahasiswa dapat menyelesaikan masalah: Menentukan akar-akar persamaan kuadrat, akar real ataupun imajiner. Menentukan akar-akar sukubanyak dan bentuk perkalian dari faktor linier. Menyelesaikan sistem persamaan linier. Mencari nilai hampiran bilangan real untuk suatu polinom. 5. TEORI PENGANTAR DAN LANGKAH KERJA A. PERSAMAAN KUADRAT Bentuk umum dari persamaan kuadrat adalah ax + bx + c = 0. Solusi dari persamaan kuadrat disebut juga akar-akar dari persamaan kuadrat. Persamaan kuadrat mempunyai dua solusi. Solusi ini dapat dicari dengan rumus b b 4ac x1 dan a b b 4ac x. Maka ada tiga kemungkinan solusi dari persamaan kuadrat, yaitu a (1) kedua akarnya adalah bilangan real yang berlainan; () kedua akarnya adalah bilangan real yang sama, dengan lain perkataan satu akar real; atau (3) kedua akarnya adalah imajiner atau akarnya berupa bilangan kompleks. Hal ini dapat diketahui dari nilai b 4ac. Bila nilai ini tidak negatif, maka kedua akarnya real. Sehingga persamaan kuadrat ini dapat dinyatakan dalam perkalian faktor linier. Jadi untuk mencari akarnya dapat digunakan perintah factor, yang sudah dibahas pada Pertemuan 1. Cobalah cari solusi dari persamaan x 1 = 0 dengan menggunakan perintah factor. 1
2 Tetapi tentu diharapkan ada teknik yang lebih mudah dari itu. Maple memberikan fasilitas itu dengan perintah solve. >solve({x^ 1},{x}); Ataupun untuk persamaan kuadrat dengan akar imajiner. >solve({x^+1},{x}); B. POLINOM DAN FUNGSI RASIONAL Untuk mencari solusi (akar) dari polinom juga digunakan perintah solve. Untuk mencari solusi dari 3x 4 16x 3 3x + 13x +16 = 0, tuliskan >solve({3*x^4-16*x^3-3*x^+13*x+16},{x}); Maple kadang juga memberikan hasil dalam bentuk RootOf. Misalnya untuk persamaan x 5 *x + 3 = 0 >solve({x^5-*x+3},{x}); Dengan perintah evalf, dapat diperoleh bentuk eksplisit dari akar kompleksnya. >evalf(%); Polinom juga dapat ditulis sebagai perkalian faktor linier >polinom:=x^5-x^4-x^3+x^-*x+; >factor(polinom); Perintah factor memfaktorkan polinom dengan koefisien konstan. Pada contoh ini koefisien memuat, untuk itu gunakan argumen kedua
3 >factor(polinom,sqrt()); C. SISTEM PERSAMAAN Sistem persamaan adalah kumpulan persamaan yang tergabung dalam suatu sistem. Maple dapat memberikan solusi dari suatu sistem persamaan. Untuk mencari solusi sistem persamaaan x + y = 3 y + 1 / x = 1 tuliskan perintah berikut > spers:={x+*y=3,y+1/x=1}; > solve(spers,{x,y}); Menyelesaikan sistem persamaan yang terdiri dari dua persamaan dengan dua variabel relatif mudah diselesaikan secara manual, misalnya dengan cara eliminasi atau substitusi. Dalam Program Linier, untuk menyelesaikan sistem persamaan linier yang terdiri dari lebih dari dua persamaan dengan lebih dari dua variabel biasanya dapat digunakan metoda simpleks atau metoda lainnya. Dengan perintah solve ini, Maple dapat menyelesaikan sistem persamaan yang secara manual cukup melelahkan untuk dihitung. Perhatikan sistem persamaan berikut: x + y + 3z + 4t + 5u = 41; 5x + 5y + 4z + 3t + u = 0; 3y + 4z + - 8t + u = 15; x + y + z + t + u = 9; 8x + 4z + 3t + u = 11; Untuk menyatakan kelima persamaan tersebut, tuliskan >pers1:=x + *y + 3*z + 4*t + 5*u = 41; >pers:=5*x + 5*y + 4*z + 3*t + *u = 0; >pers3:=3*y + 4*z - 8*t + *u = 15; >pers4:=x + y + z + t + u = 9; 3
4 >pers5:=8*x + 4*z + 3*t + *u = 11; Solusi dari sistem tersebut untuk semua variabel diperoleh dengan >s1:=solve({pers1,pers,pers3,pers4,pers5},{x,y,z,t,u}); Solusi ini disimpan dalam nama s1. Jadi jika dianggap tidak perlu memberi nama pada hasilnya s1:= dapat dihilangkan, ini mungkin lebih mudah untuk dituliskan. Tetapi ada kalanya pemberian nama diperlukan untuk kebutuhan pengolahan hasil. Misalnya diperlukan solusi dari tiga persamaan pertama, cukup dituliskan >s:=solve({pers1,pers,pers3},{x,y,z}); D. NUMERIK Pada bahasan Persamaan Sukubanyak solusi dari 3x 4 16x 3 3x + 13x +16 = 0 nilai x yang memenuhi persamaan tersebut diberikan dalam bentuk bilangan kompleks, tetapi dalam Metoda Numerik nilai pendekatan untuk x bilangan real dapat dicari. Maple memberikan nilai pendekatan numeriknya dengan metoda Newton, dengan perintah fsolve. >fsolve({3*x^4-16*x^3-3*x^+13*x+16},{x}); Solusi numerik untuk persamaan cos x x = 0, diperoleh dengan >fsolve({cos(x)-x =0},{x}); 6. TUGAS: 1. Hitung akar-akar dari: a. 3x + 6x = 0 b. 14x + x +33 = 0 c. x 5 + x 3 5x = 4 4
5 . Tentukan solusi dari sistem persamaan linier: x + y + t =4 x + z + 3r = -1 3y + 5t = 5 x-y+z+t+r =0 t + r = Tentukan solusi dari: a. sin x = x b. sin x + tan x/ = 5
STANDAR KOMPETENSI KOMPETENSI DASAR. Menggunakan aturan suku banyak dalam penyelesaian masalah
STANDAR KOMPETENSI Menggunakan aturan suku banyak dalam penyelesaian masalah KOMPETENSI DASAR Menggunakan teorema sisa dan teorema faktor dalam pemecahan masalah INDIKATOR Menentukan faktor, akar-akar
PRAKTIKUM 2 PENGENALAN PROGRAM APLIKASI MATEMATIKA MAPLE 7
PRAKTIKUM PENGENALAN PROGRAM APLIKASI MATEMATIKA MAPLE 7. MINGGU KE :. PERALATAN : LCD, E-LEARNING. SOFTWARE : MAPLE. TUJUAN Mahasiswa dapat: Menggunakan konstanta, bilangan kompleks, bilangan dasar (basis),
y
Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka
SUKU BANYAK. Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut:
SUKU BANYAK A. Pengertian Suku Banyak Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut: Dinamakan suku banyak (polinom) dalam yang berderajat dengan bilangan cacah
PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear
Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum
matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT
K-13 Kelas X matematika PEMINATAN PERSAMAAN KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum persamaan kuadrat..
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Non Homogen Tk. 2 (Differential: Linier Non Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Solusi umum merupakan jumlah
PRAKTIKUM 3 SOLUSI MATEMATIKA DENGAN MAPLE
PRAKTIKUM 3 SOLUSI MATEMATIKA DENGAN MAPLE (BAGIAN ). MINGGU KE : 4. PERALATAN : LCD, E-LEARNING 3. SOFTWARE : MAPLE 4. TUJUAN Mahasiswa dapat menggunakan Software Aplikasi Matematika (Maple) untuk menyelesaikan
Pengintegralan Fungsi Rasional
Pengintegralan Fungsi Rasional Ahmad Kamsyakawuni, M.Kom Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember 25 Maret 2014 Pengintegralan Fungsi Rasional 1 Pengintegralan Fungsi Rasional 2
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE - II.Persamaan Homogen dengan Koefisien Konstan Suatu persamaan linier homogen y + ay + by = 0 (1) mempunyai koefisien a dan b adalah konstan. Persamaan ini mempunyai
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping
Soal dan Pembahasan Tentang Suku Banyak
Soal dan Pembahasan Tentang Suku Banyak Oleh : Fendi Alfi Fauzi 9 Maret 014 1. Nilai suku banyak untuk f (x) = x 3 x 3x + 5 untuk x = adalah... f ( ) = ( ) 3 ( ) 3 ( ) + 5 = 16 4 + 6 + 5 = 0 + 11 = 9.
MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT
MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping
PD Orde 2 Lecture 3. Rudy Dikairono
PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order
PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR
PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR Persamaan linear Bentuk umun persamaan linear satu vareabel Ax + b = 0 dengan a,b R ; a 0, x adalah vareabel Contoh: Tentukan penyelesaian dari 4x-8 = 0 Penyelesaian.
TEOREMA SISA 1. Nilai Sukubanyak Tugas 1
TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk
BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar
Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian
PERSAMAAN DAN FUNGSI KUADRAT
Materi W2a PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 A. Menyelesaikan Persamaan Kuadrat www.yudarwi.com A. Menyelesaikan Persamaan Kuadrat Diketahui suatu persamaan kuadrat : ax 2 + bx + c = 0,
Persamaan dan pertidaksamaan kuadrat BAB II
BAB II Misalkan a,b,c Є R dan a 0 maka persamaan yang berbentuk dinamakan persamaan kuadrat dalam peubah x. Dalam persamaan kuadrat ax bx c 0, a adalah koefisien dari x, b adalah koefisien dari x dan c
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem
A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT
K-13 Kelas X matematika PEMINATAN SISTEM PERSAMAAN LINEAR KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum sistem
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret
MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari
MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi
1. Akar-akar persamaan kuadrat 5x 2 3x + 1 = 0 adalah
1. Akar-akar persamaan kuadrat 5x 3x + 1 0 adalah A. imajiner B. kompleks C. nyata, rasional dan sama D. nyata dan rasional E. nyata, rasional dan berlainan. NOTE : D > 0, memiliki akar-akar riil dan berbeda
PRAKTIKUM 1 PENGENALAN PROGRAM APLIKASI MATEMATIKA MAPLE 7
PRAKTIKUM 1 PENGENALAN PROGRAM APLIKASI MATEMATIKA MAPLE 7 1. MINGGU KE : 1 2. PERALATAN : LCD, E-LEARNING 3. SOFTWARE : MAPLE 4. TUJUAN Mahasiswa dapat: Mengaktifkan Maple. Mengetahui lingkungan Maple.
2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT
2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax 2 + bx + c =, a 2) Nilai determinan persamaan kuadrat : D = b 2 4ac 3) Akar-akar persamaan kuadrat
Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1)
Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1) Kalkulus 2 Nanang Susyanto Departemen Matematika FMIPA UGM 07 Februari 2017 NS (FMIPA UGM) Teknik pengintegralan 07/02/2017 1 / 8 Pemeran-pemeran
http://meetabied.wordpress.com Matematika X Semester SMAN Bone-Bone Jika ingin mengenai sasaran, kita harus membidik sedikit di atas sasaran tersebut karena setiap panah yang meluncur akan merasakan gaya
BAB 2 PDB Linier Order Satu 2
BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret
Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.
Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan
TEKNIK PENGINTEGRALAN
TEKNIK PENGINTEGRALAN Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 2 Topik Bahasan Pendahuluan 2 Manipulasi Integran 3 Integral Parsial 4 Dekomposisi
Persamaan Di erensial Orde-2
oki neswan FMIPA-ITB Persamaan Di erensial Orde- Persamaan diferensial orde-n adalah persamaan yang melibatkan x; y; dan turunan-turunan y; dengan yang paling tinggi adalah turunan ke-n: F x; y; y ; y
Sistem PERSAMAAN dan PERTIDAKSAMAAN linier
Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax
Matematika Teknik Dasar-2 2 Bilangan Kompleks - 1. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya
Matematika Teknik Dasar-2 2 Bilangan Kompleks - 1 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Simbol j Penyelesaian dari sebuah persamaan kuadratik ax 2 + bx rumus x = b± b2
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Homogen Tk. 2 (Differential: Linier Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PD linier homogen orde 2 Bentuk
Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2
Nurdininta Athari PERSAMAAN DIFFERENSIAL ORDE 2 2 PDB ORDE II Bentuk umum : + p() + g() = r() p(), g() disebut koefisien jika r() = 0, maka Persamaan Differensial diatas disebut homogen, sebalikna disebut
MATEMATIKA TEKNIK II BILANGAN KOMPLEKS
MATEMATIKA TEKNIK II BILANGAN KOMPLEKS 2 PENDAHULUAN SISTEM BILANGAN KOMPLEKS REAL IMAJINER RASIONAL IRASIONAL BULAT PECAHAN BULAT NEGATIF CACAH ASLI 0 3 ILUSTRASI Carilah akar-akar persamaan x 2 + 4x
Relasi Rekursi. Matematika Informatika 4. Onggo
Relasi Rekursi Matematika Informatika 4 Onggo Wiryawan @OnggoWr Definisi Definisi 1 Suatu relasi rekursi untuk sebuah barisan {a n } merupakan sebuah rumus untuk menyatakan a n ke dalam satu atau lebih
MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN SEMSTER GENAP
MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN 05 06 SEMSTER GENAP STANDAR KOMPETENSI 4. Menggunakan aturan sukubanyak dalam penyelesaian masalah. KOMPETENSI DASAR 4. Menggunakan
PERTEMUAN 2-3 FUNGSI LINIER
PERTEMUAN 2-3 FUNGSI LINIER Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lainnya. Unsur-unsur pembentuk
MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012
MODUL MATEMATIKA PERSIAPAN UJIAN NASIONAL 0 TAHUN AJARAN 0/0 MATERI PERSAMAAN KUADRAT DAN PERTIDAKSAMAAN KUADRAT UNTUK KALANGAN MA AL-MU AWANAH MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 0 Jalan RH. Umar
Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA
POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA Interpolasi Metode Numerik Zulhaydar Fairozal Akbar [email protected] 2017 TOPIK Pengenalan
BILANGAN KOMPLEKS. 1. Bilangan-Bilangan Real. 2. Bilangan-Bilangan Imajiner. 3. Bilangan-Bilangan Kompleks
BILANGAN KOMPLEKS 1. Bilangan-Bilangan Real Sekumpulan bilangan-bilangan real yang dapat menempati seluruh titik pada garis lurus, hal ini dinamakan garis bilangan real seperti pada Gambar 1. Operasi penjumlahan,
FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.
FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel
FUNGSI DAN GRAFIK KED
FUNGSI DAN GRAFIK 1.1 Pendahuluan Deinisi unsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan
Pecahan Parsial (Partial Fractions)
oki neswan (fmipa-itb) Pecahan Parsial (Partial Fractions) Diberikan fungsi rasional f (x) p(x) q(x) f (x) r(x) : Jika deg p deg q; maka r (x) ^p (x) q(x) ; dengan deg r < deg q: p (x) q (x) r (x) ^p (x)
BAB II OPERASI DASAR MAPLE
BAB II OPERASI DASAR MAPLE 7 BAB II OPERASI DASAR MAPLE.1. Fungsi Maple mempunyai library fungsi yang sangat besar. Secara sintak, fungsi adalah tipe ekspresi. Fungsi-fungsi mempunyai nama dengan nol atau
Solusi Sistem Persamaan Linear Ax = b
Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem
A. Menyelesaikan Persamaan Kuadrat
Jurnal Materi Umum Persamaan Kuadrat Peta Konsep Fungsi Kuadrat Peta Konsep Daftar Hadir Materi A SoalLatihan PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester A. Menyelesaikan Persamaan Kuadrat Menyelesaikan
POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.
POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa
2. FUNGSI KUADRAT. , D = b 2 4ac
. FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax + bx + c =, a ) Akar akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus: x 1, b D, D = b 4ac a 3) Jumlah,
Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011
Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Tanggal Ujian: 31 Mei 2011 1. Jika 6(3 40 ) ( 2 log a) + 3 41 ( 2 log a) = 3 43, maka nilai a adalah... A. B. C. 4 D.
Hendra Gunawan. 23 April 2014
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 23 April 2014 Kuliah ang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13.2 Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan
PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT
PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT Jenis-jenis soal persamaan kuadrat yang sering diujikan adalah soal-soal tentang :. Menentukan akar-akar. Jenis-jenis akar 3. Jumlah dan hasil kali akar-akar 4. Tanda-tanda
Matematika: Persamaan Kuadrat 11/22/2011 PERSAMAAN KUADRAT. Oleh Syawaludin A. Harahap, MSc
Matematika: Persamaan Kuadrat //0 MATA KULIAH : MATEMATIKA KODE MATA KULIAH : UNM0.0 SKS : (-) ) PERSAMAAN KUADRAT Oleh Syawaludin A. Harahap, MSc UNIVERSITAS PADJADJARAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN
KONSEP DASAR PERSAMAAN DIFERENSIAL
KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai
Prestasi itu diraih bukan didapat!!! SOLUSI SOAL
SELEKSI OLIMPIADE TINGKAT PROVINSI 009 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 009 Bagian
SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a
SUKU BANYAK A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a b ) 3) F(x) : [(x a)(x b)], maka S(x) = (x a)s 2 + S 1, dengan S 2 adalah sisa pembagian pada
Prestasi itu diraih bukan didapat!!! SOLUSI SOAL
"We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang
SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010
Dapatkan soal-soal lainnya di http://forum.pelatihan-osn.com SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010 Waktu : 210 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT
PERSAMAAN KUADRAT. AC 0 P DAN Q SAMA TANDA. 2. DG. MELENGKAPKAN BENTUK KUADRAT ( KUADRAT SEMPURNA ) :
PERSAMAAN KUADRAT. AC 0 P DAN Q SAMA TANDA.. DG. MELENGKAPKAN BENTUK KUADRAT ( KUADRAT SEMPURNA ) : Bab 3 PERSAMAAN KUADRAT 1. Bentuk Umum : ax bx c 0, a 0, a, b, c Re al Menyelesaikan persamaan kuadrat
Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi
Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara
BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL
BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan
Kalkulus 2. Teknik Pengintegralan ke - 2. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018
Kalkulus 2 Teknik Pengintegralan ke - 2 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 24 Daftar
BAB II AKAR-AKAR PERSAMAAN
BAB II AKAR-AKAR PERSAMAAN 2.1 PENDAHULUAN Salah satu masalah yang sering terjadi pada bidang ilmiah adalah masalah untuk mencari akar-akar persamaan berbentuk : = 0 Fungsi f di sini adalah fungsi atau
PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR
PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan
MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS
MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan
Modul Matematika 2012
Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar
K13 Revisi Antiremed Kelas 10 Matematika
K Revisi Antiremed Kelas Matematika Persamaan Kuadrat - Latihan Soal Essay Do Name: RKARMATWJB5 Version : 6- halaman. Nyatakan persamaan-persamaan berikut ke dalam bentuk baku kemudian tentukan nilai b
JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n
Telkom University Alamanda JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2 + + a n x n 2.
Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika
Solusi Olimpiade Sains Tingkat Kabupaten/Kota 01 Bidang Matematika Oleh : Tutur Widodo 1. Karena 01 = 13 31 maka banyaknya faktor positif dari 01 adalah (1 + 1) (1 + 1) (1 + 1) = 8. Untuk mencari banyak
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 27 Januari 2017 Bab Sebelumnya 7. Teknik Pengintegralan 7.1 Aturan Dasar Pengintegralan 7.2 Pengintegralan Parsial 7.3 Integral Trigonometrik
Bab I. Bilangan Kompleks
Bab I Bilangan Kompleks Himpunan bilangan yang terbesar di dalam matematika adalah himpunan bilangan kompleks. Himpunan bilangan real yang kita pakai sehari-hari merupakan himpunan bagian dari himpunan
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia
KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit
Praktikum Aljabar Linear Menggunakan Maplesoft Maple
MINGGU KE : 1 PERALATAN : LCD SOFTWARE TUJUAN : MAPLE PRAKTIKUM 1 PENGENALAN MAPLE Mahasiswa dapat menggunakan Software Aplikasi Matematika (Maple) untuk : Mengenal interface Maple Menggunakan operasi-operasi
RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK
RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK Mata Kuliah: Metode Numerik Semester: 7, Kode: KMM 090 Program Studi: Pendidikan Matematika Dosen: Khairul Umam, S.Si, M.Sc.Ed Capaian Pembelajaran: SKS:
A. Sistem Persamaan Linier dengan dua Variabel
Jurnal Materi Umum Peta Konsep Peta Konsep Daftar Hadir MateriA SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Kelas X, Semester 1 Sistem Persamaan Linier Dua Variabel Tiga Variabel Sistem Pertidaksamaan linier
6 FUNGSI LINEAR DAN FUNGSI
6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah
SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA
SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2009 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan
PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran
Kurikulum 1 Kelas matematika PEMINATAN PERTIDAKSAMAAN RASIONAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan rasional..
Prestasi itu diraih bukan didapat!!! SOLUSI SOAL
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : Olimpiade Matematika Tk Kabupaten/Kota
FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63
FUNGSI DAN MODEL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 63 Topik Bahasan 1 Fungsi 2 Jenis-jenis Fungsi 3 Fungsi Baru dari Fungsi Lama 4
RENCANA PELAKSANAAN PEMBELAJARAN
RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/2 Alokasi Waktu: 8 jam Pelajaran (4 Pertemuan) A. Standar Kompetensi Menggunakan aturan sukubanyak dalam penyelesaian
PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR
Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 93 98 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR
Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih
Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint
BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak
BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi
FUNGSI DAN GRAFIK KED. Fungsi Bukan Fungsi Definisi
FUNGSI DAN GRAFIK Deinisi Funsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan nilai ya diperoleh
Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir
Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu
Hendra Gunawan. 4 September 2013
MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi
METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1
METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem
BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT
BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya
ISBN: Cetakan Pertama, tahun Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini
METODE NUMERIK, oleh Sri Adi Widodo, M.Pd. Hak Cipta 2015 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-882262; 0274-889398; Fax: 0274-889057; E-mail: [email protected] Hak Cipta
2 Akar Persamaan NonLinear
2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan
Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.
4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan
Matematika Dasar FUNGSI DAN GRAFIK
FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan
BAB IV HASIL DAN PEMBAHASAN. dan XI IPA2 pada bulan April- Mei Pada bulan April 2014 peneliti
33 BAB IV HASIL DAN PEMBAHASAN A. Deskripsi Pelaksanaan Penelitian Penelitian dilaksanakan di SMAN 1 Kasihan untuk kelas XI IPA1 dan XI IPA2 pada bulan April- Mei 2014. Pada bulan April 2014 peneliti melakukan
