Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2
|
|
|
- Djaja Darmadi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Nurdininta Athari PERSAMAAN DIFFERENSIAL ORDE 2
2 2 PDB ORDE II Bentuk umum : + p() + g() = r() p(), g() disebut koefisien jika r() = 0, maka Persamaan Differensial diatas disebut homogen, sebalikna disebut non homogen. Persamaan Differensial Biasa linier orde dua homogen dengan koefisien konstan, memiliki bentuk umum : + a + b = 0 dimana a, b merupakan konstanta sebarang.
3 3 SOLUSI HOMOGEN Diketahui + a + b = 0 Bentuk umum solusi : = c c 2 2 Misalkan =e r Persamaanna berubah menjadi r 2 + ar + b = 0, sebuah persamaan kuadrat. Jadi kemungkinan akarna ada 3 aitu: 1. Akar real berbeda (r 1,r 2 ; dimana r 1 r 2 ) Memiliki solusi basis 1 = e r 1 dan 2 = e r 2 dan mempunai solusi umum = C 1 e r 1 + C 2 e r 2
4 4 2. Akar real kembar (r 1,r 2 ; dimana r = r 1 =r 2 ) Memiliki solusi basis 1 = e r dan 2 = e r dan mempunai solusi umum = C 1 e r + C 2 e r SOLUSI HOMOGEN 3. Akar kompleks kojugate (r 1 = u + wi, r 2 = u wi) Memiliki solusi basis 1 = e u cos w; dan 2 = e u sin w dan mempunai solusi umum = e u ( C 1 cos w + C 2 sin w )
5 = 0 Persamaan karakteristikna: ( r + 2 ) ( r + 3 ) = 0 r 1 = -2 atau r 2 = -3 maka solusina : = C 1 e -2 + C 2 e = 0 Persamaan karakteristikna: ( r + 3 ) ( r + 3 ) = 0 r 1 = r 2 = -3 maka solusina : = C 1 e -3 + C 2 e = 0 Persamaan karakteristikna: r 2 4r + 5 = 0 r 12 2 i maka solusina : = e 2 (C 1 cos + C 2 sin ) CONTOH SOAL 5
6 PERSAMAAN DIFFERENSIAL NON HOMOGEN 6 Bentuk umum: dengan r() 0 + p() + g() = r() Solusi total : = h + p Dimana h = solusi P D homogen p = solusi P D non homogen Menentukan p 1. Metode koefisien tak tentu 2. Metode variasi parameter
7 7 METODE KOEFISIEN TAK TENTU pilihlah p ang serupa dengan r(), lalu substitusikan ke dalam persamaan. r() = e m r() p = A e m r() = X n p = A n X n + A n-1 X n-1 +.+A 1 X + A 0 r() = sin w r() =cos w p p = A cos w + B sin w p = A cos w + B sin w r() = e u sin w p = e u (A cos w + B sin w ) R() =e u cos w p = e u (A cos w + B sin w ) Cttn: Solusi partikular tidak boleh muncul pada solusi homogenna. Jika hal ini terjadi, kalikan solusi khususna dengan faktor atau 2 sehingga tidak memuat lagi solusi homogenna.
8 = e - CONTOH Jawab: Persamaan karakteristikna: r 2 3 r + 2 = 0 (r 2) (r 1) = 0 Sehingga didapat r 1 = 2 dan r 2 = 1 Jadi solusi homogenna adalah h = C 1 e 2 + C 2 e Untuk p dipilih p = A e - p = - A e - p = A e - Kemudian masukan ke PD di atas: A e A e A e - = e - 6 A e- = e - A = 1/6 Jadi solusi umum PD di atas adalah = C 1 e 2 + C 2 e + 1/6 e -
9 = cos CONTOH Jawab: Persamaan karakteristikna: r 2 3 r + 2 = 0 (r 2) (r 1) = 0 Sehingga didapat r 1 = 2 dan r 2 = 1 Jadi solusi homogenna adalah h = C 1 e 2 + C 2 e Untuk p dipilih p = A cos + B sin p = - A sin + B cos p = - A cos B sin Kemudian masukan ke PD di atas: (-A cos B sin ) 3(-A sin + B cos )+2(A cos +B sin )= cos (-A-3B+2A) cos + (-B+3A+2B) sin = cos (-3B + A) cos + (3A+B) sin = cos -3B + A = 1 dan 3A+B= 0
10 10 CONTOH (NO. 2 LANJUTAN) Didapat A = 1/10 dan B = -3/10 Jadi solusi umum PD di atas adalah = C 1 e 2 + C 2 e + (1/10) cos (3/10) sin = e - + cos Jawab: Dari contoh 1 dan 2 didapat, solusi umumna adalah = C 1 e 2 + C 2 e + (1/6) e - + (1/10) cos (3/10) sin
11 = e, (0)=1, (0)= -1 CONTOH Jawab: Persamaan karakteristikna: r 2 3 r + 2 = 0 (r 2) (r 1) = 0 Sehingga didapat r 1 = 2 dan r 2 = 1 Jadi solusi homogenna adalah h = C 1 e 2 + C 2 e Untuk p dipilih p = A e p = A e + A e p = 2A e + A e Kemudian masukan ke PD di atas: 2Ae +Ae 3 (Ae + Ae ) + 2 Ae = e -A e = e A = -1 Jadi solusi umum PD di atas adalah = C 1 e 2 + C 2 e e
12 12 CONTOH Kita puna (0)=1 dan (0)=-1 = C 1 e 2 + C 2 e e 1=C 1 +C 2 = 2C 1 e 2 + C 2 e e e Didapat 0=2C 1 +C 2 C 1 =-1, dan C 2 = 2 Jadi solusi khusus PD di atas adalah = e e e
13 = = = e = 2 sin = e = 2 cos = = e = = sin 3 + e = e = 4 sin, = 4, = 0 bila = = 2e, = 1, = 0 bila = 0 LATIHAN
14 14 METODE VARIASI PARAMETER Metode ini digunakan untuk memecahkan persamaanpersamaan ang tidak dapat diselesaikan dengan menggunakan metode koefisien tak tentu. Persamaan Differensial orde dua non homogen + a + b = r() memiliki solusi total : = h + p h = c c 2 2 misal p = u 1 + v 2 dimana u = u() ; v = v() maka p = u 1 + u 1 + v 2 + v 2
15 15 pilih u dan v sedemikian sehingga u 1 + v 2 = 0.(*) p = u 1 + v 2 p = u 1 + u 1 + v 2 + v 2 METODE VARIASI PARAMETER Substitusikan p, p, p ke dalam persamaan awal sehingga di dapatkan : u 1 + u 1 + v 2 + v 2 + a (u 1 + v 2 )+ b (u 1 + v 2 ) = r() u ( 1 + a 1 + b 1 ) + v( 2 + a 2 + b 2 ) + u 1 + v 2 = r () u 1 + v 2 = r().(**)
16 16 METODE VARIASI PARAMETER Eleminasi (*) dan (**) diperoleh : u 1 + v 2 = 0 u 1 + v 2 = r () dengan aturan cramer diperoleh 0 2 r( ) ' r( ) u ' u d v' v 1 2 W 1 2 ' 1 2 Keterangan: ' W 1 2 1' 2' 1 ' 1 ' r() 0 2 ' r() W d
17 = sec Jawab: Persamaan karakteristikna: CONTOH r = 0 r = ± i Jadi solusi homogenna adalah h = C 1 cos + C 2 sin Untuk p dipilih p = u 1 + v 2 dengan 1 = cos 2 = sin 1 = -sin 2 = cos W = = cos 2 + sin 2 = 1
18 18 Sehingga diperoleh sin sec u d tan d ln cos 1 cos sec v d d 1 Jadi solusi non homogen didapat ln cos cos sin p Jadi solusi umum dari persamaan diferensial di atas 1 2 CONTOH (LANJUTAN) C cos C sin ln cos cos sin
19 = tan CONTOH Jawab: Persamaan karakteristikna: r = 0 r = ± i Jadi solusi homogenna adalah h = C 1 cos + C 2 sin Untuk p dipilih p = u 1 + v 2 dengan 1 = cos 2 = sin 1 = - sin 2 = cos W = = cos 2 + sin 2 = 1
20 20 Sehingga diperoleh u sin tan sin d 1 2 d cos 2 1 cos d cos sec d cos d lnsec tan sin CONTOH (LANJUTAN) (sec cos ) d v cos tan 1 d sin d cos Jadi solusi non homogen didapat p lnsec tan cos sin cos sin cos sec tan cos ln Jadi solusi umum dari persamaan diferensial di atas C1 cos C2 sin lnsec tan cos
21 = cosec cot 2. + = cot e = e 1 2 e = = 3 cosec = 3 cosec = 2 sec (/2) e = 2 1 LATIHAN
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II [MA4] PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka Persamaan
Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika. Persamaan Diferensial Orde II
Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Persamaan Diferensial Orde II PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka
PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari
PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan
Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.
1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Non Homogen Tk. 2 (Differential: Linier Non Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Solusi umum merupakan jumlah
Adalah : hubungan antara variabel bebas x, variabel
Adalah : hubungan antara variabel bebas, variabel Bentuk Umum : bebas dan turunanna. d d F(,,, n d,..., ) n Persamaan differensial (PD) menatakan hubungan dinamik, maksudna hubungan tersebut memuat besaran
TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017
A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.
Hendra Gunawan. 23 April 2014
MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 23 April 2014 Kuliah ang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13.2 Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan
PD Orde 2 Lecture 3. Rudy Dikairono
PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE - II.Persamaan Homogen dengan Koefisien Konstan Suatu persamaan linier homogen y + ay + by = 0 (1) mempunyai koefisien a dan b adalah konstan. Persamaan ini mempunyai
Persamaan Di erensial Orde-2
oki neswan FMIPA-ITB Persamaan Di erensial Orde- Persamaan diferensial orde-n adalah persamaan yang melibatkan x; y; dan turunan-turunan y; dengan yang paling tinggi adalah turunan ke-n: F x; y; y ; y
PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN
LINIER NON HOMOGEN Contoh PD linier non homogen orde 2. Bentuk umum persamaan PD Linier Non Homogen Orde 2, adalah sebagai berikut : y + f(x) y + g(x) y = r(x) ( 2-35) Solusi umum y(x) akan didapatkan
Persamaan Diferensial Orde Satu
Modul Persamaan Diferensial Orde Satu P PENDAHULUAN Prof. SM. Nababan, Ph. ersamaan Diferensial (PD) adalah salah satu cabang matematika ang banak digunakan untuk menjelaskan masalah-masalah fisis. Masalahmasalah
MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI
MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT
2 Akar Persamaan NonLinear
2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan
Hendra Gunawan. 25 April 2014
MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 April 014 Kuliah yang Lalu 15.11 Persamaan Diferensial Linear Orde, Homogen 15. Persamaan Diferensial Linear Orde, Tak Homogen 15.3 Penggunaan Persamaan
BAB 1 PERSAMAAN DIFERENSIAL ORDER SATU
BAB PERSAAA DIFERESIAL ORDER SATU PEDAHULUA Persamaan Diferensial adalah salah satu cabang ilmu matematika ang banak digunakan dalam memahami permasalahan-permasalahan di bidang fisika dan teknik Persamaan
BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL
BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan
Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL
Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu
PERSAMAAN DIFERENSIAL (PD)
PERSAMAAN DIFERENSIAL (PD) A. PENGERTIAN Persamaan yang mengandung variabel dan beberapa fungsi turunan terhadap variabel tersebut. CONTOH : + 5 5 0 disebut PD orde I + 6 + 7 0 disebut PD orde II B. PEMBENTUKAN
PERSAMAAN DIFFERENSIAL LINIER
PERSAMAAN DIFFERENSIAL LINIER Persamaan Differensial Linier Pengertian : Suatu persamaan differensial orde satu dikatakan linier jika persamaan tersebut dapat dituliskan sbb: y + p x y = r(x) (1) linier
Pecahan Parsial (Partial Fractions)
oki neswan (fmipa-itb) Pecahan Parsial (Partial Fractions) Diberikan fungsi rasional f (x) p(x) q(x) f (x) r(x) : Jika deg p deg q; maka r (x) ^p (x) q(x) ; dengan deg r < deg q: p (x) q (x) r (x) ^p (x)
Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.
4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan
BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL
BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL Bila persamaan diferensial linear homogen memiliki koefisien constant maka persamaan tersebut dapat diselesaikan dengan metoda aljabar (seperti yang
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I
PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan
BAB PDB Linier Order Satu
BAB 1 Konsep Dasar 1 BAB PDB Linier Order Satu BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua Untuk memulai pembahasan ini terlebih dahulu akan ditinjau beberapa teorema tentang konsep umum
BAB 2 LANDASAN TEORI
6 BAB LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar ang akan digunakan sebagai landasan berpikir seperti beberapa teorema dan definisi ang berkaitan dengan penelitian ini. Dengan begitu
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Homogen Tk. 2 (Differential: Linier Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PD linier homogen orde 2 Bentuk
BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :
BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi
KONSEP DASAR PERSAMAAN DIFERENSIAL
KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan
BAB III PERSAMAAN DIFERENSIAL LINIER
BAB III PERSAMAAN DIFERENSIAL LINIER Bentuk umum PD orde-n adalah PD yang tidak dapat dinyatakan dalam bentuk di atas dikatakan tidak linier. Contoh: Jika F(x) pada persamaan (3.1) sama dengan nol maka
Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.
4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan
BAB II PERSAMAAN TINGKAT SATU DERAJAT SATU
BAB II PERSAAA TIGKAT SATU DERAJAT SATU Standar Kompetensi Setelah mempelajari pokok bahasan ini diharapkan mahasiswa dapat memahami ara-ara menentukan selesaian umum persamaan diferensial tingkat satu
SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I
SOAL DAN PEMBAHASAN TRIGONOMETRI SUDUT BERELASI KUADRAN I Trigonometri umumnya terdiri dari beberapa bab yang dibahas secara bertahap sesuai dengan tingkatannya. untuk kelas X, biasanya pelajaran trigonometri
HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL
HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL Dra.Sri Rejeki Dwi Putranti, M.Kes. Fakultas Teknik - Universitaas Yos Soedarso Surabaya Email : [email protected] Abstrak Hubungan antara Differensial dan
BAB VIII PERSAMAAN DIFERENSIAL (PD)
BAB VIII PERSAMAAN DIFERENSIAL (PD) Banak masalah dalam kehidupan sehari-hari ang dapat dimodelkan dalam persamaan diferensial. Untuk menelesaikan masalah tersebut kita perlu menelesaikan pula persamaan
SOLUSI PERSAMAAN DIFFERENSIAL
SOLUSI PERSAMAAN DIFFERENSIAL PENGERTIAN SOLUSI. Solusi dari suatu persamaan differensial adalah persamaan yang memuat variabelvariabel dari persamaan differensial dan memenuhi persamaan differensial yang
BAB I PENDAHULUAN. Kompetensi
BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan
Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO
Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.
Turunan Fungsi. h asalkan limit ini ada.
Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim
MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS
MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan
BAB 2 PERSAMAAN DIFFERENSIAL BIASA
BAB 2 BIASA 2.1. KONSEP DASAR Persamaan Diferensial (PD) Biasa adalah persamaan yang mengandung satu atau beberapa penurunan y (varibel terikat) terhadap x (variabel bebas) yang tidak spesifik dan ditentukan
Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.
Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan
perpindahan, kita peroleh persamaan differensial berikut :
1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan
BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU
BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus
Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub
Bab. Persamaan Parametrik dan Sistim Koordinat Kutub Persamaan Parametrik Kurva-kurva ang berada dalam bidang datar dapat representasikan dalam bentuk persamaan parametrik. Dalam persamaan ini, setiap
TURUNAN FUNGSI IKA ARFIANI, S.T.
TURUNAN FUNGSI IKA ARFIANI, S.T. DEFINISI TURUNAN Turunan dari ( terhadap dideinisikan dengan: d d ' ' ( lim h 0 ( h-( h RUMUS DASAR TURUNAN ' n n n k k ' 0 k ' u' nu u n n '( ( '( ( '( ( '( ( 0 '( ( n
BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL
BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu
Sudaryatno Sudirham. Integral dan Persamaan Diferensial
Sudaratno Sudirham Integral dan Persamaan Diferensial Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org Bahasan akan mencakup
Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb
Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : [email protected] www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial
Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks
Kode Mata Kuliah : TE 318 SKS : 3 Matematika Teknik I Prasarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Tujuan : Mahasiswa memahami permasalahan teknik dalam bentuk PD atau integral, serta
yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. yang sejajar dengan garis yang diberikan tersebut.
3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada
BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi
BAB: TEKNIK PENGINTEGRALAN Topik: Metode Substitusi Kompetensi yang diukur adalah kemampuan mahasiswa menghitung integral fungsi dengan metode substitusi.. UAS Kalkulus Semester Pendek no. b (kriteria:
dy = f(x,y) = p(x) q(y), dx dy = p(x) dx,
5. Persamaan Diferensian Dengan Variabel Terpisah Persamaan diferensial berbentuk y = f(), dengan f suatu fungsi kontinu pada suatu interval real, dapat dicari penyelesaiannya dengan cara mengintegralkan
PRAKTIKUM 3 PAM 253 PERSAMAAN DIFERENSIAL BIASA
PRAKTIKUM 3 PAM 253 PERSAMAAN DIFERENSIAL BIASA TOPIK: PERSAMAAN DIFERENSIAL BIASA ORDE DUA ========== Dalam praktikum ini selalu gunakan Worksheet Mode dengan tipe input Maple Notation ========== I. Pendahuluan
MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO. Mohamad Sidiq
MATEMATIKA TEKNIK 2 S1-TEKNIK ELEKTRO REFERENSI E-BOOK REFERENSI ONLINE SOS Mathematics http://www.sosmath.com/diffeq/diffeq.html Wolfram Research Math World http://mathworld.wolfram.com/ordinarydifferentialequation.h
Fungsi Peubah Banyak. Modul 1 PENDAHULUAN
Modul 1 Fungsi Peubah Banak Prof. Dr. Bambang Soedijono PENDAHULUAN D alam modul ini dibahas masalah Fungsi Peubah Banak. Dengan sendirina para pengguna modul ini dituntut telah menguasai pengertian mengenai
TURUNAN FUNGSI IKA ARFIANI, S.T.
TURUNAN FUNGSI IKA ARFIANI, S.T. DEFINISI TURUNAN Turunan dari ( terhadap dideinisikan dengan: d d ( lim h 0 ( h-( h RUMUS DASAR TURUNAN n n n k k 0 k u nu u n n ( ( ( ( ( ( ( ( 0 ( ( n n n c RUMUS JUMLAH
FUNGSI LOGARITMA ASLI
FUNGSI LOGARITMA ASLI............ Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln (Daerah asalnya adalah., 0 Turunan Logaritma Asli ln, 0 Lebih umumnya, Jika 0 dan f terdifferensialkan,
BAB I PENDAHULUAN. Kompetensi
BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan
A. Persamaan Kuadrat dan Fungsi Kuadrat. Salah satu akar persamaan kuadrat ( a ) (3a ) 3a 0 adalah, maka akar lainna adalah. Nilai m ang memenuhi agar persamaan kuadrat ( m ) (m ) ( m ) 0 mempunai dua
II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan
II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi
Bab 5 Turunan Fungsi. Definisi. Ilustrasi. Misalkan D menyatakan operator turunan. Pernyataan tentang turunan suatu fungsi. dapat ditulis sebagai;
Bab Turunan Fungsi Deinisi d Misalkan D menyatakan operator turunan. Pernyataan tentang turunan suatu ungsi d dapat ditulis sebagai; d d D d d Atau dideinisikan juga sebagai y 0 lim Gambar Pengertian tentang
Diferensial dan Integral
Open Course Diferensial dan Integral Oleh: Sudaratno Sudirham Pengantar Setelah kita mempelajari fungsi dan grafik, ang merupakan bagian pertama dari kalkulus, berikut ini kita akan membahas bagian kedua
Solusi Analitis Persamaan-persamaan Diferensial Orde-1 dengan Metode Analitis Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH
Solusi Analitis Persamaan-persamaan Diferensial Orde- dengan Metode Analitis.. Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH a. Bentuk Umum: f ( ) g( ), f dan g fungsi sembarang. b. Metode
I. Sistem Persamaan Diferensial Linier Orde 1 (Review)
I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu
! " #" # $# % " "& " # ' ( ) #
! "#"# $#%""&"#'# "*# *" " " #,#" " "# * # ""- # # "! " #" # $#%""&"# '# #" &# '&$'# # "'/0& " # #'"# ## # # #"""--* # #* #"* "'# #* 0 # # ***0" #""# ** #""# " #,#"##' ##' #*"#"#"'#"" #"#" ## # # "*###
TRIGONOMETRI Pengertian Sinus, Cosinus dan Tangen Hubungan Fungsi Trigonometri :
SMA - TRIGONOMETRI Pengertian Sinus, Cous dan Tangen Sin r y r y Cos r x x Tan x y Hubungan Fungsi Trigonometri :. + cos. tan 3. sec cos cos 4. cosec 5. cotan cos 6. tan + sec + cos + cos cos cos cos tan
PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA
PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan
KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan
KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan
Bab 7 Persamaan Differensial Non-homogen
Bab 7 Persamaan Differensial Non-homogen Persamaan Differensial Orde- Non Homogen Bentuk hukum : d y dy + p( ) + Q( ) y R( ) (*) Dimana, P(), Q(), dan R() dapat juga berwujud suatu leoust Solusinya : y
PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A
PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan
FUNGSI LOGARITMA ASLI
D.. = D.. = D.. = = 0 D.. = D.. = D.. = 3 FUNGSI LOGARITMA ASLI Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln = (Daerah asalnya adalah R). t dt, > 0 Turunan Logaritma Asli
Kalkulus 2. Teknik Pengintegralan ke - 2. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018
Kalkulus 2 Teknik Pengintegralan ke - 2 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 24 Daftar
TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif
iii Daftar Isi TINJAUAN MATA KULIAH... xiii MODUL 1: PERSAMAAN DIFERENSIAL ORDE SATU 1.1 Pengertian PD Orde Satu dan Solusinya... 1.2 Latihan... 1.7 Rangkuman... 1.9 Tes Formatif 1..... 1.10 PD Variabel
digunakan untuk menyelesaikan integral seperti 3
Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat
BAB III PD LINIER HOMOGEN
BAB III PD LINIER HOMOGEN Kompetensi Mahasiswa diharapkan. Mampu menentukan selesaian umum dari PD linier homogen orde dua dengan jenis akar-akar karakteristik ang berbeda-beda. Memahami pengertian kebebaslinieran
TURUNAN FUNGSI (DIFERENSIAL)
TURUNAN FUNGSI (DIFERENSIAL) A. Pengertian Derivatif (turunan) suatu fungsi. Perhatikan grafik fungsi f( (pengertian secara geometri) ang melalui garis singgung. f( f( f(+ Q [( +, f ( + ] f( P (, f ( )
LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)
LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah
Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :
Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi
BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I
BAB I PERSAMAAN DIFERENSIAL LINIER ORDE I. Pengertian PD, Orde (tingkat), & Derajat (Pangkat) Persamaan diferensial adalah suatu persamaan yang memuat derivatifderivatif (turunan) sekurang-kurangnya derivatif
Darpublic Nopember 2013
Darpublic Nopember 01 www.darpublic.com 4.1. Pengerian 4. Persamaan Diferensial (Orde Sau) Sudarano Sudirham Persamaan diferensial adalah suau persamaan di mana erdapa sau aau lebih urunan fungsi. Persamaan
FUNGSI DAN GRAFIK KED
FUNGSI DAN GRAFIK 1.1 Pendahuluan Deinisi unsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan
yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan.
3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada
Pemodelan Teknik Kimia Bebarapa Contoh Aplikasi Persamaan Diferensial (oleh: Prof. Dr. Ir. Setijo Bismo, DEA.)
Pemodelan Teknik Kimia - 206 Bebarapa Contoh Aplikasi Persamaan Diferensial (oleh: Prof. Dr. Ir. Setijo Bismo, DEA.) Contoh #: Kepedulian terhadap Iklan Suatu produk sereal baru (diberi nama Oat Puff )
ALJABAR. Buktikan bahwa ruas pertama dari persamaanm kuadrat
Mengenang Jejak Sebagian Kecil Bangsa Indonesia Yang Pernah Mengikuti Ujian Sekolah Pada Masa Silam UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 9. HBS (Hogere Burger School) NI, 9 ALJABAR Buktikan
Pengantar Metode Perturbasi Bab 1. Pendahuluan
Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait
BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan
BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegral
MA1201 KALKULUS 2A (Kelas 10) Bab 7: Teknik Pengintegralan Do maths and you see the world Integral atau Anti-turunan? Integral atau pengintegral adalah salah satu konsep (penting) dalam matematika disamping
FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA
FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA Makalah ini disusun untuk memenuhi tugas Mata Kuliah Kalkulus 1 Dosen Pengampu : Muhammad Istiqlal, M.Pd Disusun Oleh : 1. Sufi Anisa (23070160086)
matematika TURUNAN TRIGONOMETRI K e l a s A. Rumus Turunan Sinus dan Kosinus Kurikulum 2006/2013 Tujuan Pembelajaran
Kurikulum 006/03 matematika K e l a s XI TURUNAN TRIGONOMETRI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan rumus turunan trigonometri
PRAKTIKUM 2 SOLUSI MATEMATIKA DENGAN MAPLE (BAGIAN 1)
PRAKTIKUM SOLUSI MATEMATIKA DENGAN MAPLE (BAGIAN 1) 1. MINGGU KE : 3. PERALATAN : LCD, E-LEARNING 3. SOFTWARE : MAPLE 4. TUJUAN Dengan menggunakan Maple, mahasiswa dapat menyelesaikan masalah: Menentukan
Persamaan Differensial Biasa
Bab 7 cakul fi5080 by khbasar; sem1 2010-2011 Persamaan Differensial Biasa Dalam banyak persoalan fisika, suatu topik sering dinyatakan dalam bentuk perubahan (laju perubahan). Telah disinggung sebelumnya
Department of Mathematics FMIPAUNS
Lecture 2: Metode Operator A. Metode Operator untuk Sistem Linear dengan Koefisien Konstan Pada bagian ini akan dibicarakan cara menentukan penyelesaian sistem persamaan diferensial linear dengan menggunakan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2
Relasi Rekursi. Matematika Informatika 4. Onggo
Relasi Rekursi Matematika Informatika 4 Onggo Wiryawan @OnggoWr Definisi Definisi 1 Suatu relasi rekursi untuk sebuah barisan {a n } merupakan sebuah rumus untuk menyatakan a n ke dalam satu atau lebih
Ringkasan Kalkulus 2, Untuk dipakai di ITB 1. Integral Lipat Dua Atas Daerah Persegipanjang
ingkasan Kalkulus 2, Untuk dipakai di ITB 1 Integral Lipat Dua Atas Daerah Persegipanjang Perhatikan fungsi z = f(x, y) pada = {(x, y) : a x b, c y d} Bentuk partisi P atas daerah berupa n buah persegipanjang
