MODUL 3 BIDANG RATA. [Program Studi Pendidikan Matematika STKIP PGRI Sumatera Barat]

Ukuran: px
Mulai penontonan dengan halaman:

Download "MODUL 3 BIDANG RATA. [Program Studi Pendidikan Matematika STKIP PGRI Sumatera Barat]"

Transkripsi

1 1 MODUL 3 BIDANG RATA Setelah mempelajari modul 1 dan 2 anda akan melanjutkan mempelajari modul 3 tentang bidang rata. Materi bidang rata ini berkaitan dengan materi pada modul sebelumnya. Pada modul 3 ini terdiri atas 2 kegiatan belajar. Tujuan dari kedua kegiatan belajar ini adalah anda akan menentukan persamaan bidang rata dan sudut antara dua bidang rata, dan menghitung jarak titik dan garis ke bidang dan dua bidang.

2 2 KEGIATAN BELAJAR 5 PERSAMAAN BIDANG RATA Setelah mempelajari kegiatan belajar 5 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan vektoris bidang rata 2. Menentukan persamaan linier bidang rata 3. Vektor normal dari bidang rata +++=0 4. Persamaan normal bidang rata Suatu bidang rata akan tertentu bila diketahui tiga buah titik (yang tidak segaris) yang terletak pada bidang rata tersebut. Misalkan diketahui tiga buah titik pada bidang rata V. Untuk menentukan Persamaan Vektoris Bidang Rata V, Persamaan Linear Bidang Rata, Vektor Normal dari Bidang Rata ++ +=0 dan Persamaan Normal Bidang Rata, maka lakukanlah kegiatankegiatan berikut ini. Kegiatan 5.1. Persamaan Vektoris Bidang Rata V Untuk menentukan persamaan vektoris bidang rata, pahami dan lakukan langkah-langkah berikut. 1. Misalkan diketahui tiga buah titik pada bidang rata yaitu titik,,,,, dan,,. 2. Ambil sebarang titik,, yang berada pada bidang rata V, berarti titik,,. 3. Perhatikan Gambar 5.1 di bawah ini.

3 3 4. Tentukan panjang,,,. 5. Untuk setiap titik sebarang,, pada bidang rata maka berlaku = + dimana dan merupakan parameter bidang rata dengan dan. 6. Terlihat jelas pada Gambar 5.1 bahwa = + 7. Apa kesimpulan yang dapat anda peroleh berdasarkan langkah 6 tersebut. Berdasarkan kegiatan 5.1 di atas, jika kita menemukan panjang =,,, =,,, =,, dan =,,. Pada langkah 6 kita menemukan suatu persamaan = +, jika disubsitusikan persamaan = + ke dalam persamaan = + + sehingga diperoleh suatu persamaan vektoris bidang rata yang melalui tiga buah titik adalah,,=,, +,, (1) +,, Kedua vektor dan di sebut vektor-vektor arah bidang ( setiap dua vektor yang tidak segaris pada bidang merupakan vektor-vektor arah bidang tersebut). Secara umum: Jika =,, dan =,, adalah vektor-vektor arah bidang rata, maka persamaan bidang rata melalui titik,, adalah:,,=,, + +,,=,, +,, +,, Dengan + dan + (2)

4 4 Berdasarkan persamaan (2) diperoleh suatu persamaan parameter bidang rata adalah = + + = + + = + + Kegiatan 5.2. Persamaan Linier Bidang Rata Untuk menentukan persamaan linier bidang rata, lakukan langkah-langkah berikut. 1. Eliminasikan nilai dan nilai dari persamaan (3) dan persamaan (4) yang telah kita temukan pada kegiatan Setelah di eliminasi nilai dan nilai, kita akan memperoleh nilai = = 3. Kemudian nilai dan nilai pada langkah 1, kita subsitusikan ke persamaan (5). 4. Dari prosedur di atas kita akan mendapatkan nilai dan nilai serta nilai. 5. Apa yang dapat anda simpulkan dari prosedur tersebut. (3) (4) (5) Berdasarkan kegiatan 5.2 di atas, jika kita mengeliminasikan persamaan (3) dan (4) diperoleh: = = dimana 0 = Kita subsitusikan nilai dan ke persamaan (5) diperoleh: + + = = { }=0 + =0 + +{ } =0 + +{ } =0 = =

5 5 = = = = Sehingga dapat kita peroleh suatu persamaan bidang rata yang melalui titik,, adalah + + = (6) Persamaan (6) di atas dapat kita tulis menjadi: + + =0 ++ =0 =, dimana = konstanta Sehingga diperolehlah suatu persamaan linier (umum) dari suatu bidang rata adalah +++= (7) Kegiatan 5.3 Vektor Normal Bidang Rata Kita sudah menemukan persamaan umum bidang rata adalah +++= Untuk membuktikan kebenaran bahwa persamaan tersebut merupakan persamaan bidang rata, maka perhatikan langkah-langkah berikut: 1. kita tentukan sebarang titik, misalkan titiknya,, yang terletak pada bidang tersebut. Sehingga diperoleh bahwa +++=0, maka =. 2. Subsitusikan nilai ke persamaan umum bidang rata yaitu: +++= = 0 3. Perhatikan bahwa + + = 0 Jika hanya jika = 0 Hal ini berarti bahwa ++ merupakan suatu vektor yang sudah tertentu besar dan arahnya, sedangkan ++ adalah vektor yang berpangkal pada,, dan selalu tegak lurus vektor ++ serta berubah arah tergantung posisi,,. 4. Jadi dapat disimpulkan bahwa,, adalah koordinat titik-titik yang terletak pada bidang yang melalui titik,, dan tegak lurus ++, yang selanjutnya disebut dengan normal bidang rata yang disimbolkan dengan.

6 6 Perhatikan Gambar 5.2 di bawah ini. Gambar 5.2 Kesimpulan yang dapat kita peroleh dari proses di atas adalah jika sebuah bidang rata melalui,, dan mempunyai normal ++ maka persamaan bidang rata tersebut adalah + + = 5. Terbukti bahwa persamaan umum bidang rata adalah +++= dengan vektor normalnya adalah =,, Masalah 5.1 Tentukan persamaan linier bidang rata yang melalui titik 3,2,1,4,1,5 dan 2,4,3! Penyelesaian Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda. Pertama kita cari persamaan vektoris bidang rata yaitu:,,=,, +,, +,,,,= 3,2,1+1,1,5+1,2,2 Persamaan linier bidang rata adalah +++=0 = = = 1 5 = 210= = = = 5 1 = 52= = = = 1 1 = 21=1 1 2 =

7 7 = = = 23 Jadi, persamaan linier bidang rata adalah =0 atau =0. Kedudukan Istimewa Hal-hal khusus dari bidang rata +++=0. 1. Bila =0 maka bidang rata ++=0 maka bidang rata tersebut melalui pusat koordinat 0,0,0. Atau setiap bidang rata + ++=0 yang melalui titik 0,0,0 akan berbentuk ++ =0. Masalah 5.2 Untuk Bidang Rata +++=0 yang melalui titik 2,3,1, 1,2,1 dan 0,0,0. Lukislah persamaan bidang rata tersebut kedalam sistem koordinat kartesius. Penyelesaian: Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda. Untuk menyelesaikan permasalahan di atas, perhatikan langkah-langkah sebagai berikut. (1) Pertama kita cari dulu persaman bidang rata yang melalui tiga titik tersebut dengan menggunakan persamaan 7 sehingga diperoleh persamaan bidang ratanya adalah 53=0. (2) Kemudian kita buat gambar garis di bidang, seperti yang terlihat pada gambar di bawah ini. Gambar 5.3. Persamaan Garis lurus di Bidang

8 8 (3) Setelah kita melukis garis lurus di bidang baru kita memindahkan ke tiga garis tersebut ke ruang, seperti yang terlihat pada gambar 5.4. Gambar 5.4. Bidang Rata yang melalui titik asal 2. Apabila 0 persamaan +++=0 dapat ditulis menjadi + + =1 + + =1 Misalkan =,= dan =, sehingga didapat sebuah persamaan yaitu: + + =1 Yang mana memotong sumbu di,0,0, sumbu di 0,,0, sumbu di 0,0,. Masalah 5.3 Gambarkanlah Bidang rata =0. Penyelesaian Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda. Secara grafis bidang dapat disajikan yaitu dengan memotongkan bidang tersebut dengan sumbu-sumbu koordinat, setiap dipotongkan dengan sebarang sumbu dianggap sumbu yang lain sama dengan nol (0). a. Titik potong dengan sumbu, jika ==0 adalah 3=12 maka =4 Berarti titiknya 4,0,0 b. Titik potong dengan sumbu, jika ==0 adalah 4=12 maka =3

9 9 Berarti titiknya 0,3,0 c. Titik potong dengan sumbu, jika ==0 dalah 2=12 maka =6 Berarti titiknya 0,0,6 Sehingga Gambar bidang rata tersebut adalah: Gambar 5.5. Gambar Bidang Rata jika 3. Apabila =0 berarti bidang rata +=0 sejajar dengan sumbu. Hal itu dapat dilihat pada Gambar 5.6. Gambar 5.6. Bidang Rata sejajar dengan sumbu Apabila =0, berarti bidang rata ++=0 sejajar dengan sumbu. Hal itu dapat dilihat pada Gambar 5.7.

10 10 Gambar 5.7. Bidang Rata sejajar dengan sumbu Apabila =0, berarti bidang rata ++=0 sejajar dengan sumbu. Hal itu dapat di lihat pada Gambar 5.8. Gambar 5.8. Bidang Rata sejajar dengan sumbu 4. Apabila ==0, berarti bidang rata +=0 sejajar dengan bidang. Hal itu dapat dilihat pada Gambar 5.9. Gambar 5.9. Bidang Rata sejajar dengan Bidang

11 11 Apabila ==0, berarti bidang rata +=0 sejajar dengan bidang. Hal itu dapat dilihat pada Gambar Gambar Bidang Rata sejajar dengan Bidang Apabila = =0, berarti bidang rata +=0 sejajar dengan bidang. Hal itu dapat dilihat pada Gambar Gambar Bidang Rata sejajar dengan bidang Berdasarkan persamaan (6) yang telah di peroleh kita dapat menentukan persamaan bidang rata yang melalui titik,,. Untuk menentukan persamaan bidang rata yang melalui titik,,, perhatikan langkahlangkah di bawah ini: 1. Buatlah persamaan bidang rata yang melalui titik,, yaitu: + + = dengan = = = =

12 12 = = + + =0,,.,, =0.,,=0. =0 2. Dengan adalah vektor posisi pada sebarang titik,, di =0 diperoleh,. =0 dengan =..,,,, =0,,.,,,, =0 =0 3. Sehingga dapat di simpulkan bahwa persamaan bidang rata secara determinan yang melalui titik,, dan vektor arahnya =,, dan =,, adalah = (10) 4. Dari persamaan di atas kita juga bisa menentukan persamaan bidang rata yang melalui tiga titik yaitu: Jika =,, =,, dan =,, =,, maka =0 secara determinan di peroleh suatu persamaan: = 5. Sehingga dapat disimpulkan Persamaan Bidang Rata =0 yang melalui tiga titik yaitu,,,,, dan,, adalah: = (11) Sedangkan Jika empat buah titik,,,,,,,, dan,, akan sebidang (rata) jika dan hanya jika = (12) Selanjutnya, perhatikan dan pahamilah masalah 5.4 berikut ini.

13 13 Masalah 5.4 a. Tentukan persamaan =0 melalui titik 1,1,2, 2,4,5, dan 1,2,1 b. Selidiki apakah titik 0,0,0 terletak pada bidang rata tersebut. Penyelesaian Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda. a. Untuk menentukan persamaan bidang rata =0 yang melalui tiga titik, kita menggunakan persamaan (11) yaitu: = = = = = =0 Jadi, persamaan bidang rata 65+39=0 b. Untuk menyelidiki apakah titik (0, 0, 0) terletak pada bidang rata tersebut atau tidak, dengan cara mensubsitusikan titik tersebut kedalam bidang rata 65+39=0 sehingga di peroleh suatu kesimpulan bahwa titik 0,0,0 tidak berada pada bidang rata tersebut. kegiatan 5.4. Persamaan Normal Bidang Rata Untuk menentukan persamaan normal bidang rata, pahami langkahlangkah berikut ini. 1. Misalkan vektor normal bidang rata +++=0 adalah =,,. Sudut antara vektor normal dengan sumbu-sumbu koordinat (yang arahnya ditentukan dengan vektor, dan ) adalah, dan, sedangkan cos, cos dan cos disebut dengan cosinus-cosinus arah dari, seperti yang terlihat pada Gambar 5.12 di bawah ini.

14 14 Gambar sudut-sudut pada bidang rata 2. Berdasarkan Gambar 5.12 di atas, dapat terlihat jelas bahwa: cos=. =, karena = 1,0,0 dan =1 cos=. =, karena =0,1,0 dan =1 cos γ=. =, karena =0,0,1 dan =1 + + = + + = (13) Maka vektor cos,cos,cos adalah satuan searah. Persamaan (13) = dapat juga kita namakan dengan vektor normal yang panjangnya satu. 3. Misalkan adalah jarak dari titik 0,0,0 ke bidang rata, sedangkan,, adalah sudut-sudut arah yang tegak lurus terhadap bidang rata. Seperti yang terlihat pada Gambar Gambar Titik ke bidang rata

15 15 Kita ambil = cos,cos,cos yang panjangnya = + + =1, sebagai vektor normal satuan dari bidang rata. 4. Perhatikan =,,. Proyeksi pada adalah. =,,.cos,cos,cos = cos+cos+cos = (harus positif atau >0). Sehingga diperoleh suatu Persamaan Normal HESSE dari duatu Bidang Rata adalah ++= Catatan : Bila bidang rata melalui 0,0,0 maka =0 Dapat disimpulkan bahwa persamaan normal bidang rata adalah ++= (14) 5. Untuk mengubah persamaan umum Bidang Rata +++=0 ke bentuk normal adalah sebagai berikut: Hubungan antara bilangan arah,, dan cosinus arah adalah: cos =cos = = misalkan= Sehingga diperoleh suatu persamaan: cos=,cos=,cos= dan = sedangkan + + = + + =1 maka di peroleh nilai, 1 = cos= cos= ± + +, ± + +, ± + + cos= dan = ± + + ± + + Tanda ± dipilih salah satu sehingga nilai bertanda positif. Masalah 5.5 Carilah persamaan normal dari bidang rata =0. Penyelesaian Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda. Persamaan normal bidang rata adalah cos+cos+cos=. Pertama kita cari dulu nilai dari masing-masing persamaan di atas, yaitu: 9 9 = ± = 5 1 cos= 5, cos= 2 5, cos= 2 5 Jadi, diperoleh persamaan normal bidang rata adalah

16 16 Rangkuman = Persamaan umum Bidang Rata adalah +++= 2. Persamaan bidang Rata yang melalui titik,, adalah + + = 3. Persamaan Bidang Rata secara determinan yang melalui titik,, dan vektor arahnya =,, dan =,, adalah = 4. Persamaan Bidang Rata =0 yang melalui tiga titik yaitu,,,,, dan,, adalah: = 5. Empat buah titik,,,,,,,, dan,, akan sebidang (rata) jika dan hanya jika = 6. Bentuk normal bidang rata adalah =,, 7. Persamaan normal bidang rata adalah ++=

17 17 KEGIATAN BELAJAR 6 SUDUT DAN JARAK ANTARA DUA BIDANG RATA Setelah mempelajari kegiatan belajar 6 ini, mahasiswa diharapkan mampu: 1. Menentukan sudut antara dua bidang rata 2. Menentukan jarak sebuah titik dan sebuah bidang rata dan jarak antara dua bidang rata yang sejajar 3. Menentukan persamaan garis lurus dari perpotongan dua buah bidang rata 4. Menentukan persamaan berkas bidang rata dan jaringan bidang rata. Sebelumnya kita sudah mempelajari bentuk normal bidang rata dan persamaan normal bidang rata. Sekarang kita akan membahas sudut antara dua bidang rata, dan kedudukan dua bidang rata, jarak sebuah titik ke bidang rata dan jarak antara dua bidang rata yang sejajar, garis lurus dari perpotongan dua buah bidang rata dan persamaan berkas bidang rata serta jaringan bidang rata. Untuk memahami materi tersebut perhatikan dan lakukanlah kegiatankegiatan di bawah ini. Kegiatan 6.1. Sudut antara dua bidang rata Sudut antara dua bidang rata adalah sudut antara vektor-vektor normalnya. Misalkan bidang-bidang =0 dan =0, maka vektor normalnya adalah =,, dan =,,. Sudut antara =. = (15)

18 18 Masalah 6.1 Tentukan sudut antara bidang =0 dan +2+5=0. Penyelesaian Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda. Untuk menyelesaikan permasalahan di atas, pertama sekali kita tentukan vektor normal bidang rata. Misalkan =0 maka =2,2,2 dan +++5=0 maka =1,1,1. Sudut antara dua bidang tersebut adalah. cos= = ,2,21,1,1 cos= = cos= 1 = 0 Jadi, dapat disimpulkan bahwa sudut antara dua buah bidang tersebut adalah 0. Pada sub pokok bahasan ini, juga membahas mengenai Kedudukan Dua Buah Bidang Rata. Misalkan =0 dan =0, maka vektor normalnya adalah =,, dan =,,. 1) Bila sejajar dengan maka vektor normal sama (atau kelipatan) dengan vektor normal. Berarati = maka,, =,, dimana 0 (16) Atau dapat juga di tulis: = = =, =, Masalah 6.2 = Tentukan persamaan bidang rata yang melalui titik 1,2,3 dan sejajar dengan bidang rata 3+2=0. Penyelesaian Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda.

19 19 Untuk menyelesaikan permasalahan di atas, kita dapat menggunakan persamaan (6) yaitu + + =0. Kita misalkan bidang rata + + =0..(1) Maka vektor normal bidang rata tersebut adalah =,,. Dan 3+2=0 maka vektor normal = 1,3,2. Subsitusikan titik 1,2,3 kepersamaan (1) sehingga diperoleh, =0 Karena // maka,,=,,, berarti,,=1,3,2 Sehingga diperoleh suatu persamaan bidang rata dengan mensubtitusikan nilai parameter bidang rata yaitu =1,=3 dan =2 yaitu = = =0 Dapat disimpulkan, persamaan bidang rata yang melalui titik 1,2,3 dan sejajar dengan bidang rata 3+2=0 adalah 3+213=0. Selain cara di atas Anda juga bisa mencoba mencari persamaan bidang rata dengan menggunakan persamaan bidang rata yang lain yaitu ++ +=0, dengan cara mensubtitusikan titik tersebut kedalam persamaan bidang rata tersebut sehingga diperoleh nilai. 2) Apabila berlaku =, =, = dan = maka bidang rata = berimpit. 3) Bila tegak lurus dengan maka vektor normalnya akan saling tegak lurus. Berarti atau. = sehingga diperoleh suatu persamaan + + = (17) Masalah 6.3 Tentukan persamaan bidang rata yang melalui titik 2,1,2 dan 0,0,0 serta tegak lurus terhadap bidang 2++2=0. Penyelesaian Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda. Untuk menyelesaikan permasalahan di atas, pertama sekali kita misalkan persamaan bidang rata +++=0.. (1) dengan vektor normalnya =,, dan 2++2=0 dengan vektor normalnya =2,1,1. Langkah berikutnya kita subtitusikan kedua titik yang melalui

20 20 bidang rata tersebut ke dalam persamaan bidang rata +++=0 sehingga diperoleh suatu persamaan: 2++2+=0..(2) =0..(3) Karena =0 maka persamaan (2) menjadi 2++2 =0..(4) Pada permasalahan di atas, menyatakan bahwa bidang rata tegak lurus dengan bidang rata, berarti vektor normal sehingga. =0.,,. 2,1,1=0 2+=0.. (5) Langkah selanjutnya, kita eliminasi persamaan (4) dan (5) di peroleh nilai = dan =2. Setelah itu, subtitusikan nilai =, =2 dan =0 ke persamaan (1) diperoleh suatu persamaan bidang rata +2= 0. Jadi, persamaan bidang rata 3+24=0. Kegiatan 6.2. Jarak Sebuah Titik dan Sebuah Bidang Rata dan Jarak Antara Dua Bidang Sejajar Bagaimana menemukan persamaan jarak sebuah titik dan sebuah bidang rata? Serta jarak antara dua bidang sejajar? Untuk memperoleh persamaan jarak antara sebuah titik dan sebuah bidang rata tersebut, perhatikan dan pahami langkah-langkah dibawah ini. 1. Misalkan persamaan bidang rata cos+cos+cos=0, dengan adalah jarak titik 0,0,0 ke bidang rata =0. Ambil sebarang titik,,, dimana =0. 2. Untuk menentukan jarak titik,, ke bidang =0 dengan cara membuat bidang rata =0 melalui titik,, yang sejajar dengan =0. Berarti vektor normal dan sama. Seperti yang terlihat pada Gambar 6.1 di bawah ini.

21 21 Gambar 6.1. Bidang Rata = sejajar dengan = 3. Misalkan adalah jarak bidang rata =0 dengan titik,, maka jarak 0,0,0 ke =0 adalah ± artinya (a) jika,, di antara 0,0,0 di =0 maka jarak 0,0,0 ke =0 adalah, dan (b) jika,, tidak di antara 0,0,0 dan =0 maka jarak 0,0,0 ke =0 adalah Akibat dari pernyataan no. 3 di peroleh suatu persamaan bidang rata cos+cos+cos=±. Karena titik,, pada =0 berarti terpebuhi persamaan cos+ cos+ cos=± Atau ±= cos+ cos+ cos Jadi, jarak sebuah titik,, ke bidang rata cos+cos+ cos=0 adalah = + + (18) 5. Jika +++=0, maka jarak titik,, ke =0 adalah Masalah 6.4 = Hitunglah jarak antara bidang rata =0 dengan titik 7,3,4. Penyelesaian Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda. Untuk menyelesaikan persoalan di atas, dengan menggunakan persamaan (15) yaitu: (19)

22 22 = Subtitusikan nilai,, dan titik ke dalam persamaan tersebut sehingga diperoleh, = = = 28 7 =4 Jadi, jarak titik 7,3,4 ke bidang rata =0 adalah 4. Sedangkan untuk menentukan jarak antara dua bidang rata yang sejajar, maka perhatikan langkah-langkah berikut. 1. Misalkan =0 dan =0 2. Jika bidang rata sejajar dengan bidang rata maka jarak antara =0 dan =0 dapat dihitung dengan cara mencari sebuah titik pada =0, misalkan titiknya adalah 0,0,. Kemudian kita dapat menghitung jarak titik 0,0, ke bidang rata =0. 3. Begitu juga sebaliknya jika kita mencari sebuah titik pada =0 misalkan titiknya adalah,0,0. Kemudian kita dapat menghitung jarak titik,0,0 ke bidang rata =0. 4. Perlu diingat bahwa, jarak titik 0,0, ke bidang rata =0 dan jarak titik,0,0 ke bidang rata =0, akan memiliki jarak yang sama, karena kedua bidang rata tersebut sejajar. Masalah 6.5 Hitung jarak antara bidang rata ++=4 dan bidang rata ++=10. Penyelesaian Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda. Untuk menyelesaikan permasalahan tersebut, pertama sekali kita buktikan apakah kedua bidang rata tersebut sejajar atau tidak? 1. Syarat dari bidang rata // adalah memiliki vektor normal yang sama atau =. Perhatikan vektor normal kedua bidang rata yaitu = 1,1,1 dan =1,1,1, karena = berarti //.

23 23 2. Ambil sebarang titik pada bidang rata yaitu 0,,0. Subtitusikan titik tersebut ke bidang rata sehingga di peroleh nilai =10. Jadi, titik 0,10,0 3. Kemudian carilah jarak titik 0,10,0 ke bidang rata ++=4 dengan menggunakan persamaan (19) yaitu: = Subtitusikan nilai =1,=1, =1,=4, =0, =10 dan =0 ke dalam persamaan yaitu: = = 6 3 =2 3 Jadi, jarak antara bidang rata ++=4 dan bidang rata ++ =10 adalah 2 3. Kegiatan 6.3. Garis Lurus sebagai Perpotongan Dua Bidang Rata Sebelumnya Anda sudah mempelajari kegiatan 3 mengenai persamaan garis lurus di bidang dan di ruang. Sekarang kita akan mempelajari bagaimana mengubah bentuk persamaan garis lurus dari perpotongan dua buah bidang rata ke bentuk umum. Di dalam Ilmu Ukur Analitik Ruang, garis lurus dinyatakan sebagai perpotongan dua buah bidang rata yang tidak sejajar. Kita dapat pula menyatakan suatu garis lurus sebagai perpotongan sebarang dua bidang rata yang melalui garis lurus tersebut. Bagaimana cara mengubah bentuk persamaan garis lurus dari perpotongan dua buah bidang rata ke bentuk umum, perhatikan uraian kegiatan 6.4 di bawah ini. 1. Kita misalkan garis lurus adalah perpotongan dua buah bidang rata =0 dan =0 seperti yang terlihat pada Gambar 6.4 di bawah ini. Gambar 6.4. Garis Lurus sebagai Perpotongan Dua Bidang Rata

24 24 Berdasarkan Gambar 6.4 di atas, maka bentuk persamaan garis lurus dapat di tulis menjadi: = = 2. Untuk menentukan vektor arah dari garis lurus perpotongan dua buah bidang rata, perhatikan Gambar 6.5 berikut: Gambar 6.5. Vektor Normal Bidang Rata 3. Dari Gambar 6.5 di atas, terlihat vektor normal bidang rata adalah =,, dan =,,. Jelas bahwa = merupakan vektor arah dari garis adalah: =,,= = (20) Untuk mempermudah kita menginggat persamaan di atas, dapat di tulis menjadi: 4. Untuk mengubah bentuk persamaan =0= menjadi bentuk persamaan umum garis lurus yaitu: = = Dan menentukan koordinat titik,,. (21)

25 25 5. Untuk menentukan koordinat titik,,, ambil sebarang titik pada garis lurus. Biasanya titik yang diambil adalah titik potong dengan bidang berkoordinat, misalnya pada bidang maka =0, diperoleh persamaan: + + =0 + + =0 6. Untuk mencari nilai dan dari persamaan di atas, dapat diselesaikan dengan menggunakan determinan atau dengan cara eliminasi dan subtitusi. Jika persamaan di atas diselesaikan dengan cara determinan dapat dilakukan dengan cara: = dan Jadi, diperoleh titik,,0. = Masalah 6.6 Persamaan 2+=1 dan 3+5=8 adalah persamaan-persamaan garis lurus yang merupakan perpotongan bidang-bidang 2+=1 dan 3+5=8. Penyelesaian Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda. Untuk menyelesaikan permasalahan tersebut, pertama sekali kita cari vektor arah dari persamaan 2+=1 dan 3+5=8 adalah: Dimana = 2 1 = = =2 = =5 Jadi, vektor arah garis lurus adalah 9,2,5 Sekarang kita cari titik,, dengan cara determinan. Ambil =0 maka diperoleh suatu persamaan 2=1 dan 3= = 1 2 = =3

26 = = =1 Jadi, titik yang melalui garis lurus tersebut merupakan perpotongan ke dua buah bidang rata dan adalah 3,1,0. Sehingga diperoleh persamaan garis lurus adalah,,=3,1,0+9,2,5. Kegiatan 6.4. Berkas Bidang Rata Dan Jaringan Bidang Rata Bagaimana menemukan persamaan berkas bidang rata? Serta persamaan jaringan bidang rata? Untuk memperoleh persamaan berkas bidang rata dan jaringan bidang rata, perhatikan dan pahami langkah-langkah dibawah ini. 1. Misalkan ada 2 buah bidang rata =0 berpotongan dengan =0, maka perpotongannya berbentuk garis lurus seperti yang terlihat pada Gambar 6.6 di bawah ini. Gambar Perpotongan Dua Buah Bidang Rata 2. Setiap titik pada garis potong tersebut akan memenuhi persamaan + =0, dimana dan adalah parameter. Persamaan di atas merupakan himpunan bidang-bidang yang melalui garis potong dan bila 0, sehingga dapat kita tulis menjadi: + =0 + =0 Jadi, persamaan berkas bidang melalui garis potong antara bidang rata =0 dan =0 adalah + = (22)

27 27 Jika bidang rata =0 sejajar dengan bidang rata =0 maka persamaan berkas bidang rata dapat di tulis menjadi: (23) + + = atau + + = Masalah 6.7 Carilah persamaan bidang yang melalui titik 0,0,1 dan melalui garis potong bidang-bidang +=1 dan +2=0. Penyelesaian Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda. Untuk menyelesaikan permasalahan tersebut, pertama sekali kita tentukan persamaan bidang rata dengan menggunakan persamaan (22) yaitu: + = =0.(1) Dari persamaan (1) kita kelompokkan berdasarkan variabelnya (variabel yana sama) seperti =0. Karena bidang rata melalui titik 0,0,1 maka kita substitusikan titik tersebut ke persamaan =0 sehingga diperoleh nilai =1. Setelah di peroleh nilai =1, kita subsitusikan ke persamaan (1) diperoleh persamaan +1=0. Jadi dapat disimpulkan persamaan bidang rata adalah +1=0. Sedangkan untuk memperoleh persamaan jaringan bidang rata perhatikan dan pahami langkah-langkah dibawah ini. 1. Pandang bidang-bidang =0, =0 dan =0 yang tidak melalui satu garis lurus yang sama (bukan dalam satu berkas). Seperti yang terlihat pada Gambar 6.7. Gambar 6.7. Perpotongan 3 buah Bidang Rata

28 28 2. Bentuk + + =0 yang menyatakan kumpulan bidang-bidang yang melalui titik potong ke 3 bidang tersebut. Pada Gambar 6.7 titik potong ke 3 bidang tersebut adalah titik. Dan kumpulan bidang-bidang tersebut disebut dengan jaringan bidang. Masalah 6.8 Tentukan persamaan bidang rata yang sejajar dengan bidang ++ =1 dan melalui titik potong bidang-bidang =3, =4 dan =0. Penyelesaian Diskusikan dengan teman kelompok anda hasil temuan di bawah ini. Coba anda perhatikan dan pahami, serta adakah anda punya temuan lain terhadap masalah tersebut? Jika ada tuliskan dalam lembar kegiatan kelompok anda. Untuk menyelesaikan permasalahan tersebut dengan memisalkan persamaan bidang rata + + =0 subsitusikan ketiga bidang rata tersebut kepersamaan + + =0 sehingga diperoleh suatu persamaan, 3+4+0=0 ++34=0..(1) Karena bidang rata sejajar dengan bidang rata ++=1 maka vektor normal bidang rata sama dengan vektor normal bidang rata yaitu 1,,=1,1,1. Sehingga diperoleh nilai =1 dan =1. Nilai =1 dan =1 tersebut kita substitusikan ke persamaan (1) menjadi ++3 4=0. Jadi dapat disimpulkan persamaan bidang rata adalah ++7= 0. Rangkuman 1. Sudut antara dua buah bidang rata adalah =. = Jarak titik,, ke bidang rata +++=0 adalah = Jika sejajar dengan maka vektor normal = sehingga diperoleh suatu persamaan,, =,, dimana 0 4. Jika tegak lurus dengan maka vektor normal. =0 sehingga diperoleh suatu persamaan,

29 29,,.,, = atau + + = 5. Persamaan berkas bidang rata adalah + = 6. Persamaan jaringan bidang rata adalah + + =

PERSAMAAN BIDANG RATA

PERSAMAAN BIDANG RATA 1 KEGIATAN BELAJAR 5 PERSAMAAN BIDANG RATA Setelah mempelajari kegiatan belajar 5 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan vektoris bidang rata 2. Menentukan persamaan linier bidang rata

Lebih terperinci

SUDUT DAN JARAK ANTARA DUA BIDANG RATA

SUDUT DAN JARAK ANTARA DUA BIDANG RATA 1 KEGIATAN BELAJAR 6 SUDUT DAN JARAK ANTARA DUA BIDANG RATA Setelah mempelajari kegiatan belajar 6 ini, mahasiswa diharapkan mampu: 1. Menentukan sudut antara dua bidang rata 2. Menentukan jarak sebuah

Lebih terperinci

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK 1 KEGIATAN BELAJAR 4 KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK Setelah mempelajari kegiatan belajar 4 ini, mahasiswa diharapkan mampu: 1. Menentukan kedudukan dua garis lurus di bidang dan di ruang 2.

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS 1 KEGIATAN BELAJAR 3 PERSAMAAN GARIS LURUS Setelah mempelajari kegiatan belajar 3 ini, mahasiswa diharapkan mampu: 1. menentukan persamaan gradien garis lurus, 2. menentukan persamaan vektoris dan persamaan

Lebih terperinci

MODUL 2 GARIS LURUS. Mesin Antrian Bank

MODUL 2 GARIS LURUS. Mesin Antrian Bank 1 MODUL 2 GARIS LURUS Gambar 4. 4 Mesin Antrian Bank Persamaan garis lurus sangat berperan penting terhadap kemajuan teknologi sekarang ini. Bagi programmer handal, banyak aplikasi yang membutuhkan persamaan

Lebih terperinci

PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan

PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan PERSAAAN BIDANG RATA DAN VEKTOR NORAL Bila terdapat tiga titik yang tidak kolinear maka ketiga titik itu menentukan sebuah bidang rata. dan. Dan misalkan isalkan ketiga titik itu masing-masing vector-vektor

Lebih terperinci

VII III II VIII HAND OUT PERKULIAHAN GEOMETRI ANALITIK

VII III II VIII HAND OUT PERKULIAHAN GEOMETRI ANALITIK HAND OUT PERKULIAHAN GEOMETRI ANALITIK A. Sistem Koordinat Tegak Lurus Suatu sistem koordinat tegak lurus disebut juga dengan sistem koordinat cartesian. Di dalam ruang, terdapat tiga buah garis lurus

Lebih terperinci

MODUL 4 LINGKARAN DAN BOLA

MODUL 4 LINGKARAN DAN BOLA 1 MODUL 4 LINGKARAN DAN BOLA Sumber: www.google.co.id Gambar 6. 6 Benda berbentuk lingkaran dan bola Dalam kehidupan sehari-hari kita banyak menjumpai benda-benda yang berbentuk bola maupun lingkaran.

Lebih terperinci

Bola dan bidang Rata

Bola dan bidang Rata 1 KEGIATAN BELAJAR 9 Bola dan Bidang Rata Setelah mempelajari kegiatan belajar 9 ini, mahasiswa diharapkan mampu menentukan persamaan bidang singgung bola dan titik kuasa bola. Pernahkah Anda memperhatikan

Lebih terperinci

PERSAMAAN GARIS SINGGUNG PARABOLA

PERSAMAAN GARIS SINGGUNG PARABOLA 1 KEGIATAN BELAJAR 11 PERSAMAAN GARIS SINGGUNG PARABOLA Setelah mempelajari kegiatan belajar 11 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Parabola, Titik dan Garis Polar Pada

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,

Lebih terperinci

A. PERSAMAAN GARIS LURUS

A. PERSAMAAN GARIS LURUS A. PERSAMAAN GARIS LURUS Persamaan garis lurus adalah hubungan nilai x dan nilai y yang terletak pada garis lurus serta dapat di tulis px + qy = r dengan p, q, r bilangan real dan p, q 0. Persamaan dalam

Lebih terperinci

Aljabar Linier Elementer. Kuliah ke-9

Aljabar Linier Elementer. Kuliah ke-9 Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut. BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan

Lebih terperinci

GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT. sofyan mahfudy-iain Mataram 1

GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT. sofyan mahfudy-iain Mataram 1 GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT sofyan mahfudy-iain Mataram 1 Sasaran kuliah hari ini 1. Mahasiwa dapat menjelaskan konsep kemiringan garis/gradien 2. Mahasiswa dapat menentukan

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

2. Memahami dan mampu menyelesaikan Permasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu Persamaan Bidang

2. Memahami dan mampu menyelesaikan Permasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu Persamaan Bidang TUJUAN EMBELAJARAN Agar pembaca memahami tentang Sistem Koordinat Kartesian beserta fungsinya yaitu titik, jarak dua titik, persamaan bola serta Vektor dalam ruang dimensi tiga beserta aplikasinya yaitu

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

c. 2 d Jika suatu garis mempunyai persamaan 2x + y + 4 = 0, maka gradiennya adalah a. 2 b. ½ c. 2 d. ½

c. 2 d Jika suatu garis mempunyai persamaan 2x + y + 4 = 0, maka gradiennya adalah a. 2 b. ½ c. 2 d. ½ 1 SOAL LATIHAN UH MATEMATIKA PERSAMAAN GARIS LURUS KELAS 8 SMP I. Pilihan Ganda GRADIEN (m) 1. Persamaan garis y = x, maka gradiennya adalah a. b. 4 c. d.. Persamaan garis y = x, maka gradiennya adalah

Lebih terperinci

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor BAB 1 BESARAN VEKTOR Tujuan Pembelajaran 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahkan vektor secara grafis dan dengan vektor komponen 3. Melakukan

Lebih terperinci

PERSAMAAN GARIS SINGGUNG ELLIPS

PERSAMAAN GARIS SINGGUNG ELLIPS 1 KEGIATAN BELAJAR 13 PERSAMAAN GARIS SINGGUNG ELLIPS Setelah mempelajari kegiatan belajar 13 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Elips, Titik Singung dan Garis Pada kegiatan

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

PERSAMAAN GARIS SINGGUNG HIPERBOLA

PERSAMAAN GARIS SINGGUNG HIPERBOLA 1 KEGIATAN BELAJAR 15 PERSAMAAN GARIS SINGGUNG HIPERBOLA Setelah mempelajari kegiatan belajar 15 ini, mahasiswa diharapkan mampu: 1. Menemukan Persamaan Garis Singgung Hiperbola, Titik Singung dan Garis

Lebih terperinci

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor

Lebih terperinci

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis BAB II RESULTAN (JUMLAH) DAN URAIAN GAYA A. Pendahuluan Pada bab ini, anda akan mempelajari bagaimana kita bekerja dengan besaran vektor. Kita dapat menjumlah dua vektor atau lebih dengan beberapa cara,

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Besaran skalar adalah besaran yang hanya memiliki nilai saja. Contoh :

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = =

VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = = VEKTOR Notasi Vektor (,, ) (,, ) Vektor atau Matriks Maka di atas dapat dinyatakan dengan: Kombinasi linear vektor basis maka; ( ) + ( ) + ( ) + + (,, ) Panjang Vektor Misalkan + + (,, ), maka panjang

Lebih terperinci

Perkalian Titik dan Silang

Perkalian Titik dan Silang PERKALIAN TITIK DAN SILANG Materi pokok pertemuan ke 3: 1. Perkalian titik URAIAN MATERI Perkalian Titik Perkalian titik dari dua buah vektor dan dinyatakan oleh (baca: titik ). Untuk lebih jelas, berikut

Lebih terperinci

SISTEM KOORDINAT. Berikut ini kita akan mempelajari bagaimana menentukan sistem koordinat dibidang dan diruang.

SISTEM KOORDINAT. Berikut ini kita akan mempelajari bagaimana menentukan sistem koordinat dibidang dan diruang. 1 KEGIATAN BELAJAR 1 SISTEM KOORDINAT Setelah mempelajari kegiatan belajar 1 ini, mahasiswa diharapkan mampu menggambarkan dan membedakan sebuah titik yang terletak di bidang dan Berikut ini kita akan

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Dalam ilmu ekonomi, kita selalu berhadapan dengan variabel-variabel ekonomi seperti harga, pendapatan nasional, tingkat bunga, dan lainlain. Hubungan kait-mengkait

Lebih terperinci

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili 4.5. RUMUS PERBANDINGAN VEKTOR DAN KOORDINAT A. Pengertian Vektor Posisi dari Suatu Titik Misalnya titik A, B, C Dan D. adalah titik sebarang di bidang atau di ruang. Jika titik O bertindak sebagai titik

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

Penyelesaian : Latihan : Tentukan persamaan garis a. Melalui (3, 0) dan (0, 6) b. Melalui (0, 1) dan (4, 0) c. 3 x

Penyelesaian : Latihan : Tentukan persamaan garis a. Melalui (3, 0) dan (0, 6) b. Melalui (0, 1) dan (4, 0) c. 3 x Latihan : Tentukan persamaan garis a. Melalui (3, 0) dan (0, 6) b. Melalui (0, 1) dan (4, 0) c. y 3 x 9 3. Hubungan dua buah garis Letak dua buah garis y = m 1 x + c 1 dan y = m 2 x + c 2 dalam satu bidang

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

BAB XI PERSAMAAN GARIS LURUS

BAB XI PERSAMAAN GARIS LURUS BAB XI PERSAMAAN GARIS LURUS A. Pengertian Pesamaan Garis Lurus Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini

Lebih terperinci

Soal No. 1 Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q

Soal No. 1 Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q Soal No. 1 Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q a) Nyatakan PQ dalam bentuk vektor kolom b) Nyatakan PQ dalam bentuk i, j (vektor satuan) c) Tentukan

Lebih terperinci

MAKALAH GEOMETRI ANALITIK RUANG PERSAMAAN GARIS LURUS

MAKALAH GEOMETRI ANALITIK RUANG PERSAMAAN GARIS LURUS MAKALAH GEOMETRI ANALITIK RUANG PERSAMAAN GARIS LURUS Makalah Ini Disusun Untuk Memenuhi Tugas Mata Kuliah Geometri Analitik Ruang Dosen Pengampu : NINA AGUSTYANINGRUM, M.Pd Disusun Oleh Yani Novita Murni

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Definisi Secara Grafis : Dari gambar di samping, ada sebuah anak panah yang berawal

Lebih terperinci

Persamaan Bidang Datar Q P

Persamaan Bidang Datar Q P Bab II Bidang Datar Perhatikan Persamaan Bidang Datar X C O Z Q P Misalkan P adalah sebarang titik pada bidang v Q adalah proyeksi O pada bid v shg OQ tegaklurus v Misal P(x,y,z) berarti absis x, ordinat

Lebih terperinci

Bab. Sistem Persamaan Linear Dua Variabel. Pengertian SPLDV Penyelesaian SPLDV Penerapan SPLDV

Bab. Sistem Persamaan Linear Dua Variabel. Pengertian SPLDV Penyelesaian SPLDV Penerapan SPLDV Bab Sumb er: Science Encylopedia, 1997 Sistem Persamaan Linear Dua Variabel Harga 3 buku tulis dan pensil adalah Rp13.00,00, sedangkan harga 5 buku tulis dan pensil adalah Rp15.000,00. Dapatkah kamu menghitung

Lebih terperinci

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah

Lebih terperinci

Peta Kompetensi Mata Kuliah Geometri Analitik Bidang dan Ruang (PEMA4317) xiii

Peta Kompetensi Mata Kuliah Geometri Analitik Bidang dan Ruang (PEMA4317) xiii ix G Tinjauan Mata Kuliah eometri Analitik merupakan suatu bidang studi dari hasil perkawinan antara Geometri dan Aljabar. Kita telah mengetahui bahwa himpunan semua titik pada suatu garis lurus berkorespondensi

Lebih terperinci

VEKTOR II. Tujuan Pembelajaran

VEKTOR II. Tujuan Pembelajaran Kurikulum 03 Kelas X matematika PEMINATAN VEKTOR II Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami tentang pembagian vektor.. Memahami tentang

Lebih terperinci

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER )

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) KELOMPOK 2 1. UMAR ATTAMIMI (01212043) 2. SITI WASI ATUL MUFIDA (01212096) 3. DEVI PRATNYA. P. (01212078) 4. POPPY MERLIANA

Lebih terperinci

dimana a 1, a 2,, a n dan b adalah konstantakonstanta

dimana a 1, a 2,, a n dan b adalah konstantakonstanta Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

Modul. Geometri Analitik Ruang. Jero Budi Darmayasa

Modul. Geometri Analitik Ruang. Jero Budi Darmayasa Modul Geometri Analitik Ruang Pada perkuliahan Geometri Analitik Ruang, diawali dengan diskusi tentang sistek koordinat tegak lurus pada ruang. Untuk pembicaraan saat ini, terdapat beberapa kajian yaitu

Lebih terperinci

GEOMETRI ANALIT DI R3

GEOMETRI ANALIT DI R3 GEOMETRI ANALIT DI R3 1. Persamaan berderajat pertama dengan tiga variabel di Persamaan yang berbentuk Ax + By + Cz + D = 0, (3*) dengan A, B, C, D merupakan bilangan real dan A, B, C tak bersama-sama

Lebih terperinci

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir

Jenis Jenis--jenis jenis fungsi dan fungsi linier Hafidh Munawir Jenis-jenis fungsi dan fungsi linier Hafidh Munawir Diskripsi Mata Kuliah Memperkenalkan unsur-unsur fungsi ialah variabel bebas dan variabel terikat, koefisien, dan konstanta, yang saling berkaitan satu

Lebih terperinci

MATEMATIKA BISNIS FUNGSI LINIER

MATEMATIKA BISNIS FUNGSI LINIER MODUL MATEMATIKA BISNIS 2 FUNGSI LINIER Definisi Fungsi linier adalah fungsi paling sederhana karena hanya mempunyai satu variabel bebas dan berpangkat satu pada variabel tersebut, atau dengan kata lain

Lebih terperinci

PERSAMAAN ELLIPS. Setelah mempelajari kegiatan belajar 12 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan elips. 2. Melukis persamaan elips

PERSAMAAN ELLIPS. Setelah mempelajari kegiatan belajar 12 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan elips. 2. Melukis persamaan elips 1 KEGIATAN BELAJAR 12 PERSAMAAN ELLIPS Setelah mempelajari kegiatan belajar 12 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan elips. 2. Melukis persamaan elips Anda tentu sangat mengenal sekali

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Vektor Orthogonal Vektor-vektor yang saling tegak lurus juga sering disebut vektor orthogonal. Dua vektor disebut saling tegak lurus jika dan hanya jika hasil perkalian titik-nya

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan

Lebih terperinci

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B Amran Shidik MATERI FISIKA KELAS X 11/13/2016 VEKTOR A. Vektor Vektor adalah jenis besaran yang mempunyai nilai dan arah. Besaran yang termasuk besaran vektor antara lain perpindahan, gaya, kecepatan,

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

BESARAN VEKTOR B A B B A B

BESARAN VEKTOR B A B B A B Besaran Vektor 8 B A B B A B BESARAN VEKTOR Sumber : penerbit cv adi perkasa Perhatikan dua anak yang mendorong meja pada gambar di atas. Apakah dua anak tersebut dapat mempermudah dalam mendorong meja?

Lebih terperinci

PERSAMAAN HIPERBOLA KEGIATAN BELAJAR 14

PERSAMAAN HIPERBOLA KEGIATAN BELAJAR 14 1 KEGIATAN BELAJAR 14 PERSAMAAN HIPERBOLA Setelah mempelajari kegiatan belajar 14 ini, mahasiswa diharapkan mampu: 1. Menentukan Persamaan Hiperbola 2. Melukis Persamaan Hiperbola Sebelumnya anda telah

Lebih terperinci

Sistem Persamaan Linear Dua Variabel

Sistem Persamaan Linear Dua Variabel Sistem Persamaan Linear Dua Variabel Harga 3 buku tulis dan 4 pensil adalah Rp13.200,00, sedangkan harga 5 buku tulis dan 2 pensil adalah Rp15.000,00. Dapatkah kamu menghitung harga satuan untuk buku tulis

Lebih terperinci

PanGKas HaBis FISIKA. Vektor

PanGKas HaBis FISIKA. Vektor Vektor PanGKas HaBis FISIKA Mari kita pandang sebuah perahu yang mengarungi sebuah sungai. Perahu itu, misalnya, berangkat dari dermaga menuju pangkalan bahan bakar. Jika dermaga dipakai sebagai titik

Lebih terperinci

Vektor. Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan.

Vektor. Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan. Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan. Skalar hanya memiliki besaran saja, contoh : temperatur,

Lebih terperinci

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya

Lebih terperinci

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1 Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi

Lebih terperinci

VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan :

VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : 1 SMA SANTA ANGELA VEKTOR A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : A B Keterangan : Titik A disebut titik Pangkal Titik B disebut titik Ujung Dinotasikan

Lebih terperinci

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK TUGAS MATEMATIKA EKONOMI DISUSUN OLEH : DENY PRASETYA 01212074 IAN ANUGERAH 01212035 M. UMAR A 01212016 ARON GARDIKA 01212140 SAIFUL RAHMAN 01212020

Lebih terperinci

A. Sistem Persamaan Linier dengan dua Variabel

A. Sistem Persamaan Linier dengan dua Variabel Jurnal Materi Umum Peta Konsep Peta Konsep Daftar Hadir MateriA SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Kelas X, Semester 1 Sistem Persamaan Linier Dua Variabel Tiga Variabel Sistem Pertidaksamaan linier

Lebih terperinci

PETA KOMPETENSI MATA KULIAH GEOMETRI ANALITIK BIDANG DAN RUANG (PEMA4317) XIII

PETA KOMPETENSI MATA KULIAH GEOMETRI ANALITIK BIDANG DAN RUANG (PEMA4317) XIII PETA KOMPETENSI MATA KULIAH GEOMETRI ANALITIK BIDANG DAN RUANG (PEMA4317) XIII ix Tinjauan Mata Kuliah G eometri Analitik merupakan suatu bidang studi dari hasil perkawinan antara Geometri dan Aljabar.

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Prodi Matematika FMIPA Unsyiah September 9, 2011 Melalui pendekatan aljabar, vektor u dinyatakan oleh pasangan berurutan u 1, u 2. Disini digunakan notasi u 1, u 2 bukan (u 1, u 2 ) karena notasi (u 1,

Lebih terperinci

SISTEM PERSAMAAN LINEAR DUA VARIABEL

SISTEM PERSAMAAN LINEAR DUA VARIABEL SMP - 1 SISTEM PERSAMAAN LINEAR DUA VARIABEL A. Pengertian persamaan linear dua variabel (PLDV) Persamaan linear dua variabel ialah persamaan yang mengandung dua variabel dimana pangkat/derajat tiap-tiap

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

GEOMETRI ANALITIK BIDANG & RUANG

GEOMETRI ANALITIK BIDANG & RUANG HANDOUT (BAHAN AJAR) GEOMETRI ANALITIK BIDANG & RUANG Sofyan Mahfudy IAIN Mataram KATA PENGANTAR Alhamdulillah puji syukur kepada Alloh Ta ala yang dengan rahmat dan karunia-nya penulis dapat menyelesaikan

Lebih terperinci

Ruang Vektor. Adri Priadana. ilkomadri.com

Ruang Vektor. Adri Priadana. ilkomadri.com Ruang Vektor Adri Priadana ilkomadri.com MEDAN SKLAR Misalkan diketahui bahwa K adalah himpunan, dan didefinisikan 2 buah operasi penjumlahan (+) dan perkalian (*). Maka K dikatakan medan skalar jika dipenuhi

Lebih terperinci

Matematika Teknik Dasar-2 5 Perkalian Antar Vektor. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 5 Perkalian Antar Vektor. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 5 Perkalian Antar Vektor Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Komponen-Komponen Vektor dalam Suku-Suku Vektor Satuan Artinya, OP = a (di sepanjang

Lebih terperinci

ALJABAR LINEAR ELEMENTER

ALJABAR LINEAR ELEMENTER BAHAN AJAR ALJABAR LINEAR ELEMENTER Disusun oleh : Indah Emilia Wijayanti Al. Sutjijana Jurusan Matematika Fakultas MIPA Universitas Gadjah Mada Desember, 22 ii Daftar Isi Sistem Persamaan Linear dan Matriks.

Lebih terperinci

Ruang Vektor Euclid R 2 dan R 3

Ruang Vektor Euclid R 2 dan R 3 Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015

Lebih terperinci

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang :

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : 1. Menggambar daerah yang memenuhi 2. Menentukan system pertidaksamaan suatu daerah 3. Menentukan nilai optimum

Lebih terperinci

SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521

SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 Sistem Koordinat Parameter SistemKoordinat Koordinat Kartesian Koordinat Polar Sistem Koordinat Geosentrik Sistem Koordinat Toposentrik Sistem Koordinat

Lebih terperinci

KEGIATAN BELAJAR SISWA

KEGIATAN BELAJAR SISWA KEGIATAN BELAJAR SISWA Bidang studi : Matematika Satuan Pendidikan: SLTP Kelas: 3 (tiga) Caturwulan: 1 (satu) Pokok Bahasan: Transformasi Subpokok Bahasan: Refleksi Waktu: 150 Menit Endang Mulyana 2003

Lebih terperinci

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4 BAHAN BELAJAR MANDIRI 4 PERSAMAAN GARIS PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep garis, dan persamaan garis lurus yang dinyatakan ke dalam bentuk implisit maupun bentuk

Lebih terperinci

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga;

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga; BAB I VEKTOR A. DEFINISI VEKTOR 1). Pada mulanya vektor adalah objek telaah dalam ilmu fisika. Dalam ilmu fisika vektor didefinisikan sebagai sebuah besaran yang mempunyai besar dan arah seperti gaya,

Lebih terperinci

PEMBAHASAN TRANSFORMASI KEBALIKAN

PEMBAHASAN TRANSFORMASI KEBALIKAN PEMBAHASAN TRANSFORMASI KEBALIKAN.` Definisi Suatu transformasi yang didasarkan pada fungsi dengan dinamakan transformasi kebalikan. Secara geometric, transformasi akan memetakan titik-titik yang mendekati

Lebih terperinci

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd IKIP BUDI UTOMO MALANG Analytic Geometry TEXT BOOK Alfiani Athma Putri Rosyadi, M.Pd 2012 DAFTAR ISI 1 VEKTOR 1.1 Vektor Pada Bidang... 4 1.2 Vektor Pada Ruang... 6 1.3 Operasi Vektor.. 8 1.4 Perkalian

Lebih terperinci

BAB II V E K T O R. Drs. Pristiadi Utomo, M.Pd. FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. Drs. Pristiadi Utomo, M.Pd. 52

BAB II V E K T O R. Drs. Pristiadi Utomo, M.Pd. FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. Drs. Pristiadi Utomo, M.Pd. 52 FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. BAB II V E K T O R Pernahkah Kamu naik pesawat terbang? Antara penumpang dan pilot dan copilot di ruang kemudi dipisah dengan sekat. Tujuannya agar pilot dapat

Lebih terperinci

Garis Singgung Lingkaran

Garis Singgung Lingkaran 1 KEGIATAN BELAJAR 8 Garis Singgung Lingkaran Setelah mempelajari kegiatan belajar 8 ini, mahasiswa diharapkan mampu menentukan persamaan garis singgung lingkaran dan kuasa lingkaran. Pernahkah Anda memperhatikan

Lebih terperinci

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER MATEMATIKA BISNIS BAB FUNGSI LINIER Hikmah Agustin, S.P.,MM DEFINISI FUNGSI Fungsi adalah hubungan matematis antara suatu variabel dengan variabel lainna. Unsur-unsur pembentukan fungsi : 1. Variabel Variabel

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

DIKTAT MATEMATIKA II

DIKTAT MATEMATIKA II DIKTT MTEMTIK II (VEKTOR) Drs.. NN PURNWN, M.T JURUSN PENDIDIKN TEKNIK MESIN FKULTS PENDIDIKN TEKNOLOGI DN KEJURUN UNIVERSITS PENDIDIKN INDONESI 004 VEKTOR I. PENDHULUN 1.1. PENGERTIN Sepotong garis berarah

Lebih terperinci

KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA

KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA Prosiding Seminar Nasional Volume 02, Nomor 1 ISSN 2443-1109 KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA Rio Fabrika Pasandaran 1, Patmaniar 2 Universitas Cokroaminoto

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag

KONSEP DASAR FUNGSI DAN GRAFIK. Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Oleh : Agus Arwani, SE, M.Ag KONSEP DASAR FUNGSI DAN GRAFIK Definisi : Fungsi f : A B adalah suatu aturan yang mengaitkan (memadankan) setiap dengan tepat satu A y B Notasi

Lebih terperinci

Persamaan Parabola KEGIATAN BELAJAR 10

Persamaan Parabola KEGIATAN BELAJAR 10 1 KEGIATAN BELAJAR 10 Persamaan Parabola Setelah mempelajari kegiatan belajar 10 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan Parabola 2. Melukis Persamaan Parabola Anda tentu sangat mengenal

Lebih terperinci

Bab 1 Vektor. A. Pendahuluan

Bab 1 Vektor. A. Pendahuluan Bab 1 Vektor A. Pendahuluan Dalam mata kuliah Listrik Magnet A, maupun mata kuliah Listrik Magnet B sebagaii lanjutannya, penyajian konsep dan pemecahan masalah akan banyak memerlukan pengetahuan tentang

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto Buku Pendalaman Konsep Trigonometri Tingkat SMA Doddy Feryanto Kata Pengantar Trigonometri merupakan salah satu jenis fungsi yang sangat banyak berguna di berbagai bidang. Di bidang matematika sendiri,

Lebih terperinci

MODUL PEMBELAJARAN KALKULUS II. ALFIANI ATHMA PUTRI ROSYADI, M.Pd

MODUL PEMBELAJARAN KALKULUS II. ALFIANI ATHMA PUTRI ROSYADI, M.Pd MODUL PEMBELAJARAN KALKULUS II ALFIANI ATHMA PUTRI ROSYADI, M.Pd IDENTITAS MAHASISWA NAMA : KLS/NIM :. KELOMPOK:. Daftar Isi Kata Pengantar Peta Konsep Materi. BAB I Analisis Vektor a. Vektor Pada Bidang.6

Lebih terperinci