Ruang Vektor. Adri Priadana. ilkomadri.com

Ukuran: px
Mulai penontonan dengan halaman:

Download "Ruang Vektor. Adri Priadana. ilkomadri.com"

Transkripsi

1 Ruang Vektor Adri Priadana ilkomadri.com

2 MEDAN SKLAR Misalkan diketahui bahwa K adalah himpunan, dan didefinisikan 2 buah operasi penjumlahan (+) dan perkalian (*). Maka K dikatakan medan skalar jika dipenuhi 10 aksioma berikut: 1. Untuk setiap α, β K maka α + β K dan α * β K 2. Untuk setiap α, β, γ K maka (α + β) + γ = α + ( β + γ ) 3. Terdapat 0 K disebut elemen nol, sedemikian sehingga 0 + α = α + 0 = α, untuk setiap α K 4. Untuk masing-masing α K, terdapat α K disebut negatif dari α sedemikian sehingga (-α) + α = α + (-α) = 0 5. Untuk setiap α, β K maka α + β = β + α

3 MEDAN SKLAR 6. Untuk setiap α, β, γ K maka (α * β) * γ = α * ( β * γ ) 7. Untuk setiap α, β, γ K a. α * ( β + γ ) = α * β + α * γ b. ( β + γ ) * α = β * α + γ * α 8. Untuk setiap α, β K maka α * β = β * α 9. Terdapat 1 K disebut elemen satuan, sedemikian sehingga 1 * α = α * 1, untuk setiap α K 10. Untuk masing-masing α 0 K, terdapat α -1 K disebut invers dari α sedemikian sehingga α -1 * α = α * α -1 = 1 Dalam hal ini semua anggota dari Field adalah skalar

4 MEDAN SKLAR Contoh Himpunan bilangan riil R adalah medan skalar terhadap operasi penjumlahan dan perkalian. Berikut adalah pembuktiannya : misal 1, 2, 3 R = 3, 3 R dan 1 * 2 = 2, 2 R 2. (1 + 2) + 3 = 1 + (2 + 3) => 6 = 6 3. Elemen 0 dari R adalah 0, dan = = 1, dimana 1 R 4. (-1) + 1 = 1 + (-1) = = 2 + 1

5 MEDAN SKLAR 6. (1 * 2)*3 = 1*(2*3) => 6 = 6 7. Untuk setiap 1, 2, 3 R a. 1 * ( ) = 1 * * 3 => 6 = 6 b. ( ) * 1 = 2 * * 1 => 6 = * 2 = 2 * 1 => 2 = 2 9. Elemen 1 dari R adalah 1, dan 1*1 = 1*1 = * 1 = 1 * 1-1 = 1 Tidak hanya pada 1, 2, 3, semua bagian dari R harus terpenuhi semua aksioma tersebut agar dapat dikatakan medan skalar.

6 RUANG VEKTOR Ada 8 syarat agar V (himpunan vektor) disebut sebagai ruang vektor, yaitu: 1. Jika vektor-vektor u, v V, maka vektor u + v V dan jika α K, maka α u V 2. Jika vektor-vektor u, v, w V, maka (u + v) + w = u + (v + w) 3. Untuk setiap u, v V dan α K maka α * (u + v) = α*u + α*v 4. Ada 0 V (vektor 0) sehingga 0 + u = u + 0, untuk semua u V

7 RUANG VEKTOR 5. Untuk semua u V terdapat - u V sehingga u + (-u) = 0 6. Untik setiap u, v V, maka u + v = v + u 7. Untuk setiap u, v V dan α, β K berlaku a. (α + β) * u = α*u + β*u b. (α β) * u = α (β*u) 8. Untuk setiap u V berlaku 1 * u = u, dimana 1 adalah elemen satuan dari K

8 RUANG VEKTOR Contoh Terdapat himpunan vektor V = { [1, 2, 3], [2, 3, 4], [3, 5, 7], [2, 6, 12] } dan himpunan skalar R {1, 2, 3}. Apakah himpunan vektor V adalah ruang vektor? Jawab untuk membuktikannya harus dicari apakah himpunan vektor tersebut memenuhi aksioma 1. u + v V [1, 2, 3] + [3, 5, 7] = [4, 7, 10] karena [4, 7, 10] V, aksioma pertama tidak terpenuhi maka himpunan vektor tersebut bukan ruang vektor

9 RUANG BAGIAN (SUBSPACE) Ruang bagian atau sub ruang vektor adalah sebenarnya ruang vektor juga, namun dengan syarat-syarat khusus Jika W adalah sekumpulan dari satu vektor atau lebih dari ruang vektor V, maka W disebut sebagai sub ruang V, jika dan hanya jika kedua kondisi di bawah ini berlaku : 1. W Ø (W tidak kosong) atau W { } 2. Untuk setiap u, v W maka u + v W 3. Untuk setiap u W dan α K, maka αu W

10 RUANG BAGIAN (SUBSPACE) Contoh Apakah ruang nol, O, merupakan sub ruang? O = {0} Jawab Bukti: 1. Ada 0 O, jadi O 2. Ambil u, v O, berarti u = 0 dan v = 0, akibatnya u + v = = 0, jadi u + v O 3. Ambil u O, berarti u = 0, akibatnya ku = k0 = 0, jadi ku O Jadi O merupakan sub ruang dari setiap ruang vektor yang melingkupinya.

11 VEKTOR YANG BEBAS LINIER DAN BERGANTUNG LINIER Himpunan m buah vektor {u 1, u 2,..., u m } disebut bergantung linier (linearly dependent) bila terdapat skalar-skalar λ 1, λ 2,..., λ m yang tidak semuanya nol sedemikian rupa sehingga : λ 1 u 1 + λ 2 u λ m u m = 0 (0 adalah vektor nol) Sebaliknya, himpunan vektor {u 1, u 2,..., u m } disebut bebas linier (linearly independent) jika λ 1 u 1 + λ 2 u λ m u m = 0 hanya dipenuhi oleh λ 1 = λ 2 =... = λ m = 0

12 VEKTOR YANG BEBAS LINIER Contoh Selidiki apakah DAN BERGANTUNG LINIER 1. a = [8, 18, 13], b = [1, 3, 2], c = [2, 4, 3] 2. a = [2, 3] dan b [7, 1] bebas linier atau bergantung linier? 1. λ 1 [8, 18, 13] + λ 2 [1, 3, 2] + λ 3 [2, 4, 3] = 0 Misalnya λ 1 = 1, λ 2 = -2, λ 3 = -3, maka persamaan tersebut menjadi 1 [8, 18, 13] - 2 [1, 3, 2] - 3 [2, 4, 3] = 0 karena ada λ yang 0, maka ketiga vektor tersebut bergantung linier

13 VEKTOR YANG BEBAS LINIER DAN BERGANTUNG LINIER 2. Untuk a = [2, 3] dan b [7, 1] maka λ 1 [2, 3] + λ 2 [7, 1] = 0 sehingga 2 λ λ 2 = 0 3 λ λ 2 = 0 persamaan tersebut hanya dipenuhi bila λ 1 = 0 dan λ 2 = 0. Jadi vektor tersebut bebas linier.

14 KOMBINASI LINIER Suatu vektor v dikatakan kombinasi liner dari himpunan vektor {u 1, u 2,..., u m } bila terdapat skalar-skalar λ 1, λ 2,..., λ m sedemikian hingga v = λ 1 u 1 + λ 2 u λ m u m

15 KOMBINASI LINIER Contoh 1. Apakah a = [5, 15, 16] merupakan kombinasi linier dari b = [3, 3, 2] dan c = [1, 6, 7] 2. Apakah a = [5, 3] merupakan kombinasi linier dari b = [4, 3] dan c = [3, 7]

16 KOMBINASI LINIER Jawab Kita akan menyatakan a sebagai kombinasi linier dari b dan c 1. Kita hitung λ 1 dan λ 2 yang memenuhi [5, 15, 16] = λ 1 [3, 3, 2] + λ 2 [1, 6, 7] 5 = 3λ 1 + λ 2 15 = 3λ 1 + 6λ 2 16 = 2λ 1 + 7λ 2 Dengan subtitusi, diperoleh λ 1 = 1 dan λ 2 = 2, jadi a merupakan kombinasi linier dari b dan c, dimana komposisi a = b + 2c

17 KOMBINASI LINIER 2. Kita hitung λ 1 dan λ 2 yang memenuhi [5, 3] = λ 1 [4, 3] + λ 2 [3, 7] 5 = 4λ 1 + 3λ 2 3 = 3λ 1 + 7λ 2 Dengan subtitusi, tidak diperoleh nilai λ 1 dan λ 2 yang memenuhi. Jadi a bukan kombinasi linier dari b dan c.

18 RENTANGAN (SPAN) Misalkan S = {v 1, v 2,..., v k } adalah himpunan vektor dalam ruang vektor real V dan span (S), adalah himpunan yang berisi semua vektor kombinasi linier dari v 1, v 2,..., v k, yaitu span (S) = {c 1 v 1 + c 2 v c k v k c 1, c 2, c 3,..., c k R } jika span (S) = V, maka dikatakan bahwa V dibangun / dibentuk oleh S atau S membentuk V

19 RENTANGAN (SPAN) Contoh Tentukan apakah v 1 =(-2,1,2), v 2 =(0,1,3), v 3 =(-1,0,1) span dari ruang vektor R 3 Jawab : Untuk menentukan span di ruang vektor R 3, maka dicari kemungkinan setiap vektor di ruang R 3 adalah kombinasi linier dari v 1, v 2 dan v 3. Misalkan vektor a = (a 1,a 2,a 3 ) di ruang vektor R 3, maka a dapat ditulis sebagai kombinasi linier dari v 1,v 2,dan v 3

20 RENTANGAN (SPAN) a a k1 a k 1 k 1 k 0 a k a a k 3 Agar supaya ada nilai k 1,k 2 dan k 3, maka matrik 3 x 3 tersebut harus mempunyai invers atau determinan tidak boleh sama dengan nol. Karena determinan matrik tersebut adalah -3, maka k 1,k 2 dan k 3 didapatkan. Jadi disimpulkan bahwa v 1,v 2 dan v 3 merupakan span dari ruang vektor R 3

21 BASIS DAN DIMENSI Vektor-vektor v 1, v 2,..., v k dalam ruang vektor V dikatakan membentuk basis dimensi V, jika 1. v 1, v 2,..., v k membangun V atau span (v 1, v 2,..., v k ) = V 2. v 1, v 2,..., v k adalah bebas linier Dimensi dari ruang vektor V adalah jumlah vektorvektor yang membentuk basis pada V

22 BASIS DAN DIMENSI Contoh Tentukan apakah vektor V = {a, b, c} basis dalam R 3 dan tentukan dimensi dari ruang vektor yang dibentuk oleh: 1. a = [2, 3, 6], b = [5, 7, 2], c = [7, 10, 8] 2. a = [1, 3, 5], b = [2, -3, 1], c = [-3, 0, 1]

23 BASIS DAN DIMENSI Jawab 1. λ 1 [2, 3, 6] + λ 2 [5, 7, 2] + λ 3 [7, 10, 8] = 0 Misalnya λ 1 = 1, λ 2 tersebut menjadi = 1, λ 3 = -1, maka persamaan 1 [2, 3, 6] + 1 [5, 7, 2] - 1 [7, 10, 8] = 0 karena ada λ yang 0, maka ketiga vektor tersebut bergantung linier dan vektor a, b, c bukan basis dalam R 3 dan dimensi ruang vektor V adalah 2, (c = a + b) -> {a, b} bebas linier karena tidak berkelipatan.

24 BASIS DAN DIMENSI 2. λ 1 [1, 3, 5] + λ 2 [2, -3, 1] + λ 3 [-3, 0, 1] = 0 sehingga [1, 3, 5] + [2, -3, 1] + [-3, 0, 1] = [0, 0, 0] maka λ 1 + 2λ 2-3λ 3 = 0, 3λ 1-3λ 2 = 0, 5λ 1 + λ 2 + λ 3 = 0 persamaan kedua menyebabkan λ 1 = λ 2, kalau hasil ini disubstitusikan ke persamaan pertama menyebabkan λ 1 = λ 2 = λ 3. Karena tidak ada λ yang 0, maka ketiga vektor tersebut bebas linier.

25 BASIS DAN DIMENSI 2. a = [1, 3, 5], b = [2, -3, 1], c = [-3, 0, 1] Jika kita jadikan matriks dari matrik tersebut didapatkan determinan yaitu - 99 maka kedua syarat terpenuhi sehingga vektor a, b, c basis dalam R 3 dan dimensi ruang vektor V adalah 3.

26 Matur Nuwun

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut:

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: Bagian 5. RUANG VEKTOR 5.1 Lapangan (Field) Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: 1. dan 2., 3.,

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd SUBRUANG VEKTOR Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd Disusun Oleh : Kelompok 6/ III A4 1. Nina Octaviani Nugraheni 14144100115 2. Emi Suryani 14144100126

Lebih terperinci

PERTEMUAN 11 RUANG VEKTOR 1

PERTEMUAN 11 RUANG VEKTOR 1 PERTEMUAN 11 RUANG VEKTOR 1 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat mengetahui definisi dan sifat-sifat dari ruang vektor Dapat mengetahui definisi

Lebih terperinci

BAB II DASAR DASAR TEORI

BAB II DASAR DASAR TEORI BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian

Lebih terperinci

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit BAB I RUANG EKTOR UMUM Dalam bab ini akan dipelajari tentang konsep ruang vektor umum, sub ruang vektor dan sifat-sifatnya. Pada pembicaraan ini, para mahasiswa dianggap sudah mengenal konsep dan sifat

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan sifat-sifat dari ruang vektor

Lebih terperinci

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut RUANG VEKTOR REAL Aksioma ruang vektor, dinyatakan dlam definisi beikut, dimana aksiona merupakan aturan permainan dalam ruang vektor. Definisi : Jika V merupakan suatu himpunan tidak kosong dari objek

Lebih terperinci

RUANG VEKTOR. Nurdinintya Athari (NDT)

RUANG VEKTOR. Nurdinintya Athari (NDT) 1 RUANG VEKTOR Nurdinintya Athari (NDT) RUANG VEKTOR Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Basis Subruang Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem kontrol

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 5 Ruang Vektor Ruang Vektor Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem Kontrol

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

untuk setiap x sehingga f g

untuk setiap x sehingga f g Jadi ( f ( f ) bernilai nol untuk setiap x, sehingga ( f ( f ) fungsi nol atau ( f ( f ) Aksioma 5 Ambil f, g F, R, ( f g )( f g ( g( g( ( f g)( Karena ( f g )( ( f g)( untuk setiap x sehingga f g Aksioma

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Independensi Linear Basis & Dimensi TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Independensi Linear Basis & Dimensi TIM KALIN KS091206 Independensi Linear Basis & Dimensi TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui apakah suatu vektor bebas linier atau tak bebas

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Definisi : VECTOR SPACE Jika V adalah ruang vektor dimana u,v,w merupakan objek dalam V sebagai vektor, dan terdapat skalar k dan

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

Kode, GSR, dan Operasi Pada

Kode, GSR, dan Operasi Pada BAB 2 Kode, GSR, dan Operasi Pada Graf 2.1 Ruang Vektor Atas F 2 Ruang vektor V atas lapangan hingga F 2 = {0, 1} adalah suatu himpunan V yang berisi vektor-vektor, termasuk vektor nol, bersama dengan

Lebih terperinci

Kumpulan Soal,,,,,!!!

Kumpulan Soal,,,,,!!! Kumpulan Soal,,,,,!!! Materi: Matriks & Ruang Vektor 1. BEBAS LINEAR S 3. BASIS DAN DIMENSI O A L 2. KOMBINASI LINEAR NeXt FITRIYANTI NAKUL Page 1 1. BEBAS LINEAR Cakupan materi ini mengkaji tentang himpunan

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah) Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd JURUSAN/PROGRAM STUDI PENDIDIKAN MATEMATIKA STKIP PGRI BANJARMASIN MARET MUQADIMAH Alhamdulillah penyusun ucapkan

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

Adri Priadana. ilkomadri.com

Adri Priadana. ilkomadri.com Adri Priadana ilkomadri.com Pengertian Sistem Persamaan Linier Persamaan linier adalah suatu persamaan dengan bentuk umum a 1 x 1 + a 2 x 2 + + a n x n = b yang tidak melibatkan hasil kali, akar, pangkat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

vektor u 1, u 2,, u n.

vektor u 1, u 2,, u n. KOMBINASI LINEAR BEBAS LINEAR BERGANTUNG LINEAR Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta Kombinasi Linear (linear combination) Andaikan ruang vektor V melalui field F, dengan vektor-vektor

Lebih terperinci

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar:

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar: f g) f g C atau ( f g). Diperoleh bahwa: f g) ( f g) dg f ( f dg g) g dg f g Selanjutnya dibuktikan tertutup terhadap perkalian skalar: Ambil. f ) f C, R. Ditunjukkan bahwa. f C atau (. f ).. f ). diketahui

Lebih terperinci

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor Bab RUANG VEKTOR. Ruang Vektor DEFINISI.. Suatu ruang vektor (V, +,, F) atas field (F, +), ditulis singkat V(F), adalah suatu himpunan tak kosong V dengan elemenelemennya disebut vektor, yang dilengkapi

Lebih terperinci

MODUL V EIGENVALUE DAN EIGENVEKTOR

MODUL V EIGENVALUE DAN EIGENVEKTOR MODUL V EIGENVALUE DAN EIGENVEKTOR 5.. Pendahuluan Biasanya jika suatu matriks A berukuran mm dan suatu vektor pada R m, tidak ada hubungan antara vektor dan vektor A. Tetapi seringkali kita menemukan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Sebagai acuan penulisan penelitian ini diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam sub bab ini akan diberikan beberapa landasan teori berupa pengertian,

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

Minggu II Lanjutan Matriks

Minggu II Lanjutan Matriks Minggu II Lanjutan Matriks Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum Tujuan Instruksional Khusus Jumlah Pertemuan : Matriks : A. Transformasi Elementer. Transformasi Elementer pada baris

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN I MODUL ATAS RING Direncanakan

Lebih terperinci

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M.

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M. HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen Pengampu : Darmadi, S,Si, M.Pd Disusun oleh Matematika 5F Kelompok 5: ARLITA ROSYIDA 08411.081

Lebih terperinci

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema

Lebih terperinci

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

MODUL 3 BIDANG RATA. [Program Studi Pendidikan Matematika STKIP PGRI Sumatera Barat]

MODUL 3 BIDANG RATA. [Program Studi Pendidikan Matematika STKIP PGRI Sumatera Barat] 1 MODUL 3 BIDANG RATA Setelah mempelajari modul 1 dan 2 anda akan melanjutkan mempelajari modul 3 tentang bidang rata. Materi bidang rata ini berkaitan dengan materi pada modul sebelumnya. Pada modul 3

Lebih terperinci

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1 Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi

Lebih terperinci

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1 6- Operasi Matriks Contoh 6-1 : Budi diminta tolong oleh ibunya untuk membeli 2 kg gula dan 1 kg kopi. Dengan uang Rp. 10.000,- Budi mendapatkan uang kembali Rp. 3.000,-. Dihari yang lain, Budi membeli

Lebih terperinci

Eigen value & Eigen vektor

Eigen value & Eigen vektor Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan

Lebih terperinci

Aljabar Linier Ruang vektor dan subruang vektor. 2 Oktober 2014

Aljabar Linier Ruang vektor dan subruang vektor. 2 Oktober 2014 Aljabar Linier Ruang vektor dan subruang vektor 2 Oktober 2014 Pertemuan-2 Pertemuan ke-2 memuat 1. Ruang vektor operasi linier field definisi Contoh Kombinasi linier 1 2. Subruang definisi penentuan subruang

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

Fungsi. Adri Priadana ilkomadri.com

Fungsi. Adri Priadana ilkomadri.com Fungsi Adri Priadana ilkomadri.com Fungsi Definisi : Misalkan A dan B himpunan. Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity Chapter 5 GENERAL VECTOR SPACE 5.5. Row Space, Column Space, Nullspace 5.6. Rank & Nullity 5.5. Row Space, Column Space, Nullspace Vektor-Vektor Baris & Kolom Vektor baris A (dalam R n ) Vektor kolom A

Lebih terperinci

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal 7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada

Lebih terperinci

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk BAB 1 PENDAHULUAN 1.1 Latar belakang Sebagian besar dari sejarah ilmu pengetahuan alam adalah catatan dari usaha manusia secara kontinu untuk merumuskan konsep-konsep yang dapat menguraikan permasalahan

Lebih terperinci

Soal-soal Latihan Pra UTS MATDAS. 1. Periksalah apakah argumen berikut valid secara logis atau tidak? p q q. ( p)

Soal-soal Latihan Pra UTS MATDAS. 1. Periksalah apakah argumen berikut valid secara logis atau tidak? p q q. ( p) Soal-soal Latihan Pra UTS MATDAS 1. Periksalah apakah argumen berikut valid secara logis atau tidak? p q p q q ( p) p 2. Periksalah apakah argumen berikut valid secara logis atau tidak? r s r t t r s 3.

Lebih terperinci

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam Shalawat serta salam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Fungsi Definisi A.1 Diberikan A dan B adalah dua himpunan yang tidak kosong. Suatu cara atau aturan yang memasangkan atau mengaitkan setiap elemen dari himpunan A dengan tepat

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika 1 BAB I PENDAHULUAN A. Latar Belakang Struktur aljabar merupakan salah satu bidang kajian dalam matematika yang dikembangkan untuk menunjang pemahaman mengenai struktur bilangan. Struktur atau sistem aljabar

Lebih terperinci

Ruang Vektor Euclid R 2 dan R 3

Ruang Vektor Euclid R 2 dan R 3 Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015

Lebih terperinci

MODUL ATAS RING MATRIKS ( ) Arindia Dwi Kurnia Universitas Jenderal Soedirman Ari Wardayani Universitas Jenderal Soedirman

MODUL ATAS RING MATRIKS ( ) Arindia Dwi Kurnia Universitas Jenderal Soedirman Ari Wardayani Universitas Jenderal Soedirman Prosiding Seminar Nasional Matematika dan Terapannya 2016 p-issn : 2550-0384; e-issn : 2550-0392 MODUL ATAS RING MATRIKS Arindia Dwi Kurnia Universitas Jenderal Soedirman arindiadwikurnia@gmail.com Ari

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 9467 Teknik Nmerik Sistem Linear Trihastti Agstinah Bidang Stdi Teknik Sistem Pengatran Jrsan Teknik Elektro - FTI Institt Teknologi Seplh Nopember O U T L I N E OBJEKTIF TEORI CONTOH 4 SIMPULAN 5 LATIHAN

Lebih terperinci

RUANG HASIL KALI DALAM (RHKD) Makalah Ini Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu: Abdul Aziz Saefudin, M.

RUANG HASIL KALI DALAM (RHKD) Makalah Ini Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu: Abdul Aziz Saefudin, M. RUANG HASIL KALI DALAM (RHKD) Makalah Ini Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu: Abdul Aziz Saefudin, M.Pd Disusun oleh: Kelompok 5 1. Nurita Cahyaningtyas (14144100112)

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

CHAPTER 6. Ruang Hasil Kali Dalam

CHAPTER 6. Ruang Hasil Kali Dalam CHAPTER 6. Ruang Hasil Kali Dalam Hasil Kali Dalam Sudut dan Ortogonal dalam Ruang Hasil Kali Dalam Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Squares Orthogonal

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini akan diberikan beberapa materi yang akan diperlukan di dalam pembahasan, seperti: matriks secara umum; matriks yang dipartisi; matriks tereduksi dan taktereduksi; matriks

Lebih terperinci

seperti yang akan kita lihat, ada banyak cara untuk membangun ruang-ruang vektor baru dari ruang vektor ruang vektor yang lama

seperti yang akan kita lihat, ada banyak cara untuk membangun ruang-ruang vektor baru dari ruang vektor ruang vektor yang lama DIRECT SUMS seperti yang akan kita lihat, ada banyak cara untuk membangun ruang-ruang vektor baru dari ruang vektor ruang vektor yang lama EXTERNAL DIRECT SUMS Definisi: Misalkan V 1,, V n adalah ruang

Lebih terperinci

Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi

Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi 7// NILAI EIGEN dan VEKTOR EIGEN Yang dipelajari.. Masalah Nilai Eigen dan Penyelesaiannya. Masalah Pendiagonalan Referensi : Kolman & Howard Anton. Ilustrasi Misalkan t : R n R n dengan definisi t(x)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan

Lebih terperinci

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier

Modul Matematika MINGGU 4. g. Titik Potong fungsi linier MINGGU 4 Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum : Hubungan dan : 1. Hubungan 2. a. Pengertian fungsi b. Jenis-jenis fungsi c. Diagram fungsi d. Pengertian fungsi linier e. Penggambaran

Lebih terperinci

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR 7//5 RUANG VEKTOR UMUM Yang dibahas.. Ruang vektor umum. Subruang. Hubungan dependensi linier 4. Basis dan dimensi 5. Ruang baris, ruang kolom, ruang nul, rank dan nulitas AKSIOMA RUANG VEKTOR V disebut

Lebih terperinci

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan:

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan: Dimensi dari Suatu Ruang Vektor Jika suatu ruang vektor V memiliki suatu himpunan S yang merentang V, maka ukuran dari sembarang himpunan di V yang bebas linier tidak akan melebihi ukuran dari S. Teorema

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 7 Transformasi Linear Sub Pokok Bahasan Definisi Transformasi Linear Matriks Transformasi Kernel dan Jangkauan Aplikasi Transformasi Linear Grafika Komputer Penyederhanaan

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS

RUANG VEKTOR BAGIAN RANK KONSTAN DARI BEBERAPA RUANG VEKTOR MATRIKS Prosiding Seminar Nasional Volume, Nomor 1 ISSN 443-119 RUANG VEKOR BAGIAN RANK KONSAN DARI BEBERAPA RUANG VEKOR MARIKS Iin Karmila Putri 1, Andi Jumardi Universitas Cokroaminoto Palopo 1, iinkarmilaputri@gmail.com

Lebih terperinci

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

04-Ruang Vektor dan Subruang

04-Ruang Vektor dan Subruang 04-Ruang Vektor dan Subruang Vektor (1) Dosen: Anny Yuniarti, M.Comp.Sc Gasal 2011-2012 Anny2011 1 Agenda Bagian 1: Ruang Vektor Bagian 2: Nullspace of A: Solusi Ax = 0 Bagian 3: Rank dan Row-reduced-form

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH

EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH EKSISTENSI TITIK TETAP DARI SUATU TRANSFORMASI LINIER PADA RUANG BANACH Nur Aeni Prodi Matematika, Fakultas Sains dan Teknologi, UINAM nuraeniayatullah@gmailcom Info: Jurnal MSA Vol 3 No 1 Edisi: Januari

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL SISTEM BILANGAN REAL Materi : 1.1 Pendahuluan Sistem Bilangan Real adalah himpunan bilangan real yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma tertentu, ini merupakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut. BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan

Lebih terperinci

Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta

Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta BASIS DAN DIMENSI Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta Basis dan Dimensi Ruang vektor V dikatakan mempunyai dimensi terhingga n (ditulis dim V = n) jika ada vektor-vektor e, e,,

Lebih terperinci

Latihan 5: Inner Product Space

Latihan 5: Inner Product Space Latihan 5: Inner Product Space Diketahui vektor u v w ϵ R di mana u = v = Hitunglah : a b c d e f Diketahui vektor u v ϵ R di mana u = dan v = Carilah

Lebih terperinci

MENENTUKAN INVERS MOORE PENROSE DARI MATRIKS KOMPLEKS

MENENTUKAN INVERS MOORE PENROSE DARI MATRIKS KOMPLEKS MENENTUKAN INVERS MOORE PENROSE DARI MATRIKS KOMPLEKS skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Astin Wita Yunihapsari 4150407021 JURUSAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

Materi VI. Matik memiliki notasi yang berbeda dengan determinan. Garis pembatas sedikit disikukan Contoh. matrik ini memiliki ordo (3x4)

Materi VI. Matik memiliki notasi yang berbeda dengan determinan. Garis pembatas sedikit disikukan Contoh. matrik ini memiliki ordo (3x4) Materi VI Tujuan :. Mahasiswa dapat mengenali matrik.. Mahasiswa dapat mengunakan operasi penjumlahan, pengurangan, dan perkalian matrik. Mahasiswa dapat merubah persamaan linier menjadi persamaan matrik..

Lebih terperinci

RUANG VEKTOR -5 ALJABAR LINIER

RUANG VEKTOR -5 ALJABAR LINIER RUANG VEKTOR -5 ALJABAR LINIER Ruang Vektor berdimensi- n Untuk n= 1, 2 atau 3 : suatuvektordapat digambarkan, namun vektor tidak mungkin dapat digambarkan bila berada di ruang-n > 3 karena keterbatasandariruang.

Lebih terperinci

RUANG FAKTOR. Oleh : Muhammad Kukuh

RUANG FAKTOR. Oleh : Muhammad Kukuh Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang

Lebih terperinci

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Bilangan Kompleks Bilangan merupakan suatu konsep dalam matematika yang digunakan untuk pencacahan dan pengukuran. Sistem bilangan yang dikenal saat ini merupakan hasil perkembangan

Lebih terperinci

RANK MATRIKS ATAS RING KOMUTATIF

RANK MATRIKS ATAS RING KOMUTATIF Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 1 (2013), hal. 63 70. RANK MATRIKS ATAS RING KOMUTATIF Eka Wulan Ramadhani, Nilamsari Kusumastuti, Evi Noviani INTISARI Rank dari matriks

Lebih terperinci

INVERS MOORE PENROSE MATRIKS BEBAS SKRIPSI. Disusun oleh : AGUNG WICAKSONO J2A JURUSAN MATEMATIKA

INVERS MOORE PENROSE MATRIKS BEBAS SKRIPSI. Disusun oleh : AGUNG WICAKSONO J2A JURUSAN MATEMATIKA INVERS MOORE PENROSE MATRIKS BEBAS SKRIPSI Disusun oleh : AGUNG WICAKSONO J2A 004 002 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2009 1 2 ABSTRAK Pada

Lebih terperinci

MATRIKS. Notasi yang digunakan NOTASI MATRIKS

MATRIKS. Notasi yang digunakan NOTASI MATRIKS MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.

Lebih terperinci

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat BAB I PENDAHULUAN 1.1 Latar Belakang Jika kita mempunyai data yang terdiri dari dua atau lebih variabel maka sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat berhubungan, hubungan

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua II. LANDASAN TEORI 2.1 Limit Fungsi Definisi 2.1.1(Edwin J, 1987) Misalkan I interval terbuka pada R dan f: I R fungsi bernilai real. Secara matematis ditulis lim f(x) = l untuk suatu a I, yaitu nilai

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1

RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 Materi Pokok : Integral Pertemuan Ke- : 1 dan Alokasi Waktu : x pertemuan (4 x 45 menit) Standar Kompetensi : Menggunakan konsep integral dalam pemecahan masalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand Aljabar Linier Kuliah 3 5/9/2014 Yanita FMIPA Matematika Unand 1 Materi Kuliah 3 Jumlah Langsung, Hasilkali Langsung Himpunan Pembangun (Spans) dan Bebas Linier 5/9/2014 Yanita FMIPA Matematika Unand 2

Lebih terperinci

Matriks. Baris ke 2 Baris ke 3

Matriks. Baris ke 2 Baris ke 3 Matriks A. Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegi panjang. Susunan bilangan itu diletakkan di dalam kurung

Lebih terperinci

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 2) A. Pendahuluan Matriks dan Sistem Persamaan Linear

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 2) A. Pendahuluan Matriks dan Sistem Persamaan Linear Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 2) A. Pendahuluan Salah satu kajian matematika sekolah menengah yang memiliki banyak aplikasinya dalam menyelesaikan permasalahan yang ada dalam kehidupan

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN KS96 KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mencari ruang baris, ruang kolom,

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini dibahas penelitian-penelitian tentang aljabar maks-plus yang telah dilakukan dan teori-teori yang menunjang penelitian masalah nilai eigen dan vektor eigen yang diperumum

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci