KONVERGENSI DAN STABILITAS SOLUSI PERSAMAAN LAPLACE PADA BATAS DIRICHLET. Lasker P. Sinaga. Abstract. terdapat y0

Ukuran: px
Mulai penontonan dengan halaman:

Download "KONVERGENSI DAN STABILITAS SOLUSI PERSAMAAN LAPLACE PADA BATAS DIRICHLET. Lasker P. Sinaga. Abstract. terdapat y0"

Transkripsi

1 99 KONVERGENSI DAN STABILITAS SOLUSI PERSAMAAN LAPLACE PADA BATAS DIRICHLET Lskr P. Sig Abstrct Prsm lplc dlh slh stu btuk prsm diffrsil tip liptik yg dpt dislsik dg mtod pmish ribl. Mtod pmish ribl mmbut prsm lplc mjdi du prsm diffrsil lir homog ord du yg mmuhi bts dirichlt pd prsgi (rctgulr). Solusi prsm lplc dlh sbuh bris yg korg d stbil simtot trhdp bidg ksimbgy. Kt kuci : Lplc, Dirichlt, Korgsi, Stbilits PENDAHULUAN Kstbil (stbilit d ksimbg (quilibrium) diprklk olh mtmtikw Rusi, A. M. Lypuo. Jik solusisolusi dri sbuh prsm brd dkt d sllu dkt trhdp solusi liy mk kodisi trsbut diktk stbil, sbliky disbut dg tidk stbil. Adik prsm dy f ( t, dt dg kodisi wl y( ) y mmpuyi solusi y y t, y ) ( dim y dlh fugsi kotiu pd itrl trtutup,t mk utuk trdpt y kur y y t, y y ) yg sgt kcil shigg ( dimut dlm sbuh bidg dg lbr diskitr solusi trsbut. Prmslh yg cukup mrik dlh bgim cr mgksprsik pglisis korgsi d kstbil dri solusi prsm lplc pd bts dirichlt dg btuk: u( u( u (. x y u( f ( pd x, y u( pd sisi liy Lskr P. Sig dlh Dos Jurus Mtmtik, Fkults Mtmtik d Ilmu Pgthu Alm, Uirsits Ngri Md

2 METODE PENELITIAN Pliti ii dilkuk dg cr studi litrtur dg brbgi dukug dfiisi d torm. PEMBAHASAN DAN HASIL Solusi Prsm Lplc Prsm lplc dislsik dg mgguk mtod pmish ribl. Adik u( sbgi solusi dri prsm lplc d mmishy ts prkli du fugsi dg ribl bbs brbd u( X ( Y ( shigg: u( X"( Y( x Prsm lplc k mjdi: u( d X ( Y"( y u( u( x y X "( Y ( X ( Y"( Mislk X"( Y"( X ( Y ( X"( Y"(, sdmiki diprolh du prsm diffrsil X ( Y ( homog ord du, X "( X ( d Y" ( Y (. Kdu prsm diffrsil bis trsbut k dislsik dg mmprhtik problm ili ig gr diprolh solusi otriil srt mmuhi kodisi bts yg dittuk. Yg dpt dilkuk dlh mujukk smu kmugki ili. Ksus. X "( X ( X ( ) X ( ). Pd shigg mslh dits.. Pd shigg mslh dits. dg diprolh solusi triil buk ili ig dri diprolh solusi triil buk ili ig dri Lskr P. Sig dlh Dos Jurus Mtmtik, Fkults Mtmtik d Ilmu Pgthu Alm, Uirsits Ngri Md

3 3. Pd dg mk X"( p X ( diprolh X ( cos px si px p, p shigg solusi dg X ( ) d X ( ) si p. Utuk mk p tu p shigg p utuk N. Dg dmiki, diprolh bris solusi N. ( si X x utuk Ksus. Y" ( Y ( dg Y ( ) Y ( b) Kr pd ksus tlh diprolh ili ig p, N mk ksus dpt dislsik mjdi cosh y Y ( dg sih y b) cosh b sih b Y ( cosh b shigg sih b dg Y dmiki ( sih ( b. sih b Solusi prsm mjdi sih ( b u( X x Y y k x ( ) ( ) si sih b dg k.. Jdi, diprolh solusi yg sgt byk ttpi blum mmuhi kodisi bts. Hl ii dpt dilkuk dg mgguk prisip suprposisi. u( sih ( b k si x sih b Dg problm dirichlt, mk: sih b u( ) k si x = sih b Mislk k si x = f ( f ( k si x mk k f ( si xdx. Dg dmiki Lskr P. Sig dlh Dos Jurus Mtmtik, Fkults Mtmtik d Ilmu Pgthu Alm, Uirsits Ngri Md

4 u sih ( b ( k si x = sih b k six y ( b b = k si x sih ( b sih b Korgsi d Stbilits Solusi Prsm Lplc Dg mmislk Mislk y k, k d b si x mk u( tu u (. Alisis brikuty kkorg dri dlh mujukk kkorg brdsrk dfiisi brikut. bris trsbut dg mujukk kkorg ( trlbih dhulu. { Q } b y { P } k d shigg Kkorg ( P. Q k ditujukk dg mujukk { P } d { Q } Dfiisi 3. Sbuh bris { } x korg k limit x jik utuk stip trdpt bilg bult N, N shigg x x. y Cotoh 3. Jik limp limk mk { } P korg k. Pilih utuk stip trdpt N sdmiki Kr y k = y k k y N, shigg k y <. k D y y k l y k l tu Pilih K sdmiki. Ambil k shigg k y Dg dmiki { P } K korg k. y Lskr P. Sig dlh Dos Jurus Mtmtik, Fkults Mtmtik d Ilmu Pgthu Alm, Uirsits Ngri Md

5 3 Cotoh 3.3 Jik limq { } lim( b Q korg k. ) mk Pilih utuk stip trdpt N sdmiki ( Kr b ) b N, shigg b D b l b b l tu Pilih sdmiki. Ambil b shigg b Dg dmiki { Q } korg k. b b b Torm 3.4 Jik. { P } korg k P d { } Q korg k Q, dg Q d Q P utuk stip, mk Q Pilih, trdpt sbuh bilg positif bilg Ril M d sbuh bilg bult positif N, sdmiki Q M utuk stip N. Kmudi M ' P Q korg k Q P. Trdpt sbuh bilg positif N shigg, utuk N, P P ' d sbuh bilg bult positif N3, shigg Q Q '. Mislk N mx{ N, N, N3}. Utuk N, Q Q ', P P ' d Q M. Jdi P Q P PQ Q P = Q Q Q PQ PQ PQQ P Q Q P P Q P Q Q Q Q < P ' Q Q Q P ' M = Q Lskr P. Sig dlh Dos Jurus Mtmtik, Fkults Mtmtik d Ilmu Pgthu Alm, Uirsits Ngri Md

6 4 Dg dmiki P korg k. Q Torm 3.5 (Th Rtio Tst) Mislk bhw utuk k mk. jik lim b. jik lim. Jik lim, trdpt bilg r shigg r d r utuk yg smki bsr. Pryt ii dpt ditulisk sbgi r. r Kr b. Jik lim r mk trdpt bilg r shigg r d r utuk yg smki bsr. Pryt ii dpt ditulisk sbgi r. r Kr r mk Brdsrk ts rsio dits, kkorg dri k y b ditujukk dg lim ( ) y b k = lim( )( ) ( ) b y k b = y lim ( ) b = y Utuk d y > mk y shigg dlh korg. Lskr P. Sig dlh Dos Jurus Mtmtik, Fkults Mtmtik d Ilmu Pgthu Alm, Uirsits Ngri Md

7 5 Torm 3.6 (Th Compriso Tst) Mislk bhw utuk stip N, u d jik korg mk u jug korg. Mislk s u u... u d t..., kmudi kr korg, ( t ) dlh trbts. Mislk t t, utuk stip N, s u u... u... t t shigg s jug trbts. Kr ( s ) dlh bris yg ik (icrsig, u u korg. ), ( s ) muju titik limit pd, d Kr u( ( d compriso tst mk u dlh korg. Torm 3.7 Mislk u dlh sbuh bris bilg ril. Jik u korg mk u jug korg. Mislk Kmudi utuk stip u jik u d jik u N,, b d u b. Dg b u Solusi jik jik u u u( u ( dg u ( ( tlh dmiki Jdi, jik u u d b u. dlh korg mk brdsrk compriso tst mmbuktik bhw d b trbukti korg d u~ ( x, dlh bidg ksimbg. Yg mjdi prty dlh pkh solusi ol u~ ( x, dlh stbil? dlh korg, shigg ( b ) jug korg. Lskr P. Sig dlh Dos Jurus Mtmtik, Fkults Mtmtik d Ilmu Pgthu Alm, Uirsits Ngri Md

8 6 Dfiisi 3.8 Jik utuk stip trdpt ( ) shigg x ( ), u x x, u~ ( x, ) utuk stip y mk u~ ( x, ( y disbut stbil. Mislk x ( ) d brdsrk torm 3.4 dits mk k y ( b b shigg: u x, ) ~ y u ( x, ) = ( b y ksi( x x ) b ( x y < k y ( b b Dfiisi 3.9 Pylsi u~ ( x, disbut stbil simtot, jik stbil d trdpt bilg shigg x d lim( u( x, ) ~ x y u ( ) y ( b Dg dfiisi trsbut, lim y si k x b. y Dg dmiki, solusi simtotik trhdp bidg ksimbg prsm lplc yg diprolh dlh sprti ilustrsi pd gmbr brikut. bris solusi yg korg d stbil Lskr P. Sig dlh Dos Jurus Mtmtik, Fkults Mtmtik d Ilmu Pgthu Alm, Uirsits Ngri Md

9 7 ( b Gmbr 3. Kur solusi y u( ksi( x x ) b u( u( = y Gmbr 3. Sudut pdg dimsi du kstbil solusi prsm lplc KESIMPULAN DAN SARAN Brdsrk pliti trsbut, dpt dimbil ksimpul bhw solusi prsm lplc pd bts dirichlt dpt diprolh dg mtod pmish ribl dg ili ig positif. Solusi yg diprolh dlh bris solusi yg korg d solusi ol dlh bidg ksimbgy. Solusi trsbut stbil simtotik trhdp bidg ksimbg. Prsm lplc dlh slh stu btuk prsm diffrsil lliptik. Pliti ii dpt diljutk k btuk prsm-prsm lliptik liy tu k tip prsm prbolik tupu hiprbolik. DAFTAR PUSTAKA Brtl R. G., 976, Th Elmt of Rl Alysis, Jho Wily & Sos Ic. Cd. Brow A. L. d Pg A., 97, Elmt of Fuctiol Alysis, V Nostrd Rihold Compy, Lodo. Frlow S. J., 98, Prtil Diffrtil Equtios for Scitist d Egirs, Jho Wily & Sos Ic, Cd. Gugh D. E., 987, Itroductio to Alysis, Wdsworth Ic, Blmot, Clifori, USA. Gustfso K. E., 987, Prtil Diffrtil Equtios d Hilbrt Spc Mthods, Jho Wily & Sos Ic. Cd. Joh F., 978, Prtil Diffrtil Equtios, Sprigr-Vrlg Nw Lskr P. Sig dlh Dos Jurus Mtmtik, Fkults Mtmtik d Ilmu Pgthu Alm, Uirsits Ngri Md

10 8 York Ic, Nw York, USA. Sydl R., 994, Prcticl Bifurctio d Stbility Alysis, -Vrlg Nw York Ic, Nw York, USA. Tikhoo N., Vsil A. B., d Sshiko A. B., 985, Diffrtil Equtios, -Vrlg Nw York Ic, Nw York, USA. Lskr P. Sig dlh Dos Jurus Mtmtik, Fkults Mtmtik d Ilmu Pgthu Alm, Uirsits Ngri Md

METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA. FakultasMatematikadanIlmuPengetahuanAlamUniversitas Riau KampusBinawidyaPekanbaru, 28293, Indonesia

METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA. FakultasMatematikadanIlmuPengetahuanAlamUniversitas Riau KampusBinawidyaPekanbaru, 28293, Indonesia METDE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA V Sitompul * Smsudhuh TP Nbb Mhsisw JurusMtmtik Dos JurusMtmtik FkultsMtmtikdIlmuPthuAlmUivrsits Riu KmpusBiwidPkbru 89 Idosi *vroik@hoooid ABSTRACT This ppr

Lebih terperinci

SOLUSI EKSAK DAN SOLUSI ELEMEN HINGGA PERSAMAAN LAPLACE ORDE DUA PADA RECTANGULAR. Kata kunci: Laplace, Eigen, Rectangular, Solusi Elemen Hingga

SOLUSI EKSAK DAN SOLUSI ELEMEN HINGGA PERSAMAAN LAPLACE ORDE DUA PADA RECTANGULAR. Kata kunci: Laplace, Eigen, Rectangular, Solusi Elemen Hingga SOLUSI EKSAK DA SOLUSI ELEME HIGGA PERSAMAA LAPLACE ORDE DUA PADA RECAGULAR Lsker P. Sig Abstrk ekik pemish vribel seprtio of vrible pd persm lplce orde du mereduksi persm mejdi beberp persm differesil

Lebih terperinci

FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK

FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK M AT E M AT I K A E K O N O M I FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 2 Pgkt Jik sutu bilg diklik diri sdiri sbk kli mk ditulis Bilg disbut kspo

Lebih terperinci

METODE ITERASI TIGA LANGKAH DENGAN KEKONVERGENAN BERORDE ENAM BELAS. Ricko Saputra 1*

METODE ITERASI TIGA LANGKAH DENGAN KEKONVERGENAN BERORDE ENAM BELAS. Ricko Saputra 1* METDE ITERASI TIGA LANGKAH DENGAN KEKNVERGENAN BERRDE ENAM BELAS Riko Sputr * Mhsis Progrm Studi S Mtmtik Fkults Mtmtik d Ilmu Pgthu Alm Uivrsits Riu Kmpus Biid Pkbru 9 Idosi Sputrriko7@hooom ABSTRACT

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II ANDASAN TERI Tori dsr g diguk pd ugs khir ii, iu: ord kovrgsi, dr Tlor, mod Nwo d ord kovrgsi, mod hbshv- Hll d ord kovrgsi, vri mod hbshv-hll d ord kovrgsi, d ugsi kudrik.. rd Kovrgsi rd kovrgsi

Lebih terperinci

KONVERGENSI MODIFIKASI METODE NEWTON GANDA DENGAN MENGGUNAKAN KELENGKUNGAN KURVA TUGAS AKHIR

KONVERGENSI MODIFIKASI METODE NEWTON GANDA DENGAN MENGGUNAKAN KELENGKUNGAN KURVA TUGAS AKHIR KNVERGENSI MDIFIKASI METDE NEWTN GANDA DENGAN MENGGUNAKAN KELENGKUNGAN KURVA TUGAS AKHIR Dijuk sbgi Slh Stu Srt utuk Mmprolh Glr Srj Sis pd Jurus Mtmtik lh: NFI MAULANA FAKULTAS SAINS DAN TEKNLGI UNIVERSITAS

Lebih terperinci

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy

Lebih terperinci

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ... Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit

Lebih terperinci

MODIFIKASI METODE KING DENGAN MENGGUNAKAN INTERPOLASI KUADRATIK

MODIFIKASI METODE KING DENGAN MENGGUNAKAN INTERPOLASI KUADRATIK PRSIDING ISBN : 9-99--- MDIFIKASI METDE KING DENGAN MENGGUNAKAN INTERPLASI KUADRATIK Wrtoo, Fitrih Rit, Jurus Mtmtik, Fkults Sis d Tkologi, UIN Sult Sri Ksim Riu wrtoosrm@hoo.com T- Abstrk Mtod Kig mrupk

Lebih terperinci

KONVERGENSI MODIFIKASI VARIAN METODE CHEBYSHEV-HALLEY MENGGUNAKAN INTERPOLASI KUADRATIK TUGAS AKHIR

KONVERGENSI MODIFIKASI VARIAN METODE CHEBYSHEV-HALLEY MENGGUNAKAN INTERPOLASI KUADRATIK TUGAS AKHIR KNVERGENSI MDIFIKASI VARIAN METDE HEBYSHEV-HALLEY MENGGUNAKAN INTERPLASI KUADRATIK TUGAS AKHIR Dijuk sbgi Slh Stu Srt utuk Mmprolh Glr Srj Sis pd Jurus Mtmtik lh: SILVIA YUTIKA 000 FAKULTAS SAINS DAN TEKNLGI

Lebih terperinci

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT) SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 4 Transformasi Fourier

SISTEM PENGOLAHAN ISYARAT. Kuliah 4 Transformasi Fourier TKE 403 SISTEM PENGOLAHAN ISYARAT Kulih 4 Trsformsi Fourir Bgi I Idh Susilwi, S.T., M.Eg. Progrm Sudi Tkik Elkro Fkuls Tkik d Ilmu Kompur Uivrsis Mrcu Bu Yogykr 009 KULIAH 4 SISTEM PENGOLAHAN ISYARAT TRANSFORMASI

Lebih terperinci

Hendra Gunawan. 21 Februari 2014

Hendra Gunawan. 21 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge

Lebih terperinci

Ringkasan Materi Kuliah PERSAMAAN DIFERENSIAL LINEAR. 1. Pendahuluan Bentuk umum persamaan diferensial linear orde n adalah

Ringkasan Materi Kuliah PERSAMAAN DIFERENSIAL LINEAR. 1. Pendahuluan Bentuk umum persamaan diferensial linear orde n adalah Rigks Mtri Klih PERSAMAAN DIFERENSIAL LINEAR Pdhl Btk mm rsm dirsil lir ord dlh () dg koisi-koisi d () mrk gsigsi g koti d slg I d tk sti I Slg I disbt slg diisi (slg sl) dri rsm dirsil it Jik gsi () =

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedr Guw Semester II, 2016/2017 24 Februri 2017 9.6 Deret Pgkt Kulih yg Llu Meetuk selg kekoverge deret pgkt 9.7 Opersi pd Deret Pgkt Melkuk opersi pd deret pgkt yg dikethui jumlhy

Lebih terperinci

Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah

Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah 13. INTEGRAL RIEMANN 13.1 Jumlh Riem Ats d Jumlh Riem Bwh Pd Bb 12 kit megsumsik bhw f kotiu pd [, b] d medefiisik itegrl b f(x) dx sebgi supremum dri himpu semu jumlh lus derh persegi-pjg kecil di bwh

Lebih terperinci

JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1

JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1 JURNAL MATEMATIKA DAN PEMBELAJARANNYA 6 VOLUME, NO.. ISSN -99 PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN! = Amr Hs Dos STKIP Pmg Idosi Mkssr 85 557 6956, E-mil: mrhs@yhoo.co.id ABSTRAK Pmkti! = dt dilkk dri

Lebih terperinci

juga dinyatakan sebagai a n atau a n n n 0,1, 2, 3,... Pada barisan dibagi menjadi barisan konvergen dan barisan divergen.

juga dinyatakan sebagai a n atau a n n n 0,1, 2, 3,... Pada barisan dibagi menjadi barisan konvergen dan barisan divergen. MATERI: ) Perbed bris d deret b) Defiisi d teorem tetg deret c) Deret suku positif d uji kovergesiy d) Deret hiperhrmois e) Deret ukur f) Deret ltertig d uji kovergesiy g) Deret kus d opersiy h) Deret

Lebih terperinci

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P Rug Vektor Tuju:. Megigt kembli persm gris d bidg di rug.. Memhmi ksiom rug vektor, kombisi liier d rug bgi.. Megigt kembli pegerti bebs d bergtug liier, bsis d dimesi. Arti geometris dri determi Jik A

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige

Lebih terperinci

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx. Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f

Lebih terperinci

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j

Lebih terperinci

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit

Lebih terperinci

Definisi 1: Sebuah fungsi f(x) dikatakan periodic dengan periode T > 0, jika berlaku: f(x + T) = f(x) untuk samua x.

Definisi 1: Sebuah fungsi f(x) dikatakan periodic dengan periode T > 0, jika berlaku: f(x + T) = f(x) untuk samua x. DERE FOURIER PENDAHUUAN Dlm ii k dihs pryt drt dri sutu ugsi priodik. Jis ugsi ii mrik kr srig mucul dlm rgi prsol isik, sprti gtr mkik, rus listrik olk-lik AC, glomg uyi, glomg Elktromgt, htr ps, ds.

Lebih terperinci

LOKALISASI ORE. Lucia Ratnasari Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275

LOKALISASI ORE. Lucia Ratnasari Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275 LOKALA OE Luci ti Juu Mtmtik FMPA UNDP Jl Pof H odto, H, mg 575 Abtct Lt b ocommuttiv ig d b multiplictiv ubt of Th ight lft ig of quotit do ot xit fo vy A cy coditio of xitc ight lft ig of quotit i ight

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA0 MATEMATIKA A Hedr Guw Semester II, 06/07 0 Februri 07 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kekoverge deret

Lebih terperinci

Hendra Gunawan. 19 Februari 2014

Hendra Gunawan. 19 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/0 9 Februri 0 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kk kekoverge

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bmbg Irwto Jurus Mtemtik FMIPA UNDIP Abstct I this er, it ws lered of the ecessry d sufficiet coditio for

Lebih terperinci

ANALISIS FREKUENSI SINYAL DAN SISTEM

ANALISIS FREKUENSI SINYAL DAN SISTEM AALISIS FREKUESI SIYAL DA SISTEM AALISIS FREKUESI SIYAL DA SISTEM Alisis Siyl dlm Sptrum Frusi Alisis frusi siyl wtu otiu Alisis frusi siyl wtu disrit Sift-sift trsformsi Fourir Domi frusi sistm LTI Sistm

Lebih terperinci

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Mislk N dlh proses Poisso pd itervl [, deg rt µ yg kotiu mutlk, d fugsi itesits λ yg teritegrlk lokl Sehigg, utuk setip himpu Borel terbts B mk: µ ( B Ε N( B λ(

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEI Lds ori dlm skripsi ii risik ori-ori mdk dlh rd kovrsi dr Tlor mod Nwo d rd kovrsi mod srowski d rd kovrsi d irpolsi kdrik.. rd Kovrsi rd kovrsi mrpk s ik prp dlm plsi Prsm olir 0.

Lebih terperinci

DERET FOURIER MATEMATIKA FISIKA II JURUSAN PENDIDIKAN FISIKA FPMIPA UPI

DERET FOURIER MATEMATIKA FISIKA II JURUSAN PENDIDIKAN FISIKA FPMIPA UPI DERET FOURIER MATEMATIKA FISIKA II JURUSAN PENDIDIKAN FISIKA FPMIPA UPI PENDAHUUAN Dlm ii k dihs uri drt dri sutu ugsi priodik. Jis ugsi ii mrik kr srig mucul dlm rgi prsol isik, sprti gtr mkik, rus listrik

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm

Lebih terperinci

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11) III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg

Lebih terperinci

Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0

Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0 LJBR MTRIKS Bil kit mempui sutu sistem persm liier + + z = + + z = + z = Mk koefisie tersebut di ts disebut MTRIKS, d secr umum dpt ditulisk sbb : Jjr bilg tersebut di ts disebut MTRIKS, d secr umum dpt

Lebih terperinci

MA SKS Silabus :

MA SKS Silabus : Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7

Lebih terperinci

Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER

Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER Modul 8. (Pertemu s/d 6) DERET FOURIER 8. FUNGSI PERIODIK DAN FUNGSI KONTINU TERPOTONG Defiisi Fugsi f diseut fugsi periodik il terdpt p > sedemiki sehigg utuk setip erlku f ( p) f ( ). Nili p > terkecil

Lebih terperinci

Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel

Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel Sitek Vol 5. No 3 Thu 1 Peyelesi Alitik d Peodel Fugsi Bessel Lily Yhy Jurus Mtetik Fkults MIPA Uiersits Negeri Gorotlo bstrk Dl klh ii k dilkuk peyelesi litik d peodel pers diferesil Bessel sert eujukk

Lebih terperinci

SISTEM PENGOLAHAN ISYARAT. Kuliah 3 Deret Fourier

SISTEM PENGOLAHAN ISYARAT. Kuliah 3 Deret Fourier TKE 43 SSTEM PENGOLAHAN SYARAT Kulih 3 Dr Fourir dh Susilwi, S.T., M.Eg. Progr Sudi Tkik Elkro Fkuls Tkik d lu Kopur Uivrsis Mrcu Bu Yogykr 9 KULAH 3 SSTEM PENGOLAHAN SYARAT DERET FOURER Pd pbhs ii k dijlsk

Lebih terperinci

TEORI PERMAINAN. Aplikasi Teori Permainan. Strategi Murni

TEORI PERMAINAN. Aplikasi Teori Permainan. Strategi Murni TEORI PERMAINAN Apliksi Teori Peri Lw pei (puy itelegesi yg s) Setip pei epuyi beberp strtegi utuk slig eglhk Two-Perso Zero-Su Ge Peri deg pei deg peroleh (keutug) bgi slh stu pei erupk kehilg (kerugi)

Lebih terperinci

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 A & B Dose: Dr. Asep Jur Jumlh Sol: Uri Tggl Uji: // Wktu Uji: jm jik. Solusi t dlh: t + log, yg dpt dibuktik sbb: t jik t t + [t/ + ] + t/ + t/4 + t/8 + 4 t/

Lebih terperinci

RENCANA PELAKSANAAN PERKULIAHAN

RENCANA PELAKSANAAN PERKULIAHAN Lesso Study FMIPA UNY RENCANA PELAKSANAAN PERKULIAHAN MATA KULIAH : ALJABAR LINEAR II SEMESTER : III TOPIK : NILAI EIGEN DAN VEKTOR EIGEN SUB TOPIK : NILAI EIGEN DAN VEKTOR EIGEN WAKTU : X 5 A. Stdr Kompetesi:

Lebih terperinci

Rangkuman Materi dan Soal-soal

Rangkuman Materi dan Soal-soal Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy

Lebih terperinci

Rangkuman Materi dan Soal-soal

Rangkuman Materi dan Soal-soal Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy

Lebih terperinci

LIMIT FUNGSI. lim lim. , c = konstanta 6. lim f(x) Penting : Persoalan limit adalah mengubah bentuk tak tentuk menjadi bentuk tertentu.

LIMIT FUNGSI. lim lim. , c = konstanta 6. lim f(x) Penting : Persoalan limit adalah mengubah bentuk tak tentuk menjadi bentuk tertentu. LIMIT FUNGSI Teoem. f() g() f() g( ). f().g() f(). g( ) f(). f() g() f() g( ). deg g() g() g(). c.f() c. f(), c = kostt. f() f() f() Betuk Tk Tetu Betuk di dlm mtemtik d mcm, yitu :. Betuk tedefiisi (tetetu)

Lebih terperinci

Barisan bilangan real Pengaturan bilangan real dalam indeks terurut

Barisan bilangan real Pengaturan bilangan real dalam indeks terurut + e - e Bris bilg rel Pegtur bilg rel dlm ideks terurut dimk bris. Bris bilg rel,,, ditulis { } =, tu disigkt { }. Secr forml, bris (tk higg) ii didefiisik sebgi fugsi deg derh sl himpu bilg sli. Ilustrsi

Lebih terperinci

DETERMINAN MATRIKS dan

DETERMINAN MATRIKS dan DETERMINN MTRIKS d TRNSFORMSI ELEMENTER gusti Prdjigsih, M.Si. Jurus Mtemtik FMIP UNEJ tiprdj.mth@gmil.com DEFINISI Utuk setip mtriks bujursgkr berordo x dpt dikitk deg tuggl sutu bilg rel yg dimk determi.

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1

JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1 FITRIANA RICHA HIDAYATI 7 46 Dose Pembimbig M. ARIEF BUSTOMI, M.Si Surby, Jui JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER Alis disesuik deg geometri

Lebih terperinci

Kajian Integral Cavalieri-Wallis dan Integral Porter-Wallis serta Kaitannya dengan Integral Riemann

Kajian Integral Cavalieri-Wallis dan Integral Porter-Wallis serta Kaitannya dengan Integral Riemann J. Mth. d Its Appl. ISSN: 1829-605X Vol. 3, No. 2, Nov 2006, 81 93 Kji Itegrl Cvlieri-Wllis d Itegrl Porter-Wllis sert Kity deg Itegrl Riem Rt Sri Dewi d Sursii Jurus Mtemtik ITS Istitut Tekologi Sepuluh

Lebih terperinci

Bab 3 SISTEM PERSAMAAN LINIER

Bab 3 SISTEM PERSAMAAN LINIER Alis Numerik Bh Mtrikulsi B SISTEM PERSAMAAN LINIER Pedhulu Pd kulih ii k dipeljri eerp metode utuk meelesik sistem persm liier Peelesi sistem persm deg jumlh vriel g tidk dikethui serig ditemui didlm

Lebih terperinci

BAB III LIMIT FUNGSI DAN KEKONTINUAN

BAB III LIMIT FUNGSI DAN KEKONTINUAN BAB III LIMIT FUNGSI DAN KEKONTINUAN 3. Pedhulu Seelu hs liit fugsi di sutu titik terleih dhulu kit k egti perilku sutu fugsi f il peuh edekti sutu ilg ril tertetu. Misl terdpt sutu fugsi f() = + 4. Utuk

Lebih terperinci

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks Ctt Kulih Mtemtik Ekoomi Memhmi d Meglis ljbr Mtriks. Mtriks d Vektor Mtriks Mtriks dlh kumpul bilg, prmeter tu vribel tersusu dlm bris d kolom sehigg terbetuk segi empt. Susu ii bisy diletkk dlm td kurug

Lebih terperinci

Deret dan Transformasi Fourier

Deret dan Transformasi Fourier Dr d rsformsi Fourir Risuri Hidy, Jurus i Elro d ologi Iformsi, F UGM, gri gyogyr Hdiigr 558, IDOESIA risuri@.ugm.c.id (risuri@gmil.com Dlm ulis ii dijls domi frusi uu isyr priodis d opriodis yg mmpuyi

Lebih terperinci

KONVERGENSI MODIFIKASI METODE POTRA-PTAK MENGGUNAKAN INTERPOLASI KUADRATIK TUGAS AKHIR

KONVERGENSI MODIFIKASI METODE POTRA-PTAK MENGGUNAKAN INTERPOLASI KUADRATIK TUGAS AKHIR KNVERGENSI MDIFIKASI METDE PTRA-PTAK MENGGUNAKAN INTERPLASI KUADRATIK TUGAS AKHIR Dijuk sbgi Slh Su Sr uuk Mmprolh Glr Srj Sis pd Jurus Mmik lh: ZUHRWARDI 8 FAKULTAS SAINS DAN TEKNLGI UNIVERSITAS ISLAM

Lebih terperinci

1. Bilangan Berpangkat Bulat Positif

1. Bilangan Berpangkat Bulat Positif N : Zui Ek Sri Kels : NPM : 800 BILANGAN BERPANGKAT DAN BENTUK AKAR A. Pgkt Bilg Bult. Bilg Berpgkt Bult Positif Dl kehidup sehri-hri kit serig eeui perkli ilg-ilg deg fktor-fktor yg s. Mislk kit teui

Lebih terperinci

DERET FOURIER FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN. Oleh :

DERET FOURIER FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN. Oleh : DERET FOURIER Oleh : Nm :. Neti Okmyti 7..6). Reto Fti Amh 7..6). Feri Febrisyh 7..8) Kels : 6. Mt Kulih : Mtemtik jut Dose Pegsuh : Fdli, S.Si FAKUTAS KEGURUAN DAN IMU PENDIDIKAN UNIVERSITAS PGRI PAEMBANG

Lebih terperinci

Metode Iterasi Gauss Seidell

Metode Iterasi Gauss Seidell Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier

Lebih terperinci

Analisa Frekuensi Sinyal dan Sistem

Analisa Frekuensi Sinyal dan Sistem Alis Frusi Siyl d Sistm Alisis frusi siyl wtu otiu Alisis frusi siyl wtu disrit Sift-sift trsformsi Fourir Domi frusi sistm LT Sistm LT sbgi filtr Pristiw Disprsi Alisis Frusi wto 67 Fruhofr 787 Kirhoff

Lebih terperinci

Barisan bilangan real Pengaturan bilangan real dalam indeks terurut

Barisan bilangan real Pengaturan bilangan real dalam indeks terurut Koko Mrtoo FMIPA - ITB 7 Bris bilg rel Pegtur bilg rel dlm ideks terurut dimk bris. Bris bilg rel,,, ditulis { } =, tu disigkt { }. Secr forml, bris (tk higg) ii didefiisik sebgi fugsi deg derh sl himpu

Lebih terperinci

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc. Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh

Lebih terperinci

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter

FUNGSI KARAKTERISTIK. penelitian ini akan ditentukan fungsi karakteristik dari distribusi four-parameter IV. FUNGSI KARAKTERISTIK Pd bgi seljuty k dijbrk megei ugsi krkteristik. Pd peeliti ii k ditetuk ugsi krkteristik dri distribusi our-prmeter geerlized t deg megguk deiisi d kemudi k membuktik ugsi krkteristik

Lebih terperinci

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler

Lebih terperinci

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan )

bila nilai parameter sesungguhnya adalah. Jadi, K( ) P( SU jatuh ke dalam WP bila nilai parameter sama dengan ) Kus Uji d Lem Neym-Perso Kebik sutu uji serig diukur oleh d. Di dlm prktek, bisy ditetpk, d kibty wilyh peolk (WP) mejdi tertetu pul. Kierj sutu uji jug serig diukur oleh p yg disebut kus uji (power of

Lebih terperinci

II. TINJAUAN PUSTAKA. pasangan itu dengan operasi-operasi tertentu yang sesuai padanya dapat

II. TINJAUAN PUSTAKA. pasangan itu dengan operasi-operasi tertentu yang sesuai padanya dapat 3 II. TINJUN PUSTK. Sistm ilnn Komplks Sistm ilnn komplks dpt dinytkn scr orml dnn mnunkn konsp psnn trurut ordrd pir ilnn riil,. Himpunn smu psnn itu dnn oprsi-oprsi trtntu yn ssui pdny dpt didinisikn

Lebih terperinci

Estimasi Koefisien Fungsi Regular- Dari kelas Fungsi Analitik Bieberbach-Eilemberg

Estimasi Koefisien Fungsi Regular- Dari kelas Fungsi Analitik Bieberbach-Eilemberg Estimsi Koefisie Fugsi Regulr- Dri kels Fugsi Alitik Bieberbch-Eilemberg Oleh Edg Chy M.A Jurus Mtemtik FPMIPA UPI Abstrk Tulis ii mejelsk tetg estimsi koefisie fugsi regulr- yg dideretk, sebgi fugsi yg

Lebih terperinci

BAB IV INTEGRAL RIEMANN

BAB IV INTEGRAL RIEMANN Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

DERET PANGKAT TAK HINGGA

DERET PANGKAT TAK HINGGA DERET PANGKAT TAK HINGGA TEOREMA-TEOREMA PENTING TERKAIT DERET PANGKAT TEOREMA-TEOREMA PENTING. Itegrsi d diferesisi deret pgkt dpt dilkuk per suku, yitu: ( ) d p q d d ( ) q p d d ( ) ( ) d, d p, q Selg

Lebih terperinci

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES 3.1 Itegrl Riem-Stieltjes dri Fugsi Berili Rel Pd seelumy telh dihs megei eerp kosep dsr, dim kosep-kosep ii merupk slh stu teori pedukug yg tiy k erper segi

Lebih terperinci

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40 Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu

Lebih terperinci

Sub Pokok Bahasan Bilangan Bulat

Sub Pokok Bahasan Bilangan Bulat MODUL MATERI PELAJARAN MATEMATIKA Sub Pokok Bhs Bilg Bult Kels : VII (tujuh) Seester: 1 (gjil) Kurikulu KTSP Disusu Oleh: Seri Rhwti, S.Pd NIP. 171101 001 001 MTsN SELAT KUALA KAPUAS TAHUN PELAJARAN 010/011

Lebih terperinci

24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain.

24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain. // Alj Lie Elemete MUGE SKS Silus : B I Mtiks d Oesi B II Detemi Mtiks B III Sistem Pesm Lie B IV Vekto di Bidg d di Rug B V Rug Vekto B VI Rug Hsil Kli Dlm B VII Tsfomsi Lie B VIII Rug Eige // :8 MUGE

Lebih terperinci

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1 Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008 Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+

Lebih terperinci

BAB III MODEL MATEMATIKA KEPENDUDUKAN

BAB III MODEL MATEMATIKA KEPENDUDUKAN 5 A III MODEL MATEMATIKA KEENDUDUKAN 3.1 Uu Filis Filis mup pfom podusi ul di sog i u slompo idividu yg pd umumy di pd sog i u slompo i. iu p uu filis yg dil olh o 1997 diy dlh Cud ih R CR u g lhi s, mup

Lebih terperinci

SISTIM PERSAMAAN LINIER. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

SISTIM PERSAMAAN LINIER. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ SISTIM PERSAMAAN LINIER Agusti Prdjigsih, M.Si. Jurus Mtemtik FMIPA UNEJ gusti.fmip@uej.c.id DEFINISI : Persm Liier Persm Liier dlm peubh,, ditk dlm betuk b dim,,, b R Pemech persm liier dits dlh urut

Lebih terperinci

Penyelesaian Persamaan Linier Simultan

Penyelesaian Persamaan Linier Simultan Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d

Lebih terperinci

Sistem Bilangan dan Kesalahan. Metode Numerik

Sistem Bilangan dan Kesalahan. Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c

Lebih terperinci

Sifat-sifat Super Matriks dan Super Ruang Vektor

Sifat-sifat Super Matriks dan Super Ruang Vektor Sift-sift Super Mtriks d Super Rug Vektor Cturiyti Jurus Pedidik Mtetik FMIPA UNY wcturiyti@yhoo.co Abstrk Sutu triks yg elee-eleey erupk bilg disebut deg triks sederh tu lebih dikel deg triks. Sedgk supertriks

Lebih terperinci

BAB 2 SISTEM BILANGAN DAN KESALAHAN

BAB 2 SISTEM BILANGAN DAN KESALAHAN Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN SUMBER BELAJAR PENUNJANG PLPG 207 MATA PELAJARAN/PAKET KEAHLIAN MATEMATIKA BAB VIII SISTEM BILANGAN REAL DAN PERPANGKATAN Dr. Djdir, M.Pd. Dr. Ilhm Miggi, M.Si J fruddi,s.pd.,m.pd. Ahmd Zki, S.Si.,M.Si

Lebih terperinci

TEOREMA DERET PANGKAT

TEOREMA DERET PANGKAT TEOEMA DEET PANGKAT Kosep Dsr Deret pgkt erupk sutu etuk deret tk higg 3 + ( + + 3( +... ( disusik,, d koefisie i erupk ilg rel. Julh prsil utuk suku pert etuk di ts dlh s yg dpt ditulisk segi s ( + (

Lebih terperinci

ISYARAT DAN SISTEM Bab 4 Deret Fourier Untuk Isyarat Periodik

ISYARAT DAN SISTEM Bab 4 Deret Fourier Untuk Isyarat Periodik KE 5 ISYARA DA SISEM Bb Dr Fourir Uu Isyr Priodi Idh Susilwi, S.., M.Eg. Progrm Sudi i Elro Fuls i d Ilmu Kompur Uivrsis Mrcu Bu Yogyr 9 79 B A B I V DERE FOURIER UUK ISYARA PERIODIK uu Isrusiol. Umum

Lebih terperinci

Persamaan Linier Simultan

Persamaan Linier Simultan Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel

Lebih terperinci

INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q

INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q INTERPOLASI 3 S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : - SEBELUM-UTS Pegtr Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult & Pech Nili Sigiik Akursi d Presisi

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

RELASI REKURENSI. Heru Kurniawan Program Studi Pendidikan Matematika Jalan KHA. Dahlan 3 Purworejo. Abstrak

RELASI REKURENSI. Heru Kurniawan Program Studi Pendidikan Matematika Jalan KHA. Dahlan 3 Purworejo. Abstrak RELASI REKURENSI Heru Kuriw Progrm Studi Pedidik Mtemtik Jl KHA. Dhl Purworejo Abstrk Relsi Rekuresi merupk slh stu mslh dlm Mtemtik Diskrit. Sebuh relsi rekuresi medeiisik suku ke- dri sebuh bris secr

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

MATERI LOGARITMA. Oleh : Hartono

MATERI LOGARITMA. Oleh : Hartono MATERI LOGARITMA Oleh : Hrtoo Mteri dispik pd Peltih Mpel Mtetik SMA/ SMK Progr Pscsrj UNY Yogykrt 01 Kopetesi Kopetesi yg dihrpk dicpi oleh pr pesert setelh ebc odul ii d egikuti peltih dlh pu : ehi kosep

Lebih terperinci

METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemu ke 5 Sistem Persm Liier (SPL) () Rici Kemg Hpsri, S.Si, M.Kom www.rkhcdemy.com/wp Represetsi SPL Betuk umum persm lier deg peuh Dim :,, : koefisie dri persm, d,,..., merupk peuh.

Lebih terperinci

TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN

TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN TEKNIK BARU MENYELESAIKAN SISTEM PERSAMAAN DIFERENSIAL LINEAR ORDE SATU NONHOMOGEN Yo Hedri 1* Asmr Krm Musrii 1 Mhsisw Progrm S1 Mtemtik Dose JurusMtemtik Fkults Mtemtik d Ilmu Pegethu Alm Uiversits Riu

Lebih terperinci

EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen.

EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen. EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA theresivei.wordpress.o A. BENTUK PANGKAT BULAT. Pgkt Bult Positif Igt: 5 5 = (-) = -() = Defiisi Bilg erpgkt ult positif : Mislk ilg ult positif d ilg Rel,

Lebih terperinci

A. Barisan Geometri. r u. 1).Definisi barisan geometri. 2). Suku ke-n barisan geometri

A. Barisan Geometri. r u. 1).Definisi barisan geometri. 2). Suku ke-n barisan geometri A. Bis Geometi ).Defiisi bis geometi Sutu bis yg suku-sukuy dipeoleh deg c meglik suku sebelumy deg sutu kostt (sio/pembdig) tu ili kost. Betuk umum bis geometi (deg suku wl d sio ) dlh : + + + +... +

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

Barisan dan Deret Tak Hingga

Barisan dan Deret Tak Hingga Modul Bris d Deret Tk Higg Dr. Spti Whyuigsih, M.Si. M PENDAHULUAN odul ii meyjik kji tetg Bris d Deret Tk Higg. Kji tetg bris d deret memegg per sgt petig kre sebgi dsr utuk pembhs Itegrl Tetu. Bris d

Lebih terperinci