Solusi Sistem Persamaan Linear Ax = b
|
|
|
- Yandi Tedjo
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
2 Review 1 Substitusi mundur pada sistem persamaan linear segitiga atas, 2 Eliminasi Gauss biasa, 3 Eliminasi Gauss dengan tumpuan berskala. K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
3 Faktorisasi LU Apa itu faktorisasi? K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
4 Faktorisasi LU Apa itu faktorisasi? Faktorisasi pada bilangan real : 8 = 2 4. K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
5 Faktorisasi LU Apa itu faktorisasi? Faktorisasi pada bilangan real : 8 = 2 4. Faktorisasi pada matriks n n : A = LU. K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
6 Faktorisasi LU Apa itu faktorisasi? Faktorisasi pada bilangan real : 8 = 2 4. Faktorisasi pada matriks n n : A = LU. L adalah matriks segitiga bawah dan U adalah matriks segitiga atas u 11 u 12 u 1n l L =......, U = 0 u 22 u 2n l n1 l n u nn K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
7 Faktorisasi LU Apa itu faktorisasi? Faktorisasi pada bilangan real : 8 = 2 4. Faktorisasi pada matriks n n : A = LU. L adalah matriks segitiga bawah dan U adalah matriks segitiga atas u 11 u 12 u 1n l L =......, U = 0 u 22 u 2n l n1 l n u nn Tidak semua matrix bisa difaktorisasi. K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
8 Solusi dari system persamaan Ax = b Algoritma mencari solusi Ax = b, menggunakan faktorisasi LU: K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
9 Solusi dari system persamaan Ax = b Algoritma mencari solusi Ax = b, menggunakan faktorisasi LU: 1 Cari L dan U sehingga A = LU, sehingga SPL yang akan diselesaikan menjadi LUx = b. K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
10 Solusi dari system persamaan Ax = b Algoritma mencari solusi Ax = b, menggunakan faktorisasi LU: 1 Cari L dan U sehingga A = LU, sehingga SPL yang akan diselesaikan menjadi LUx = b. 2 Cari y dimana y adalah solusi dari Ly = b, l l n1 l n2 1 y 1 y 2. y n = b 1 b 2. b n K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
11 Solusi dari system persamaan Ax = b Algoritma mencari solusi Ax = b, menggunakan faktorisasi LU: 1 Cari L dan U sehingga A = LU, sehingga SPL yang akan diselesaikan menjadi LUx = b. 2 Cari y dimana y adalah solusi dari Ly = b, l l n1 l n2 1 y 1 y 2. y n = b 1 b 2. b n 3 Kemudian cari x dimana x adalah solusi dari Ux = y. u 11 u 12 u 1n x 1 0 u 22 u 2n x = 0 0 u nn x n y 1 y 2. y n K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
12 Contoh Contoh Selesaikan sistem persamaan linear berikut ini dengan menggunakan faktorisasi LU. 4x 1 + 3x 2 x 3 = 2 2x 1 4x 2 + 5x 3 = 20 x 1 + 2x 2 + 6x 3 = 7 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
13 Contoh Contoh Selesaikan sistem persamaan linear berikut ini dengan menggunakan faktorisasi LU. 4x 1 + 3x 2 x 3 = 2 2x 1 4x 2 + 5x 3 = 20 x 1 + 2x 2 + 6x 3 = 7 Diketahui bahwa matriks A dari SPL diatas dapat difaktorisasi menjadi: = K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
14 Contoh(2) Maka, dengan substitusi maju, kita dapat mencari y y y 2 = y K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
15 Contoh(2) Maka, dengan substitusi maju, kita dapat mencari y y y 2 = y y 1 = 2, y 2 = 20 ( 0.5)( 2) = 19, y 3 = 7 (0.25)( 2) ( 0.5)(19) = 17 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
16 Contoh(2) Maka, dengan substitusi maju, kita dapat mencari y y y 2 = y y 1 = 2, y 2 = 20 ( 0.5)( 2) = 19, y 3 = 7 (0.25)( 2) ( 0.5)(19) = 17 Langkah berikutnya yaitu mencari x, x 1 x 2 x 3 = K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
17 Contoh(2) Maka, dengan substitusi maju, kita dapat mencari y y y 2 = y y 1 = 2, y 2 = 20 ( 0.5)( 2) = 19, y 3 = 7 (0.25)( 2) ( 0.5)(19) = 17 Langkah berikutnya yaitu mencari x, x 1 x 2 x 3 Dengan substitusi mundur, kita dapat mencari x, x 3 = 17/8.5 = 2, x 2 = (2) 2.5 = = 4, x 1 = (2) 3( 4) 4 = 3. K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
18 Mencari faktorisasi A = LU A = K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
19 Mencari faktorisasi A = LU A = = K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
20 Mencari faktorisasi A = LU A = A = = K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
21 Mencari faktorisasi A = LU A = A = A = = K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
22 FYI: For your information Proses mengubah matriks A menjadi matriks segitiga atas dan proses mencari faktorisasi matriks A = LU adalah proses yang sama, yaitu eliminasi Gauss atau operasi baris elementer (OBE). K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
23 FYI: For your information Proses mengubah matriks A menjadi matriks segitiga atas dan proses mencari faktorisasi matriks A = LU adalah proses yang sama, yaitu eliminasi Gauss atau operasi baris elementer (OBE). Metoda faktorisasi berguna jika ada lebih dari satu SPL yang harus diselesaikan dimana matriks A tetap dan vektor b yang berubah-ubah, sehingga OBE/ eliminasi Gauss tidak perlu dilakukan terus. K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
24 FYI: For your information Proses mengubah matriks A menjadi matriks segitiga atas dan proses mencari faktorisasi matriks A = LU adalah proses yang sama, yaitu eliminasi Gauss atau operasi baris elementer (OBE). Metoda faktorisasi berguna jika ada lebih dari satu SPL yang harus diselesaikan dimana matriks A tetap dan vektor b yang berubah-ubah, sehingga OBE/ eliminasi Gauss tidak perlu dilakukan terus. Tetapi, jika hanya ada satu SPL yang harus diselesaikan, kedua metoda tersebut adalah sama, kecuali dimana faktorisasi LU akan terus menyimpan data-data eliminasi Gauss. K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
25 Tugas, dikumpulkan saat UAS 1 Carilah faktorisasi LU dari matriks-matriks berikut ini: (a) (b) Carilah faktorisasi LU dari matriks A dibawah ini, dan gunakan faktorisasi tersebut untuk menyelesaikan SPL Ax = b jika diketahui (a) b = (8, 4, 10, 4) dan (b) b = (28, 13, 23, 4). A = Tidak semua matriks dapat berhasil untuk difaktorisasi. Salah satu metoda agar suatu matriks dapat difaktorisasi adalah dengan mengalikan suatu matriks permutasi. Buatlah algoritma seperti yang telah diberikan di kuliah ini dengan melibatkan matriks permutasi. K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, / 9
6 Sistem Persamaan Linear
6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier
BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear
BAB 4 Sistem Persamaan Linear berbentuk Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear Dengan koefisien dan adalah bilangan-bilangan yang diberikan. Sistem ini disebut
BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk
BAB 1 PENDAHULUAN 1.1 Latar belakang Sebagian besar dari sejarah ilmu pengetahuan alam adalah catatan dari usaha manusia secara kontinu untuk merumuskan konsep-konsep yang dapat menguraikan permasalahan
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier
SOLUSI SISTEM PERSAMAAN LINEAR
SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,
SISTEM PERSAMAAN LINEAR
Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan
Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT
Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui
Sistem Persamaan Linier FTI-UY
BAB V Sistem Persamaan Linier Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear
Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor.
Syarif Abdullah (G551150381) Matematika Terapan FMIPA Institut Pertanian Bogor e-mail: [email protected] 25 Maret 2016 Ringkasan Kuliah ke-6 Analisis Numerik (16 Maret 2016) Materi : System
Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:
SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau
Pertemuan 14. persamaan linier NON HOMOGEN
Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat
5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.
1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y
PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR
PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR Achmad Dimas Noorcahyo NIM 3508076 Program Studi Teknik Informatika, Institut Teknologi Bandung Jalan Ganeca 0, Bandung
Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK
Bentuk umum : dimana x, x,..., x n variabel tak diketahui, a ij, b i, i =,,..., m; j =,,..., n bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel. SPL Mempunyai penyelesaian disebut KONSISTEN
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL
02-Pemecahan Persamaan Linier (1)
-Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:
Solusi Persamaan Linier Simultan
Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem
Metode Matriks Balikan
Metode Matriks Balikan MisalkanA -1 adalahmatriksbalikandaria. Sistempersamaan lanjar Ax = b dapat diselesaikan sebagai berikut: Ax= b A -1 Ax= A -1 b I x= A -1 b (A -1 A = I ) x= A -1 b Cara penyelesaiandenganmengalikanmatriksa
Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :
Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi
Part II SPL Homogen Matriks
Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a
SATUAN ACARA PERKULIAHAN
1 SATUAN ACARA PERKULIAHAN Mata Kuliah : Aljabar Linear Kode Mata Kuliah : Bobot Kuliah/Praktek : 3 SKS Semester : II (Dua) Tujuan Instruksional Umum : memahami konsep-konsep dan tranformasi linier, dan
dimana a 1, a 2,, a n dan b adalah konstantakonstanta
Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Suatu matriks A C m n dikatakan memiliki faktorisasi LU jika matriks tersebut dapat dinyatakan sebagai A = LU dengan L C m m matriks invertibel segitiga bawah
Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi
Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi Elvina Riama K. Situmorang 55) Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
Sistem Persamaan Linear Homogen 3P x 3V Metode OBE
Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Ogin Sugianto [email protected] penma2b.wordpress.com Majalengka, 12 November 2016 Sistem Persamaan Linear (SPL) Homogen yang akan dibahas kali
Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift
Jurnal Penelitian Sains Volume 14 Nomer 1(A) 14103 Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Yuli Andriani Jurusan Matematika FMIPA,
Part III DETERMINAN. Oleh: Yeni Susanti
Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)
BAB 4 : SISTEM PERSAMAAN LINIER
BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x
SISTEM PERSAMAAN LINEAR ( BAGIAN II )
SISTEM PERSAMAAN LINEAR ( BAGIAN II ) D. FAKTORISASI MATRIKS D2 2. METODE ITERASI UNTUK MENYELESAIKAN SPL D3 3. NILAI EIGEN DAN VEKTOR EIGEN D4 4. POWER METHOD Beserta contoh soal untuk setiap subbab 2
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi
Adri Priadana. ilkomadri.com
Adri Priadana ilkomadri.com Pengertian Sistem Persamaan Linier Persamaan linier adalah suatu persamaan dengan bentuk umum a 1 x 1 + a 2 x 2 + + a n x n = b yang tidak melibatkan hasil kali, akar, pangkat
a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE
a11 a12 x1 b1 a a x b 21 22 2 2 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Untuk DIPERHATIKAN! a A c Untuk mencari Matriks INVERS ordo 2, rumus: 1 1 d b A a d b c c a b
COURSE NOTE : Sistem Persamaan Liniear
COURSE NOTE : Sistem Persamaan Liniear PERSAMAAN LINIEAR Secara umum kita mendefinisikan persamaan liniear dalam n variale x 1 x x n seagai erikut : dengan a1 a... an adalah konstanta real. a1x 1 ax ax...
Pertemuan 1 Sistem Persamaan Linier dan Matriks
Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan
SATUAN ACARA PERKULIAHAN (SAP)
SATUAN ACARA PERKULIAHAN (SAP) Nama matakuliah : Aljabar Linier Kode matakuliah : MKK 315 Dosen Pengampu : Ega Gradini, M.Sc Diberikan pada : Semester 3 Jumlah sks : 2 SKS Jenis sks Alokasi Waktu Prasyarat
PERSAMAAN & PERTIDAKSAMAAN
PERSAMAAN & PERTIDAKSAMAAN PERTEMUAN III Nur Edy, PhD. Tujuan Mengaplikasikan konsep persamaan dan pertidaksamaan Pokok Bahasan: Persamaan (Minggu 3 dan 4) Pertidaksamaan (Minggu 3 dan 4) Harga mutlak
S I L A B U S. Kode Mata Kuliah : SKS : 3. Dosen Pembimbing : M. Soenarto
081316373780 S I L A B U S Mata Kuliah : ALJABAR LINIER Kode Mata Kuliah : SKS : 3 Prasyarat : MATEMAA DASAR Dosen Pembimbing : M. Soenarto Prodi / Jenjang : MATEMAA / S1 Buku Sumber : Singapore : Mc-Graw-
SISTEM PERSAMAAN LINIER
SISTEM PESAMAAN LINIE PESAMAAN LINIE Sebuah garis dalam bidang dan y secara umum dapat ditulis dalam bentuk a + a y = b Secara lebih umum didefinisikan sebuah persamaan linier dengan n buah variabel a
Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ)
Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) OBE dan
ALJABAR LINEAR [LATIHAN!]
Pada dasarnya cara yang digunakan untuk memperoleh penyelesaian sistem persamaan linear adalah sama yaitu mengubah sistem persamaan linear menjadi matriks yang diperbesar, kemudian mengubah matriks yang
BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu
BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang
Aljabar Linier Elementer. Kuliah 7
Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan
uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR
PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Tacbir Hendro Pudjiantoro A B S T R A K Salah satu
MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI
214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar
Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung
Course of Calculus MATRIKS Oleh : Hanung N. Prasetyo Information system Departement Telkom Politechnic Bandung Matriks dan vektor merupakan pengembangan dari sistem persamaan Linier. Matriks dapat digunakan
BAB X SISTEM PERSAMAAN LINIER
BAB X SISTEM PERSAMAAN LINIER 10.1 Definisi Persamaan linier adalah persamaan aljabar yang terdiri dari satu atau lebih peubah dan masing-masing peubah mempunyai derajad satu. Sebagai contoh persamaan
ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR
Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 313 322. ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM
ALJABAR LINIER. Kelas B JUMAT Ruang i.iii.3. Kelas A JUMAT Ruang i.iii.3
ALJABAR LINIER ALJABAR LINIER Kelas B JUMAT 08.00 Ruang i.iii.3 Kelas A JUMAT 09.45 Ruang i.iii.3 Referensi Utama: Elementary Linear Algebra Howard Anton Chris Rores John Wiley, ninth edition Chapter 1
ELIMINASI GAUSS MAKALAH. Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom. Di Susun Oleh: Kelompok VII Matematika C/VII
ELIMINASI GAUSS MAKALAH Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom Di Susun Oleh: Kelompok VII Matematika C/VII Anggota : 1. Eko Kurniawan P. (59451064) 2. Siti Nurhairiyah
MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR
MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR KOMPETENSI: 1. Memahami penggunaan faktorisasi LU dalam penyelesaian persamaan linear.. Memahami penggunaan partisi matrik dalam penyelesaian persamaan
SILABUS MATAKULIAH. : Mahasiswa menyelesaikan permasalahan matematika yang bersifat numerik.
SILABUS MATAKULIAH Matakuliah Jurusan : Metode Numerik : Matematika Deskripsi Matakuliah :Metode Numerik membahas permasalahan matematika yang bersifat numerik. Penyelesaian persamaan khususnya non liner,
ALJABAR LINIER DAN MATRIKS
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya
SISTEM PERSAMAAN LINEAR
SISTEM PERSAMAAN LINEAR Persamaan Linear Pengertian Persamaan linear adalah persamaan yang mempunyai bentuk umum sebagai berikut. + + + Di mana:,,,, dan adalah konstanta-konstanta riil.,,,, adalah bilangan
Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut:
Bagian 5. RUANG VEKTOR 5.1 Lapangan (Field) Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: 1. dan 2., 3.,
LU DECOMPOSITION (FAKTORISASI MATRIK)
LU DECOMPOSITION (FAKTORISASI MATRIK) Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: [email protected] atau [email protected] 5 Februari 2005 Pada semua catatan
Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa
Bab 7 Sistem Pesamaan Linier Oleh : Devie Rosa Anamisa Pendahuluan Bentuk umum dari aljabar linier sebagai berikut: a11x1 + a12a 12X2 +... + a1na 1nXn = b1b a21x1 + a22a 22X2 +... + a2na 2nXn = b2b...............
Sistem-sistem Persamaan (Linear dan Non Linear)
Sistem-sistem Persamaan (Linear dan Non Linear) Pendekatan Menu Restoran Oleh: Drs. Turmudi, M.Ed., M.Sc., Ph.D. 27 Bab 3 Sistem-Sistem Persamaan A. Pengantar Di dalam Aljabar representasi suatu besaran
Pertemuan 13 persamaan linier NON HOMOGEN
Pertemuan 13 persamaan linier NON HOMOGEN 10 Metode CRAMER Aljabar Linier Hastha 2016 10. PERSAMAAN LINIER NONHOMOGEN 10.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara
Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.
i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak
Sistem Persamaan Linier (SPL)
Sistem Persamaan Linier (SPL) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) SPL Agustus 2015 1 / 27 Acknowledgements
ALJABAR VEKTOR MATRIKS. oleh: Yeni Susanti
ALJABAR VEKTOR MATRIKS oleh: Yeni Susanti Materi SPL : Definisi, Solusi, SPL Nonhomogen, SPL Homogen, Matriks Augmented, Bentuk Eselon Baris (Bentuk Eselon baris Tereduksi), Eliminasi Gauss (Eliminasi
Penggunaan Metode Dekomposisi LU Untuk Penentuan Produksi Suatu Industri Dengan Model Ekonomi Leontief
Penggunaan Metode Dekomposisi LU Untuk Penentuan Produksi Suatu Industri Dengan Model Ekonomi Leontief Achmad Dimas Noorcahyo - 13508076 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika
Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Matriks dan Sistem Persamaan Linear
Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Salah satu kajian matematika sekolah menengah yang memiliki banyak aplikasinya dalam menyelesaikan permasalahan yang ada dalam kehidupan
BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Sub bab ini membahas tentang faktorisasi matriks A berorde nxn ke dalam hasil
BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Diagonalisasi Sub bab ini membahas tentang faktorisasi matriks A berorde nn ke dalam hasil kali berbentuk PDP, di mana D adalah matriks diagonal. Jika diperoleh
IMPLEMENTASI METODE DEKOMPOSISI LU PADA REGRESI LINIER BERGANDA
Seminar Nasional Teknologi Informasi & Komunikasi Terapan (Semantik ) ISBN 979-6 - 55 - Semarang, 3 Juni IMPLEMENTASI METODE DEKOMPOSISI LU PADA REGRESI LINIER BERGANDA Yuniarsi Rahayu Fakultas Ilmu Komputer
PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI DOOLITTLE
Jurnal Sains, Teknologi Industri, Vol. 11, No. 2, Juni 2014, pp. 166-174 ISSN 1693-2390 print/issn 2407-0939 online PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI DOOLITTLE
MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU)
Jurnal Matematika, Statistika,& Komputasi 1 Vol.... No... 21... MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU) Fachrul Islam 1, Jeffry
Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:
Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri
Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4
Aljabar Linear & Matriks Pert. 4 Evangs Mailoa Sistem Persamaan Linier & Matriks 1. Matriks dan Operasi Matriks 2. Pengantar Sistem Persamaan Linier 3. Eliminasi Gaus 4. Invers: Aturan Aritmatika Matriks
03-Pemecahan Persamaan Linier (2)
-Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Matriks Invers Bagian : Eliminasi = Faktorisasi: A = LU Bagian : Transpos dan Permutasi Anny Bagian MATRIKS INVERS
Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.
MATRIKS Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar
PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT
PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR Merintan Afrina S Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan
Analisis Steady-State pada Sistem Reaktor Menggunakan Solusi Sistem Persamaan Lanjar
Analisis Steady-State pada Sistem Reaktor Menggunakan Solusi Sistem Persamaan Lanjar Ghoziyah Haitan Rachman (23515074) Program Studi Magister Informatika Institut Teknologi Bandung Bandung, Indonesia
Matematika Teknik INVERS MATRIKS
INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien
Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)
Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,
JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA
CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER
Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss
Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss Tri Hastuti Yuniati (23515009) 1 Program Studi Magister Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR
BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,
Aljabar Matriks. Aljabar Matriks
Aljabar Matriks No No Unit Unit Kompetensi 1 Menerapkan keamanan web dinamis 2 Membuat halaman web dinamis dasar 3 Membuat halaman web dinamis lanjut 4 Menerapkan web hosting 5 Menerapkan konten web memenuhi
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN 1.1 Latar Belakang Matriks merupakan istilah yang digunakan untuk menunjukkan jajaran persegi panjang dari bilangan-bilangan dan setiap matriks akan mempunyai baris dan kolom. Salah satu
04-Ruang Vektor dan Subruang
04-Ruang Vektor dan Subruang Vektor (1) Dosen: Anny Yuniarti, M.Comp.Sc Gasal 2011-2012 Anny2011 1 Agenda Bagian 1: Ruang Vektor Bagian 2: Nullspace of A: Solusi Ax = 0 Bagian 3: Rank dan Row-reduced-form
MATRIKS Matematika Industri I
MATRIKS TIP FTP UB Mas ud Effendi Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu
SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks
JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN MATEMATIKA MINGGU KE SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304 POKOK & SUB POKOK TUJUAN INSTRUKSIONAL TUJUAN INSTRUKSIONAL KHUSUS
BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau
BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah
PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW
PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Polinomial real berderajat n 0 adalah fungsi yang mempunyai bentuk p n (x) = n a i x i = a 0 x 0 + a
Solusi Numerik Sistem Persamaan Linear
Solusi Numerik Sistem Persamaan Linear Modul #2 Praktikum AS2205 Astronomi Komputasi Oleh Dr. Muhamad Irfan Hakim Program Studi Astronomi Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi
II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3
11 II. M A T R I K S Untuk mencari pemecahan sistem persamaan linier dapat digunakan beberapa cara. Salah satu yang paling mudah adalah dengan menggunakan matriks. Dalam matematika istilah matriks digunakan
BAB 1 PENDAHULUAN. hal, persamaan ini timbul langsung dari perumusan mula dari persoalannya, didalam hal
BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan Simultan timbul hampir disetiap cabang matematik, dalam beberapa hal, persamaan ini timbul langsung dari perumusan mula dari persoalannya, didalam hal lain
4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN
4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)
PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU),
PENDAHULUAN A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa.
SISTEM PERSAMAAN LINEAR
SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks
Sistem PERSAMAAN dan PERTIDAKSAMAAN linier
Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax
Aljabar Linier & Matriks. Tatap Muka 2
Aljabar Linier & Matriks Tatap Muka 2 Matriks Matriks adalah susunan segi empat siku siku dari bilangan yang dibatasi dengan tanda kurung siku. Suatu matriks tersusun atas baris dan kolom, jika matriks
a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA.
a11 a12 x1 b1 a a x b 21 22 2 2 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 a11 a12 x1 b1 a a x b 21 22 2 2 Setijo Bismo
Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam
Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah
3 Langkah Determinan Matriks 3x3 Metode OBE
3 Langkah Determinan Matriks 3x3 Metode OBE Ogin Sugianto [email protected] penma2b.wordpress.com Majalengka, 10 Oktober 2016 Selain metode Sarrus dan Minor-Kofaktor, ada satu metode lain yang dapat
Lampiran 1 Pembuktian Teorema 2.3
LAMPIRAN 16 Lampiran 1 Pembuktian Teorema 2.3 Sebelum membuktikan Teorema 2.3, terlebih dahulu diberikan beberapa definisi yang berhubungan dengan pembuktian Teorema 2.3. Definisi 1 (Matriks Eselon Baris)
