BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Distilasi Distilasi atau penyulingan adalah suatu metode pemisahan campuran bahan kimia berdasarkan perbedaan kemudahan menguap (volatilitas) bahan dengan titik didih yang berbeda. Distilasi menggunakan panas sebagai agen pemisah campuran, campuran zat dididihkan hingga menguap dan uap ini kemudian didinginkan kembali ke dalam bentuk cairan. Zat yang memiliki titik didih lebih rendah akan menguap lebih dulu. Pada proses pemisahan secara distilasi, fase uap akan segera terbentuk setelah sejumlah cairan dipanaskan pada kondisi tekanan dan suhu tertentu. Uap dipertahankan kontak dengan sisa cairannya (dalam waktu relatif cukup) dengan harapan pada suhu dan tekanan tertentu, antara uap dan sisa cairan akan berada dalam keseimbangan, sebelum campuran dipisahkan menjadi distilat dan residu. Pada pemanasan yang terus menerus, komponen yang lebih volatil akan berubah menjadi fasa uap. Fasa uap yang terbentuk selanjutnya diembunkan (dikondensasi), kemudian akan diperoleh kondensat yang berupa komponenkomponen dalam keadaan yang relatif murni. Distilasi merupakan cara yang paling umum digunakan dalam industri untuk memisahkan suatu campuran yang homogen dalam bentuk larutan. Proses distilasi beroperasi dalam satu perangkat yang terdiri dari beberapa peralatan, yang masing-masing peralatan memiliki fungsi yang berbeda-beda. Peralatan-peralatan yang digunakan pada proses distilasi seperti yang ditunjukkan pada Gambar 2.1 adalah sebagai berikut (Christyananta, 2012) : a. Kolom Distilasi Kolom distilasi berfungsi untuk memisahkan campuran berdasarkan titik didihnya. 4

2 Bab II Tinjauan Pustaka 5 b. Kondenser Kondenser berfungsi untuk mendinginkan produk atas dari kolom distilasi sehingga berubah menjadi fasa cair. c. Reboiler Reboiler berfungsi untuk memanaskan sebagian produk bawah kolom distilasi sehingga berubah menjadi gas. Gas yang terbentuk dipompakan kembali menuju kolom distilasi sebagai pemanas untuk proses distilasi. d. Pompa Pompa berfungsi untuk mengalirkan kondensat sebagai reflux ke kolom distilasi. e. Tangki Pengumpul Tangki pengumpul berfungsi menampung hasil pemisahan dari kedua campuran. Gambar 2.1 Peralatan-peralatan pada proses distilasi 2.2 Jenis-jenis Distilasi Jenis distilasi secara umum Secara umum distilasi dibagi atas 4 jenis, yaitu (Anakunhas, 2012) : a. Distilasi Sederhana Pada distilasi sederhana, dasar pemisahannya adalah perbedaan titik didih yang jauh atau salah satu komponen lebih bersifat volatil dari komponen yang lain

3 Bab II Tinjauan Pustaka 6 dan bekerja pada tekanan atmosfer. Jika campuran dipanaskan maka komponen yang titik didihnya lebih rendah akan menguap lebih dulu. Selain perbedaan titik didih, juga perbedaan kevolatilan, yaitu kecenderungan sebuah komponen untuk menjadi gas. Distilasi ini dilakukan pada tekanan atmosfer. Aplikasi distilasi sederhana digunakan untuk memisahkan campuran air dan alkohol, air dan NaCl, dan lain-lain. b. Distilasi Fraksionasi Distilasi fraksionasi adalah proses pemisahan distilasi ke dalam bagianbagian dengan titik didih makin lama makin tinggi yang selanjutnya pemisahan bagian-bagian ini dimaksudkan untuk destilasi ulang. Distilasi ini berfungsi untuk memisahkan campuran larutan/cairan yang terdiri dari dua komponen atau lebih, dari suatu larutan berdasarkan perbedaan titik didihnya. Distilasi ini dapat digunakan untuk campuran dengan perbedaan titik didih kurang dari 20 C dan bekerja pada tekanan atmosfer atau dengan tekanan rendah. Aplikasi dari distilasi jenis ini digunakan untuk memisahkan komponen-komponen dalam minyak mentah, minyak atsiri, dan lain-lain. Perbedaan distilasi fraksionasi dan distilasi sederhana adalah adanya kolom fraksionasi. Di kolom ini terjadi pemanasan secara bertahap dengan suhu yang berbeda-beda pada setiap plate atau tahapnya. Pemanasan yang berbeda-beda ini bertujuan untuk pemurnian distilat yang lebih dari tahap-tahap di bawahnya. Secara skematis peralatan pada proses distilasi fraksionasi disajikan pada Gambar 2.2. Gambar 2.2 Peralatan pada proses distilasi fraksionasi

4 Bab II Tinjauan Pustaka 7 c. Distilasi Uap Distilasi uap digunakan pada campuran senyawa-senyawa yang memiliki titik didih mencapai 200 C atau lebih. Distilasi uap dapat menguapkan senyawasenyawa ini dengan suhu mendekati 100 C dalam tekanan atmosfer menggunakan uap atau air mendidih. Sifat yang fundamental dari distilasi uap adalah dapat mendistilasi campuran senyawa di bawah titik didih dari masing-masing senyawa campurannya. Selain itu, distilasi uap dapat digunakan untuk campuran yang tidak larut dalam air di semua suhu, tapi dapat didistilasi dengan air. Aplikasi dari distilasi uap adalah untuk mengekstrak beberapa produk alam seperti minyak eucalyptus dari eucalyptus, minyak sitrus dari lemon atau jeruk, dan untuk ekstraksi minyak parfum dari tumbuhan. Campuran dipanaskan melalui uap air yang dialirkan ke dalam campuran dan ditambah juga dengan pemanasan. Uap dari campuran akan naik ke atas menuju ke kondensor menghasilkan distilat dan akhirnya masuk ke labu distilat. d. Distilasi Vakum Distilasi vakum biasanya digunakan jika senyawa yang ingin didistilasi tidak stabil, dengan pengertian dapat terdekomposisi sebelum atau mendekati titik didihnya atau campuran yang memiliki titik didih di atas 150 C. Metode distilasi ini tidak dapat digunakan pada pelarut dengan titik didih yang rendah jika kondensornya menggunakan air dingin karena komponen yang menguap tidak dapat dikondensasi oleh air. Untuk mengurangi tekanan digunakan pompa vakum atau aspirator. Aspirator berfungsi sebagai penurun tekanan pada sistem distilasi vakum. Dari semua jenis-jenis distilasi yang telah dijelaskan di atas, jenis distilasi yang digunakan pada proses pemisahan ethylene ethane di PT Chandra Asri Petrochemical Tbk. adalah distilasi fraksionasi Jenis Distilasi Berdasarkan Jumlah Komponen 2003) : Berdasarkan komponennya, distilasi dibagi menjadi dua, yaitu (Geankoplis,

5 Bab II Tinjauan Pustaka 8 a. Distilasi Dua Komponen (Binary) Distilasi dua komponen merupakan proses pemisahan larutan biner, yaitu larutan yang mengandung dua komponen yang dapat melarut dengan baik. Contoh dari distilasi dua komponen adalah pada proses pemisahan benzene dan toluene yang dapat dilihat pada Gambar 2.3. Gambar 2.3 Distilasi dua komponen benzene toluene Persamaan Neraca Massa Untuk Distilasi Perhitungan neraca massa berfungsi untuk mengetahui fraksi mol komponen di umpan, distilat, dan bottom. Selanjutnya hasil perhitungan tersebut dapat digunakan untuk menentukan jumlah stage teoritis menggunakan kurva McCabe- Thiele untuk distilasi dua komponen. Asumsi yang digunakan pada metode McCabe-Thiele adalah terjadinya kesetimbangan pada menara distilasi antara umpan masuk dengan top traynya dan antara umpan masuk dengan bottom traynya. Dapat dilihat pada Gambar 2.4, fasa cair dan uap memasuki tray, kemudian terjadi kesetimbangan, dan selanjutnya meninggalkan tray. Gambar 2.4 Laju fasa uap dan cair memasuki dan meninggalkan tray

6 Bab II Tinjauan Pustaka 9 Neraca massa totalnya adalah sebagai berikut : V n+1 + L n-1 = V n + L n (1) Neraca massa komponennya adalah sebagai berikut : V n+1 y n+1 + L n-1 x n-1 = V n y n + L n x n (2) Keterangan : V n+1 = laju alir uap dari tray n+1 L n-1 = laju alir cairan dari tray n-1 V n L n = laju alir uap dari tray ke-n = laju alir cairan dari tray ke-n y n+1 = fraksi mol uap suatu komponen di V n+1 x n-1 = fraksi mol cair suatu komponen di L n-1 y n x n = fraksi mol uap dari tray ke-n = fraksi mol cair dari tray ke-n Neraca massa overall di keseluruhan bagian kolom distilasi dihitung dengan menggunakan persamaan (3) : F = D + W (3) Sedangkan, persamaan neraca massa komponennya dapat dilihat pada persamaan (4) : x F. F = x D. D + x W. W (4) Keterangan : x F x D x W F D W = fraksi mol umpan (mol) = fraksi mol distilat (mol) = fraksi mol bottom (mol) = laju alir mol umpan (kmol/jam) = laju alir mol distilat (kmol/jam) = laju alir mol bottom (kmol/jam)

7 Bab II Tinjauan Pustaka 10 Menghitung Jumlah Stage Teoritis (N) Menggunakan Kurva McCabe- Thiele Salah satu metode yang sering digunakan dalam menghitung jumlah stage ideal untuk distilasi dua komponen (binary distillation) adalah dengan menggunakan metode McCabe-Thiele, disamping itu terdapat metode lain, yaitu metode Ponchon Savarit. Bila dibandingkan dengan metode ponchon savarit, maka metode McCabe-Thiele lebih mudah digunakan karena dengan metode McCabe-Thiele tidak memerlukan perhitungan Heat Balance (necara panas) untuk menentukan jumlah stage yang dibutuhkan. Metode McCabe-Thiele ini mengasumsikan bahwa laju alir molar baik liquid maupun vapour atau L/V konstan, atau dikenal juga dengan istilah Constant Molar Overflow (CMO), namun pada keadaan sebenarnya keadaan CMO tidaklah konstan. Dalam perhitungan theoritical stage ada beberapa tahap yang harus dilakukan, yaitu (Ariana, 2010) : 1. Pembuatan kurva kesetimbangan uap cair (biasanya untuk senyawa atau komponen yang lebih ringan) 2. Membuat garis operasi baik seksi rectifying (enriching) maupun stripping 3. Membuat garis umpan/ feed (q-line), q-line ini akan menunjukkan kualitas dari umpan itu sendiri, berada dalam keadaan uap jenuh, liquid jenuh, dan lain-lain 4. Membuat atau menarik garis stage yang memotong kurva kesetimbangan yang memotong kurva kesetimbangan xy, garis operasi rectifying dan stripping yang diawali dari X D dan berakhir pada X B. Pada Gambar 2.5 merupakan contoh penentuan jumlah stage teoritis pada distilasi dua komponen (benzene-toluene) dengan menggunakan grafik McCabe- Thiele.

8

9

10 Bab II Tinjauan Pustaka 13 Gambar 2.7 Hubungan antara reflux ratio (R) dengan jumlah stage (N) Dapat dilihat pada seiring dengan naiknya nilai rasio refluk, maka jumlah stage yang dibutuhkan akan semakin kecil, begitu juga sebaliknya apabila nilai rasio refluk semakin kecil maka jumlah stage yang dibutuhkan akan semakin banyak hingga pada akhirnya jumlah stage akan menjadi tidak terhingga. Jumlah stage yang tidak terhingga terjadi pada nilai rasio refluks minimum. Pada saat jumlah stage tidak terhingga konsentrasi komponen pada liquid dan uap tidak mengalami perubahan. Zona tidak terjadi perubahan ini disebut juga dengan zona invariant, istilah lainnya adalah pinch point (titik pencekik), seperti yang dapat dilihat pada Gambar 2.8 berikut ini. Gambar 2.8 Reflux ratio minimum dan jumlah stage yang tidak terhingga dengan menggunakan metode McCabe-Thiele

11 Bab II Tinjauan Pustaka 14 Untuk menentukan reflux ratio minimum pada distilasi dua komponen digunakan persamaan (7) berikut ini : Keterangan : = reflux ratio minimum = fraksi mol distilat (mol) = fraksi mol uap pada pinch point = fraksi mol cair pada pinch point (7) Umumnya reflux ratio minimum dapat terjadi oleh kondisi : 1. Perpotongan antara garis umpan (q-line) dengan kurva kesetimbangan uap-cair dan dapat juga terjadi pada ketika garis operasi rectifying menyinggung garis kesetimbangan uap-cair. Pada umumnya kondisi ini terjadi pada jenis kurva kesetimbangan normal, q line mempunyai peranan penting daripada kurva kesetimbangan. 2. Garis operasi rectifying menyinggung kurva kesetimbangan uap-cair, titik singgung ditunjukkan oleh pinch point. Umumnya terjadi pada jenis kurva kesetimbangan yang tidak normal, kurva kesetimbangan mempunyai peranan penting dari pada q line. b. Distilasi Multikomponen Pada umumnya, di industri proses pemisahan menggunakan distilasi melibatkan lebih dari dua komponen. Secara umum, desain untuk menara distilasi multikomponen sama dengan distilasi dua komponen (binary). Begitu pula dengan neraca massa, pada distilasi multikomponen terdapat neraca massa untuk masing-masing komponen di dalam campuran. (Geankoplis, 2003) Pada distilasi dua komponen hanya digunakan satu menara untuk memisahkan dua komponen A dan B menjadi komponen yang lebih murni. Komponen A mempunyai sifat lebih volatile daripada komponen B, sehingga pada hasil proses distilasi komponen A sebagai produk atas dan komponen B

12 Bab II Tinjauan Pustaka 15 sebagai produk bawah. Berbeda dengan distilasi dua komponen, pada campuran multikomponen yang terdiri dari n komponen, akan dibutuhkan n 1 fractionator untuk memisahkan komponen-komponen tersebut. Sebagai contoh, untuk memisahkan komponen A, B, dan C. A dan B merupakan komponen yang paling mudah menguap dengan volatilitas berdekatan dan C merupakan komponen yang paling sulit menguap. Untuk memisahkan ketiga komponen tersebut dibutuhkan dua buah kolom seperti pada Gambar 2.9. A, B A Umpan A, B, C 1 2 C B Gambar 2.9 Pemisahan tiga komponen A, B, dan C Umpan yang terdiri dari komponen A, B, dan C didistilasi di kolom 1. Produk atas yang dihasilkan, yaitu komponen A dan B, sedangkan produk bawahnya merupakan komponen C. Di bottom masih dapat terkandung komponen A dan B dalam jumlah yang sedikit (sering disebut trace component). Pada kolom 2 terjadi pemisahan komponen A dan B. Distilat yang dihasilkan, yaitu komponen A dengan sejumlah kecil komponen B, sedangkan pada bottom dihasilkan komponen B yang juga mengandung sedikit komponen A dan C. Pada campuran multikomponen, dengan mengetahui komposisi dari satu komponen tidak dapat langsung mengetahui komposisi dari komponen lainnya. Selain itu, jika umpan mengandung lebih dari dua komponen tidak dapat ditentukan komposisi produk atas dan produk bawahnya secara langsung. Akan

13 Bab II Tinjauan Pustaka 16 tetapi, hal tersebut dapat diketahui dengan menentukan dua komponen kunci (key components). (Sinnott, 2005) Key Components Pada Distilasi Multikomponen Proses pemisahan dari campuran multikomponen pada menara distilasi hanya akan terjadi pada dua komponen saja. Misalnya, untuk campuran A, B, C, D, dan seterusnya, proses pemisahan dalam satu menara distilasi hanya dapat terjadi antara komponen A dan B, atau B dan C, dan seterusnya. Misalnya, pada distilasi multikomponen ini terjadi pemisahan antara komponen A dan B. Komponen A merupakan light key component dan komponen B merupakan heavy key component. Light key component merupakan komponen yang lebih mudah menguap (LK) yang akan dihasilkan pada distilat. Heavy key component merupakan komponen yang lebih sulit untuk menguap (HK) dan akan dihasilkan pada bottom. Komponen-komponen yang lebih mudah menguap dari light key component disebut dengan light components yang akan terdapat dalam jumlah yang sedikit pada bottom. Untuk komponen-komponen yang lebih sulit menguap daripada heavy key components akan terdapat pada distilat dalam jumlah yang sedikit. (Geankoplis, 2003) 2.3 Kesetimbangan Uap-Cair Komposisi uap yang berada dalam kesetimbangan dengan suatu cairan yang terdiri dari komponen-komponen dengan komposisi tertentu ditentukan secara eksperimen. Data komposisi uap ditampilkan pada diagram komposisi terhadap suhu seperti yang ditunjukkan oleh Gambar (Henley, 1981) Gambar 2.10 Kurva antara komposisi dan suhu

14 Bab II Tinjauan Pustaka 17 Tampilan data kesetimbangan uap-cair yang normal diperlihatkan oleh Gambar 2.10a, kurva ABC menunjukkan suatu cairan dengan berbagai komposisi yang mendidih pada berbagai suhu dan kurva ADC menunjukkan komposisi uapnya pada berbagai suhu yang bersangkutan. Contoh, suatu cairan dengan komposisi x 1 akan mendidih pada suhu T 1, dan komposisi uap yang berada dalam kesetimbangan dengan cairan tersebut adalah y 1 (ditunjukkan oleh titik D). Berdasarkan kurva-kurva dalam Gambar 2.10a, b, dan c dapat disimpulkan bahwa untuk sembarang cairan dengan komposisi x 1 akan menghasilkan uap dengan komposisi tertinggi dimiliki oleh komponen (zat) yang lebih mudah menguap (volatile). Simbol-simbol x dan y menunjukkan fraksi mol komponen yang lebih volatile di dalam cairan dan di dalam uap. Pada Gambar 2.10b dan c terdapat suatu komposisi kritis (critical composition) x g. Pada titik ini uap memiliki komposisi yang sama dengan cairan, dengan demikian tidak ada perubahan yang terjadi pada proses pendidihan. Campuran kritis itu disebut azeotrope. Diagram-diagram yang disajikan pada Gambar 2.10 tersebut berlaku untuk kondisi tekanan konstan. Perlu diingat bahwa komposisi uap yang berada dalam kesetimbangan dengan cairan berubah dengan berubahnya tekanan. Untuk kegunaan proses distilasi, data kesetimbangan uap-cair lebih bermanfaat jika disajikan dalam bentuk grafik x versus y pada tekanan konstan, hal ini disebabkan kebanyakan operasi distilasi dalam industri dilakukan pada tekanan konstan. Grafik yang dimaksud ditunjukkan oleh Gambar Perlu dicatat bahwa suhu bervariasi di sepanjang kurva.

15 Bab II Tinjauan Pustaka 18 Gambar 2.11 Kurva perbandingan antara fraksi mol cair dan fraksi mol umpan pada tekanan tetap 2.4 Data Kesetimbangan Pada Distilasi Multikomponen Pada distilasi multikomponen, hukum Raoult dapat digunakan untuk menentukan komposisi fasa uap dalam keadaan setimbang dengan fasa liquidnya. Misalkan, untuk komponen A, B, C, dan D rumus untuk mencari komposisi fasa uapnya adalah sebagai berikut (Geankoplis, 2003) : (9) berikut : Untuk senyawa hidrokarbon, data kesetimbangannya dirumuskan sebagai (10) merupakan konstanta kesetimbangan fasa uap cair atau koefisien distribusi untuk komponen A. Nilai untuk senyawa hidrokarbon ringan (metana sampai dekana) sudah ditentukan secara semi-empiris dan masing-masing nilai merupakan fungsi dari suhu dan tekanan. Pada penentuan nilai relative volatility ( i ) untuk masing-masing komponen pada campuran multikomponen digunakan cara yang sama seperti pada distilasi dua komponen, maka : (11)

16 Bab II Tinjauan Pustaka 19 Relative volatility ( i ) ini adalah ukuran kemudahan terpisahkan lewat eksploitasi perbedaan volatillitas. Menurut konsensus, relative volatility ditulis sebagai perbandingan nilai K dari komponen lebih mudah menguap (MVC = more-volatile component) terhadap nilai K komponen yang lebih sulit menguap. Oleh karena itu, jika harga mendekati satu atau bahkan satu, maka kedua komponen sangat sulit bahkan tidak mungkin dipisahkan melalui operasi distilasi. 2.5 Bubble Point dan Dew Point Pada suatu tekanan tertentu, nilai bubble point dari campuran senyawa multikomponen harus memenuhi persamaan. Untuk campuran A, B, C, dan D dengan C sebagai light key component, maka : (12) Perhitungan dilakukan dengan cara trial and error. Pertama, dilakukan pengasumsian suhu sehingga diperoleh nilai. Selanjutnya, dapat dihitung nilai, jika nilainya lebih atau kurang dari 1.0 maka dilakukan asumsi suhu yang berbeda. Nilai suhu yang dapat memenuhi persamaan merupakan bubble point. Untuk perhitungan nilai dew point juga digunakan cara trial and error suhu hingga memenuhi persamaan sebagai berikut : (13) 2.6 Jumlah Stage Minimum (N m ) Jumlah stage minimum (N m ) untuk distilasi multikomponen dapat ditentukan dengan menggunakan persamaan Fenske. Akan tetapi, hanya dua komponen saja yang digunakan, yaitu heavy key (HK) dan light key (LK). Rumus perhitungannya adalah sebagai berikut :! "#$%&' ()*,'+)*-&'+./,'(./ (6789 (14) :;<=>?:;@:;A (15)

17 Bab II Tinjauan Pustaka 20 Keterangan : = fraksi mol light key di distilat = fraksi mol heavy key di bottom = relative volatility rata-rata dari light key = relative volatitity light key pada suhu top (dew point) = relative volatitity light key pada suhu bottom (bubble point) 2.7 Metode Perhitungan Shortcut Untuk Distilasi Multikomponen Perhitungan menggunakan metode shortcut dapat digunakan untuk membantu designer dalam menyelesaikan beberapa masalah secara cepat, seperti menentukan kondisi optimum dan dapat juga digunakan untuk memperoleh informasi tentang estimasi biaya. Berikut ini akan dijelaskan beberapa perhitungan dengan menggunakan metode shortcut Metode Shortcut untuk Reflux Ratio Minimum (Rm) Pada distilasi multikomponen, terdapat dua pinch points, yaitu satu berada di atas tray umpan dan satu lagi berada di bawahnya. Penentuan nilai Rm dengan menggunakan metode plate-by-plate dengan cara trial and error membutuhkan waktu yang cukup lama jika dihitung manual. Pada metode shortcut digunakan persamaan Underwood untuk menghitung Rm menggunakan nilai rata-rata dan mengasumsikan laju alir konstan di kedua bagian menara distilasi. Untuk menentukan nilai reflux ratio minimum digunakan dua persamaan berikut : (16) Keterangan : = relative volatility untuk komponen i pada umpan = fraksi komponen i pada umpan

18

19

20 Bab II Tinjauan Pustaka Jenis-jenis Tray Tower Untuk mendapatkan produk yang baik diperlukan alat kontak antara uap dengan cairan. Beberapa jenis alat kontak antara uap dengan cairan adalah bubble cap tray, sieve tray, dan valve tray. a. Bubble Cap Tray Bubble cap tray memiliki riser atau chimney yang dipasang pada setiap lubang dan ditutupi oleh sebuah cap. Diantara cap dan riser terdapat spasi atau ruang tempat dilewatkannya uap. Uap naik melewati chimney dan langsung dijatuhkan oleh cap ke bagian plate sehingga terjadi kontak dengan fasa cairnya. Pada Ethylene Fractionator terdapat tray-tray secara horizontal dengan ratusan bubble cap di dalamnya. Bubble cap dapat menghalangi gas melewati bagian atas kolom sehingga gas akan mengalami kontak dengan cairan. Bubble cap dapat naik dan turun dengan adanya kenaikkan tekanan dari gas. Secara skematis, bubble cap ditunjukkan pada Gambar 2.14, sedangkan proses yang terjadi pada bubble cap tray disajikan pada Gambar Gambar 2.14 Bubble cap

21

22 Bab II Tinjauan Pustaka 25 Meskipun sieve tray mempunyai kapasitas yang lebih besar pada kondisi operasi yang sama dibandingkan dengan bubble cap, namun sieve tray mempunyai satu kekurangan yang cukup serius pada kecepatan uap yang relatif lebih rendah dibandingkan pada kondisi operasi normal. Kecepatan uap minimum ini yang harus sangat diperhatikan dalam mendesain sieve tray menjadi kesulitan tersendiri dalam kondisi operasi sesungguhnya. Efisiensi sieve tray sama besarnya dengan bubble cap pada kondisi desain yang sama, namun menurun jika kapasitasnya berkurang di bawah 60% dari desain. Pada sieve tray, aliran uap berfungsi mencegah cairan mengalir bebas ke bawah melalui lubang-lubang. Setiap plate dirancang mempunyai kecepatan uap dumps shower, yaitu suatu peristiwa mengalirnya cairan dengan bebas ke bawah melalui lubang-lubang pada plate. c. Valve Tray Pada valve tray (Gambar 2.17), terdapat cap yang dapat naik dan turun. Aliran uap mengangkat cap, cap yang terangkat akan menyebabkan uap mengalir secara horizontal menuju fasa cair. Hal tersebut menghasilkan proses pencampuran yang lebih baik dibandingkan dengan sieve tray. Gambar 2.17 Valve tray

23 Bab II Tinjauan Pustaka 26 cap tray. Jenis tray yang digunakan pada ethylene fractionator adalah jenis bubble Efisiensi Tray Pada umumnya, diasumsikan bahwa fasa uap meninggalkan tray dalam keadaan setimbang dengan fasa cairnya. Akan tetapi, jika waktu kontak dan derajat pencampuran pada tray nya tidak berjalan dengan baik, maka keluarannya tidak dalam keadaan stabil. Hal tersebut mengakibatkan efisiensi tray nya tidak mencapai 100% sehingga harus digunakan tray yang lebih banyak dari jumlah tray teoritis yang diperoleh dari perhitungan. Untuk lebih memudahkan dalam menentukan efisiensi tray, keseluruhan sistem pada menara distilasi dapat dilihat secara overall. Efisiensi tray bergantung pada rasio antara jumlah tray ideal (teoritis) dengan jumlah tray aktual yang digunakan. Penentuan efisiensi tray dapat dilihat pada persamaan berikut : (18) Keterangan : = efisiensi tray overall (%) ChemCad ChemCad adalah sebuah software yang diproduksi oleh Chemstation, yang merupakan gabungan dari beberapa process engineering software dalam proses kimia. ChemCad berfungsi untuk membuat simulasi dari suatu proses kimia yang dapat membantu para engineer dalam menangani permasalahan-permasalahan yang terjadi pada suatu proses. Selain itu, ChemCad juga dapat digunakan untuk meningkatkan produktivitas dari suatu industri. ChemCad menyediakan fasilitas add-ons dan beberapa features bagi para penggunanya yang dapat disesuaikan dengan kebutuhan untuk proses di suatu industri tertentu. ( Pada Tugas Akhir ini digunakan ChemCad.v Rangkaian produk dari ChemCad adalah sebagai berikut:

24 Bab II Tinjauan Pustaka 27 a. CC-STEADY STATE. Software simulasi proses teknik kimia yang berisi data-data komponen kimia, metode termodinamika, dan unit operasi yang dapat digunakan untuk simulasi proses kimia steady-state yang dilakukan secara terus menerus dari skala laboratorium menjadi skala industri. Software ini baik digunakan untuk merancang proses atau perhitungan proses yang sudah ada. b. CC-DYNAMICS adalah simulasi proses yang memeriksa keakuratan simulasi steady-state dengan melakukan analisa dinamik dari flowsheet. ChemCad dynamics digunakan untuk operability check-out, PID loop tuning, operator training, dan kontrol proses secara online. c. CC-THERM merupakan simulator yang digunakan untuk mempercepat kinerja dan mengakuratkan heat exchanger. ChemCad Therm digunakan untuk heat exchanger jenis shell-and-tube, plate-and-frame, air-cooled, dan double-pipe exchangers. d. CC-FLASH menyediakan physical properties dan perhitungan fasa kesetimbangan suatu komponen atau senyawa. e. CC-BATCH merupakan simulator untuk distilasi batch yang sangat fleksibel dan dilengkapi dengan berbagai macam modus operasi. Selain itu, ChemCad Batch memiliki kemampuan untuk membuat beberapa model tahapan dan kondisi operasi. ChemCad batch mengoptimasi proses batch dan meningkatkan produktivitas.

Laporan Praktikum Operasi Teknik Kimia II Kolom Berpacking (HETP) BAB I PENDAHULUAN

Laporan Praktikum Operasi Teknik Kimia II Kolom Berpacking (HETP) BAB I PENDAHULUAN BAB I PENDAHULUAN I.1 Latar Belakang Destilasi adalah proses pemisahan secara fisik yang berdasarkan atas perbedaan titik didih dan sedikitnya dibutuhkan dua komponen proses pemisahan tidak dapat dilakukan

Lebih terperinci

BAB IV. PERHITUNGAN STAGE CARA PENYEDERHANAAN (Simplified Calculation Methods)

BAB IV. PERHITUNGAN STAGE CARA PENYEDERHANAAN (Simplified Calculation Methods) BAB IV. PERHITUNGAN STAGE CARA PENYEDERHANAAN (Simplified Calculation Methods) Di muka telah dibicarakan tentang penggunaan diagram entalpi komposisi pada proses distilasi dan penggunaan diagram (x a y

Lebih terperinci

BAB I DISTILASI BATCH

BAB I DISTILASI BATCH BAB I DISTILASI BATCH I. TUJUAN 1. Tujuan Instruksional Umum Dapat melakukan percobaan distilasi batch dengan system refluk. 2. Tujuan Instrusional Khusus Dapat mengkaji pengaruh perbandingan refluk (R)

Lebih terperinci

Bab VI. CAMPURAN MULTI KOMPONEN

Bab VI. CAMPURAN MULTI KOMPONEN Bab VI. CAMPURAN MULTI KOMPONEN Pada bab ini akan dibahas secara ringkas prinsip pemisahan multi komponen. Pembahasan pemisahan campuran multi komponen bersifat singkat karena secara prinsip atau konsep

Lebih terperinci

PMD D3 Sperisa Distantina

PMD D3 Sperisa Distantina PMD D3 Sperisa Distantina Materi sebelumnya adalah neraca eksternal, untuk menghitung jumlah stage harus dianalisis neraca internal. Materi Neraca internal adalah materi optional, diberikan jika Neraca

Lebih terperinci

BASIC OF SHORT CUT & RIGOROUS COLUMN DISTILLATION SIMULATION IN HYSYS. CREATED BY DENNY FIRMANSYAH

BASIC OF SHORT CUT & RIGOROUS COLUMN DISTILLATION SIMULATION IN HYSYS. CREATED BY DENNY FIRMANSYAH BASIC OF SHORT CUT & RIGOROUS COLUMN DISTILLATION SIMULATION IN HYSYS CREATED BY DENNY FIRMANSYAH Email : dennyfirmansyah49@gmail.com EXAMPLE CASE Sebuah larutan yang merupakan campuran dari komponen methanol

Lebih terperinci

FISIKA 2. Pertemuan ke-4

FISIKA 2. Pertemuan ke-4 FISIKA 2 Pertemuan ke-4 Teori Termodinamika Bila suatu campuran memenuhi sifat ideal, baik fasa gas dan fasa cairannya, maka hubungan keseimbangannya dapat dinyatakan dengan Hukum Raoult dan Dalton: dengan

Lebih terperinci

PERANCANGAN TRAY TOWER. Asep Muhamad Samsudin

PERANCANGAN TRAY TOWER. Asep Muhamad Samsudin PERANCANGAN TRAY TOWER PERANCANGAN ALAT PROSES Asep Muhamad Samsudin Ruang Lingkup 1. Pemilihan Tipe Kolom 2. Penentuan Kondisi operasi 3. Perancangan Tray Tower 4. Perancangan Packed Tower Penentuan Kondisi

Lebih terperinci

BAB II. KESEIMBANGAN

BAB II. KESEIMBANGAN BAB II. KESEIMBANGAN Pada perhitungan stage wise contact konsep keseimbangan memegang peran penting selain neraca massa dan neraca panas. Konsep rate processes tidak diperhatikan pada alat kontak jenis

Lebih terperinci

PEMISAHAN DAN PEMURNIAN ZAT CAIR. Distilasi dan Titik Didih

PEMISAHAN DAN PEMURNIAN ZAT CAIR. Distilasi dan Titik Didih PEMISAHAN DAN PEMURNIAN ZAT CAIR Distilasi dan Titik Didih I. Tujuan 1.1 Mengetahui prinsip destilasi dan pengertian campuran azeotrop 1.2 Dapat mengkalibrasi thermometer dan dapat merangkai peralatan

Lebih terperinci

Laporan Praktikum Kimia Fisik

Laporan Praktikum Kimia Fisik Laporan Praktikum Kimia Fisik DestilasiCampuranBiner Oleh :Anindya Dwi Kusuma Marista (131424004) Annisa Novita Nurisma (131424005) Rahma Ausina (131424022) Kelas : 1A- Teknik Kimia Produksi Bersih Politeknik

Lebih terperinci

Penuntun praktikum DISTILASI BATCH

Penuntun praktikum DISTILASI BATCH Penuntun praktikum DISTILASI BATCH I. Pendahuluan Distilasi adalah unit operasi yang sudah ratusan tahun diaplikasikan secara luas. Di sperempat abad pertama dari abad ke-20 ini, aplikasi unit distilasi

Lebih terperinci

BAB I PENDAHULUAN. Pemisahan campuran azeotrop multikomponen dengan menggunakan

BAB I PENDAHULUAN. Pemisahan campuran azeotrop multikomponen dengan menggunakan BAB I PENDAHULUAN 1.1. Latar Belakang Pemisahan campuran azeotrop multikomponen dengan menggunakan kolom destilasi seperti pada azeotropic distillation memerlukan beberapa kolom dengan urutan tertentu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Etanol Etanol merupakan bahan yang volatile, mudah terbakar, jernih, dan merupakan cairan yang tidak berwarna. Salah satu sifat istimewa dari etanol adalah volume shrinkage

Lebih terperinci

Ruang Lingkup. 1. Pemilihan Tipe Kolom 2. Penentuan Kondisi operasi 3. Perancangan Tray Tower 4. Perancangan Packed Tower

Ruang Lingkup. 1. Pemilihan Tipe Kolom 2. Penentuan Kondisi operasi 3. Perancangan Tray Tower 4. Perancangan Packed Tower Ruang Lingkup 1. Pemilihan Tipe Kolom 2. Penentuan Kondisi operasi 3. Perancangan Tray Tower 4. Perancangan Packed Tower Penentuan Kondisi Operasi Kolom Kondisi operasi kolom ditentukan oleh pasangan suhu

Lebih terperinci

PRAKTIKUM KIMIA ORGANIK. Percobaan 1 PEMISAHAN DAN PEMURNIAN ZAT CAIR. Distilasi dan Titik Didih

PRAKTIKUM KIMIA ORGANIK. Percobaan 1 PEMISAHAN DAN PEMURNIAN ZAT CAIR. Distilasi dan Titik Didih PRAKTIKUM KIMIA ORGANIK Percobaan 1 PEMISAHAN DAN PEMURNIAN ZAT CAIR Distilasi dan Titik Didih Disusun oleh : NAMA : FAJRI ZAKIYYATU SA ADAH NPM : 10060312091 SHIFT / KELOMPOK : C / 2 TANGGAL PRAKTIKUM

Lebih terperinci

LAPORAN PRAKTIKUM KIMIA ORGANIK. Pemisahan dan Pemurnian Zat Cair. Distilasi dan Titik Didih. Nama : Agustine Christela Melviana NIM :

LAPORAN PRAKTIKUM KIMIA ORGANIK. Pemisahan dan Pemurnian Zat Cair. Distilasi dan Titik Didih. Nama : Agustine Christela Melviana NIM : LAPORAN PRAKTIKUM KIMIA ORGANIK Pemisahan dan Pemurnian Zat Cair Distilasi dan Titik Didih Nama : Agustine Christela Melviana NIM : 11210031 Tanggal Percobaan : 19 September 2013 Tanggal Pengumpulan Laporan

Lebih terperinci

DISTILASI 08/03/2018 Nur Istianah-KP1-Distilasi-2015

DISTILASI 08/03/2018 Nur Istianah-KP1-Distilasi-2015 DISTILASI Distilasi Proses pemisahan dua komponen atau lebih berdasarkan perbedaan titik didihnya atau volatilitas Pemisahan tepat terjadi pasa saat kondisi setimbang atau equilibrium Feed Distillate Residue/

Lebih terperinci

Aplikasi data keseimbangan uap-cair: 1. Penentuan kondisi jenuh, seperti uap jenuh dan cair jenuh. 2. Penentuan jumlah stage pada Menara Distilasi.

Aplikasi data keseimbangan uap-cair: 1. Penentuan kondisi jenuh, seperti uap jenuh dan cair jenuh. 2. Penentuan jumlah stage pada Menara Distilasi. MATERI : MENARA DISTILASI CAMPURAN BINER PMD D3 Sperisa Distantina Aplikasi data keseimbangan uap-cair: 1. Penentuan kondisi jenuh, seperti uap jenuh dan cair jenuh. 2. Penentuan jumlah stage pada Menara

Lebih terperinci

MATERI : MENARA DISTILASI CAMPURAN BINER

MATERI : MENARA DISTILASI CAMPURAN BINER 1 OTK 3 S1 Sperisa Distantina MATERI : MENARA DISTILASI CAMPURAN BINER Sumber Pustaka : Geankoplis, C.J., 1985, Transport Processes and Unit Operation, Prentice Hall, Inc., Singapore. Wankat, P.C., 1988,

Lebih terperinci

PENGARUH KENAIKKAN REFLUX RATIO TERHADAP KEBUTUHAN PANAS PADA KOLOM DISTILASI DENGAN DISTRIBUTED CONTROL SYSTEM (DCS)

PENGARUH KENAIKKAN REFLUX RATIO TERHADAP KEBUTUHAN PANAS PADA KOLOM DISTILASI DENGAN DISTRIBUTED CONTROL SYSTEM (DCS) TUGAS AKHIR PENGARUH KENAIKKAN REFLUX RATIO TERHADAP KEBUTUHAN PANAS PADA KOLOM DISTILASI DENGAN DISTRIBUTED CONTROL SYSTEM (DCS) (The Influence Of Reflux Ratio Increasment To Heat Requiry at Distilation

Lebih terperinci

Kumpulan Laporan Praktikum Kimia Fisika PERCOBAAN VI

Kumpulan Laporan Praktikum Kimia Fisika PERCOBAAN VI PERCOBAAN VI Judul Percobaan : DESTILASI Tujuan : Memisahkan dua komponen cairan yang memiliki titik didih berbeda. Hari / tanggal : Senin / 24 November 2008. Tempat : Laboratorium Kimia PMIPA FKIP Unlam

Lebih terperinci

TINJAUAN TEORITIS PERANCANGAN KOLOM DISTILASI UNTUK PRA-RENCANA PABRIK SKALA INDUSTRI

TINJAUAN TEORITIS PERANCANGAN KOLOM DISTILASI UNTUK PRA-RENCANA PABRIK SKALA INDUSTRI TINJAUAN TEORITIS PERANCANGAN KOLOM DISTILASI UNTUK PRA-RENCANA PABRIK SKALA INDUSTRI Leily Nurul Komariah, A. F. Ramdja, Nicky Leonard Jurusan Teknik Kimia Fakultas Teknik Universitas Sriwijaya e-mail

Lebih terperinci

DISTILASI BERTAHAP BATCH (DBB)

DISTILASI BERTAHAP BATCH (DBB) MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA DISTILASI BERTAHAP BATCH (DBB) Disusun oleh: Dinna Rizqi Awalia Dr. Danu Ariono Dr. Ardiyan Harimawan PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNOLOGI

Lebih terperinci

PERSENTASE PRODUK ETANOL DARI DISTILASI ETANOL AIR DENGAN DISTRIBUTE CONTROL SYSTEM (DCS) PADA BERBAGAI KONSENTRASI UMPAN

PERSENTASE PRODUK ETANOL DARI DISTILASI ETANOL AIR DENGAN DISTRIBUTE CONTROL SYSTEM (DCS) PADA BERBAGAI KONSENTRASI UMPAN TUGAS AKHIR PERSENTASE PRODUK ETANOL DARI DISTILASI ETANOL AIR DENGAN DISTRIBUTE CONTROL SYSTEM (DCS) PADA BERBAGAI KONSENTRASI UMPAN (PERCENTAGE OF ETHANOL PRODUCT FROM ETHANOL WATER DISTILATION WITH

Lebih terperinci

BAB III. PERHITUNGAN STAGE SEIMBANG

BAB III. PERHITUNGAN STAGE SEIMBANG BAB III. PERHITUNGAN STAGE SEIMBANG Konsep stage seimbang dapat dipergunakan untuk memperkirakan hasil pemisahan suatu campuran. Konsep ini menggunakan dasar bahwa arus yang keluar stage dalam keadaan

Lebih terperinci

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 2 EQUILIBRIUM STILL

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 2 EQUILIBRIUM STILL PRKTIKUM OPERSI TEKNIK KIMI II MODUL 2 EQUILIRIUM STILL LORTORIUM RISET DN OPERSI TEKNIK KIMI PROGRM STUDI TEKNIK KIM FKULTS TEKNOLOGI INDUSTRI UPN VETERN JW TIMUR SURY EQUILIRIUM STILL TUJUN Percobaan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 DESKRIPSI FASILITAS PEMROSESAN GAS [1] Fasilitas produksi migas yang digunakan pada studi kasus ini menghasilkan produk berupa minyak mentah, gas alam yang dialirkan melalui

Lebih terperinci

MAKALAH KIMIA PEMISAHAN

MAKALAH KIMIA PEMISAHAN MAKALAH KIMIA PEMISAHAN Destilasi Bertingkat DISUSUN OLEH : Nama :1. Shinta Lestari ( A1F014011) 2. Liis Panggabean ( A1F014018) 3. Dapot Parulian M ( A1F014021) 4. Wemiy Putri Yuli ( A1F014022) 5. Epo

Lebih terperinci

KOLOM BERPACKING ( H E T P )

KOLOM BERPACKING ( H E T P ) PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 1 KOLOM BERPACKING ( H E T P ) LABORATORIUM RISET DAN OPERASI TEKNIK KIMIA PROGRAM STUDI TEKNIK KIMA FAKULTAS TEKNOLOGI INDUSTRI UPN VETERAN JAWA TIMUR SURABAYA

Lebih terperinci

PERANCANGAN PACKED TOWER. Asep Muhamad Samsudin

PERANCANGAN PACKED TOWER. Asep Muhamad Samsudin PERANCANGAN PACKED TOWER PERANCANGAN ALAT PROSES Asep Muhamad Samsudin Ruang Lingkup 1. Perhitungan Tinggi Kolom Packing 2. Perhitungan Diameter Kolom Perhitungan Tinggi Kolom Packing Tinggi kolom packing

Lebih terperinci

DESAIN ALAT DISTILASI UNTUK MEMPEROLEH ETANOL DENGAN KADAR OPTIMUM

DESAIN ALAT DISTILASI UNTUK MEMPEROLEH ETANOL DENGAN KADAR OPTIMUM DESAIN ALAT DISTILASI UNTUK MEMPEROLEH ETANOL DENGAN KADAR OPTIMUM Widji Utami, Surya Rosa Putra Laboratorium Biokimia, Fakultas Matematika dan Ilmu Pengetahuan Alam ITS uut@chem.its.ac.id ABSTRAK Packed

Lebih terperinci

DATA KESETIMBANGAN UAP-AIR DAN ETHANOL-AIR DARI HASIL FERMENTASI RUMPUT GAJAH

DATA KESETIMBANGAN UAP-AIR DAN ETHANOL-AIR DARI HASIL FERMENTASI RUMPUT GAJAH Jurnal Teknik Kimia : Vol. 6, No. 2, April 2012 65 DATA KESETIMBANGAN UAP-AIR DAN ETHANOL-AIR DARI HASIL FERMENTASI RUMPUT GAJAH Ni Ketut Sari Jurusan Teknik Kimia Fakultas Teknologi Industry UPN Veteran

Lebih terperinci

TRANSFER MASSA ANTAR FASE. Kode Mata Kuliah :

TRANSFER MASSA ANTAR FASE. Kode Mata Kuliah : TRANSFER MASSA ANTAR FASE Kode Mata Kuliah : 2045330 Bobot : 3 SKS ALAT-ALAT TRANSFER MASSA Perancangan alat transfer massa W A = W A = N A A jumlah A yang ditransfer waktu N A : Fluks molar atau massa

Lebih terperinci

ALAT TRANSFER MASSA ABSORBER DAN STRIPPER

ALAT TRANSFER MASSA ABSORBER DAN STRIPPER PMD D3 Sperisa Distantina ALAT TRANSFER MASSA ABSORBER DAN STRIPPER Silabi D3 Teknik Kimia: 1. Prinsip dasar alat transfer massa absorber dan stripper. 2. Variabel-variabel proses alat absorber dan stripper.

Lebih terperinci

LAPORAN HASIL PENELITIAN

LAPORAN HASIL PENELITIAN LAPORAN HASIL PENELITIAN KAJIAN KINERJA MEDIA KONDENSASI UNTUK PEMURNIAN ETHANOL Oleh : 1. Suharto Wibowo ( NPM. 0631010047 ) 2. Mochamad Yanuar Nadzif ( NPM. 0731210070 ) JURUSAN TEKNIK KIMIA FAKULTAS

Lebih terperinci

BAB I. PENDAHULUAN OTK di bidang Teknik Kimia?

BAB I. PENDAHULUAN OTK di bidang Teknik Kimia? BAB I. PENDAHULUAN OTK di bidang Teknik Kimia? Aplikasi dasar-dasar ilmu pengetahuan alam yang dirangkai dengan dasar ekonomi dan hubungan masyarakat pada bidang yang berkaitan Iangsung dengan proses dan

Lebih terperinci

PERCOBAAN 01 PEMISAHAN DAN PEMURNIAN ZAT CAIR: DISTILASI, TITIK DIDIH (KI- 2051)

PERCOBAAN 01 PEMISAHAN DAN PEMURNIAN ZAT CAIR: DISTILASI, TITIK DIDIH (KI- 2051) PERCOBAAN 01 PEMISAHAN DAN PEMURNIAN ZAT CAIR: DISTILASI, TITIK DIDIH (KI- 2051) Tanggal Praktikum : 11 September 2015 Tanggal Pengumpulan: 18 September 2015 Disusun oleh : Ahdina Karima 10414015 Kelompok

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES

BAB III SPESIFIKASI ALAT PROSES BAB III SPESIFIKASI ALAT PROSES III.. Spesifikasi Alat Utama Alat-alat utama di pabrik ini meliputi mixer, static mixer, reaktor, separator tiga fase, dan menara destilasi. Spesifikasi yang ditunjukkan

Lebih terperinci

Kesetimbangan Fasa Bab 17

Kesetimbangan Fasa Bab 17 14.49 Pada diagram fase dibawah ini kesetimbangan cair uap digambarkan sebagai T terhadap xa pada tekanan konstan, tentukan fase-fase dan hitunglah derajat kebebasan dari daerah yang ditandai. Jawab: Daerah

Lebih terperinci

Pemisahan Distilasi Azeotrop. Heri Rustamaji. Referensi:

Pemisahan Distilasi Azeotrop. Heri Rustamaji. Referensi: Pemisahan Distilasi Azeotrop Heri Rustamai Referensi: 1. Seider, W.D., Seider, J.D. and Lewin, D.R., 2003, Product & Process Design Principles - Synthesis, Analysis & Evaluation, 2nd Ed. 2. Smith, R. Chemical

Lebih terperinci

MENENTUKAN SUHU MINIMAL PADA CONDENSOR DAN REBOILER DENGAN MENGGUNAKAN KESETIMBANGAN

MENENTUKAN SUHU MINIMAL PADA CONDENSOR DAN REBOILER DENGAN MENGGUNAKAN KESETIMBANGAN MENENTUKAN SUHU MINIMAL PADA CONDENSOR DAN REBOILER DENGAN MENGGUNAKAN KESETIMBANGAN oleh Lilis Harmiyanto *) ABSTRAK Di dalam proses distilasi untuk memisahkan gas-gas dengan cairannya perlu pengaturan

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES

BAB III SPESIFIKASI ALAT PROSES BAB III SPESIFIKASI ALAT PROSES Alat proses pabrik isopropil alkohol terdiri dari tangki penyimpanan produk, reaktor, separator, menara distilasi, serta beberapa alat pendukung seperti kompresor, heat

Lebih terperinci

STRATEGI KONTROL KOLOM DISTILASI TUNGGAL SISTEM BINER METANOL-AIR

STRATEGI KONTROL KOLOM DISTILASI TUNGGAL SISTEM BINER METANOL-AIR STRATEGI KONTROL KOLOM DISTILASI TUNGGAL SISTEM BINER METANOL-AIR (CONTROL STRATEGY OF SINGLE DISTILLATION COLOMN BINARY SYSTEM OF METHANOL-WATER) Totok R. Biyanto 1), Heri Wahyudi 1),Hari Hadi Santoso

Lebih terperinci

2. Fase komponen dan derajat kebebasan. Pak imam

2. Fase komponen dan derajat kebebasan. Pak imam 2. Fase komponen dan derajat kebebasan Pak imam Fase dan komponen Fase adalah keadaan materi yang seragam di seluruh bagiannya, dalam komposisi kimia maupun fisiknya. (Gibbs) Banyaknya fase diberi lambang

Lebih terperinci

ATK I DASAR-DASAR NERACA MASSA ASEP MUHAMAD SAMSUDIN, S.T.,M.T.

ATK I DASAR-DASAR NERACA MASSA ASEP MUHAMAD SAMSUDIN, S.T.,M.T. ATK I DASAR-DASAR NERACA MASSA ASEP MUHAMAD SAMSUDIN, S.T.,M.T. Pembuatan Gula Berapa banyak air yang dihilangkan didalam evaporator (lb/jam)? Berapa besar fraksi massa komponen-komponen dalam arus buangan

Lebih terperinci

Kesetimbangan Fasa Cair-Cair dan Cair Uap

Kesetimbangan Fasa Cair-Cair dan Cair Uap Kesetimbangan Fasa Cair-Cair dan Cair Uap Kiftiyah Yuni Fatmawardi*, Teguh Andy A.M, Vera Nurchabibah, Nadhira Izzatur Silmi, Yuliatin, Pretty Septiana, Ilham Al Bustomi Kelompok 5, Kelas AB, Jurusan Kimia,

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1 Uraian Proses 3.1.1 Persiapan Bahan Baku Proses pembuatan Acrylonitrile menggunakan bahan baku Ethylene Cyanohidrin dengan katalis alumina. Ethylene Cyanohidrin pada T-01

Lebih terperinci

SIMULASI KONSUMSI ENERGI PEMURNIAN BIOETANOL MENGGUNAKAN VARIASI DIAGRAM ALIR DISTILASI EKSTRAKTIF DENGAN KONFIGURASI, V

SIMULASI KONSUMSI ENERGI PEMURNIAN BIOETANOL MENGGUNAKAN VARIASI DIAGRAM ALIR DISTILASI EKSTRAKTIF DENGAN KONFIGURASI, V SIMULASI KONSUMSI ENERGI PEMURNIAN BIOETANOL MENGGUNAKAN VARIASI DIAGRAM ALIR DISTILASI EKSTRAKTIF DENGAN KONFIGURASI, V Johana Tanaka* dan Dr. Budi Husodo Jurusan Teknik Kimia, Fakultas Teknologi Industri,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Absorpsi dan stripper adalah alat yang digunakan untuk memisahkan satu komponen atau lebih dari campurannya menggunakan prinsip perbedaan kelarutan. Solut adalah komponen

Lebih terperinci

Lebih Jauh tentang Absorpsi Gas dan Pembahasan CONTOH: Soal #2

Lebih Jauh tentang Absorpsi Gas dan Pembahasan CONTOH: Soal #2 Kuliah #3: Lebih Jauh tentang Absorpsi Gas dan Pembahasan CONTOH: Soal #2 Prof. Dr. Ir. Setijo Bismo, DEA. DTK-FTUI, 27 Oktober 2015 Beberapa Model Kolom Absorpsi A. Kolom Talam (Tray-type Plate Columns)

Lebih terperinci

LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA

LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA Disusun oleh : 1. Fatma Yunita Hasyim (2308 100 044)

Lebih terperinci

V. SPESIFIKASI ALAT. Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan

V. SPESIFIKASI ALAT. Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan V. SPESIFIKASI ALAT Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan pabrik furfuril alkohol dari hidrogenasi furfural. Berikut tabel spesifikasi alat-alat yang digunakan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA II-1 BAB II TINJAUAN PUSTAKA 2.1 Tetradecene Senyawa tetradecene merupakan suatu cairan yang tidak berwarna yang diperoleh melalui proses cracking senyawa asam palmitat. Senyawa ini bereaksi dengan oksidan

Lebih terperinci

PROSES PEMISAHAN FISIK

PROSES PEMISAHAN FISIK PROSES PEMISAHAN FISIK Teknik pemisahan fisik akan memisahkan suatu campuran seperti minyak bumi tanpa merubah karakteristik kimia komponennya. Pemisahan ini didasarkan pada perbedaan sifat fisik tertentu

Lebih terperinci

PENGUKURAN KESETIMBANGAN UAP-CAIR SISTEM BINER ETANOL+ETIL ASETAT DAN ETANOL+ ISOAMIL ALKOHOL PADA TEKANAN 101,33 kpa, 79,99 kpa dan 26,67 kpa

PENGUKURAN KESETIMBANGAN UAP-CAIR SISTEM BINER ETANOL+ETIL ASETAT DAN ETANOL+ ISOAMIL ALKOHOL PADA TEKANAN 101,33 kpa, 79,99 kpa dan 26,67 kpa Dhoni Hartanto 2307100014 Agung Ari Wibowo 2307100015 Pembimbing Dr. Ir. Kuswandi, DEA Ir. Winarsih PENGUKURAN KESETIMBANGAN UAP-CAIR SISTEM BINER ETANOL+ETIL ASETAT DAN ETANOL+ ISOAMIL ALKOHOL PADA TEKANAN

Lebih terperinci

OPTIMALISASI PEROLEHAN MINYAK MENGGUNAKAN PEMISAHAN SECARA BERTAHAP

OPTIMALISASI PEROLEHAN MINYAK MENGGUNAKAN PEMISAHAN SECARA BERTAHAP OPTIMALISASI PEROLEHAN MINYAK MENGGUNAKAN PEMISAHAN SECARA BERTAHAP Reza Fauzan *Email: reza.fauzan@gmail.com ABSTRAK Penelitian tentang peningkatan jumlah produksi minyak yang diperoleh dari sumur produksi

Lebih terperinci

BAB I PENDAHULAN. 1.1 Latar Belakang

BAB I PENDAHULAN. 1.1 Latar Belakang BAB I PENDAHULAN 1.1 Latar Belakang Dewasa ini energi sangat diperlukan dalam menjalankan berbagai aktivitas khususnya di Indonesia, baik untuk kebutuhan konsumsi maupun untuk aktivitas produksi berbagai

Lebih terperinci

c. Kenaikan suhu akan meningkatkan konversi reaksi. Untuk reaksi transesterifikasi dengan RD. Untuk percobaan dengan bahan baku minyak sawit yang

c. Kenaikan suhu akan meningkatkan konversi reaksi. Untuk reaksi transesterifikasi dengan RD. Untuk percobaan dengan bahan baku minyak sawit yang KESIMPULAN Beberapa hal yang dapat disimpulkan dari hasil penelitian adalah sebagai berikut: 1. Studi eksperimental pembuatan biodiesel dengan Reactive Distillation melalui rute transesterifikasi trigliserida

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES. Alat-alat di pabrik ini meliputi reactive distillation, menara distilasi,

BAB III SPESIFIKASI ALAT PROSES. Alat-alat di pabrik ini meliputi reactive distillation, menara distilasi, BAB III SPESIFIKASI ALAT PROSES Alat-alat di pabrik ini meliputi reactive distillation, menara distilasi, kondenser, accumulator, reboiler, heat exchanger, pompa dan tangki. tiap alat ditunjukkan dalam

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1. Uraian Proses Larutan benzene sebanyak 1.257,019 kg/jam pada kondisi 30 o C, 1 atm dari tangki penyimpan (T-01) dipompakan untuk dicampur dengan arus recycle dari menara

Lebih terperinci

Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair

Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair Kelompok 3 Nahida Rani (1106013555) Nuri Liswanti Pertiwi (1106015421) Rizqi Pandu Sudarmawan (0906557045) Sony Ikhwanuddin (1106052902) Sulaeman

Lebih terperinci

Komponen Feed C3H6 C4H8 C5H10 C6H12 C7H14 total 0 Light key Heavy key. Kompisisi Umpan P T Trial 43

Komponen Feed C3H6 C4H8 C5H10 C6H12 C7H14 total 0 Light key Heavy key. Kompisisi Umpan P T Trial 43 Komponen Feed C3H6 C4H8 C5H10 C6H12 C7H14 total 0 Light key Heavy key Kompisisi Umpan P 14882.54 T Trial 43 Komponen A C3H6 15.7027 C4H8 15.7654 C5H10 15.7646 C6H12 15.8089 C7H14 15.8894 Komponen C3H6

Lebih terperinci

LAPORAN TUGAS AKHIR ALAT DISTILASI BERTINGKAT SKALA LABORATORIUM

LAPORAN TUGAS AKHIR ALAT DISTILASI BERTINGKAT SKALA LABORATORIUM LAPORAN TUGAS AKHIR ALAT DISTILASI BERTINGKAT SKALA LABORATORIUM Disusun oleh: ARIF WIBOWO BIAN YOVIETA WIJAYA I8311004 I8311008 PROGRAM STUDI DIPLOMA III TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS SEBELAS

Lebih terperinci

BAB I PENDAHULUAN. proses ini adalah untuk memisahkan sebuah campuran berdasarkan kecepatan

BAB I PENDAHULUAN. proses ini adalah untuk memisahkan sebuah campuran berdasarkan kecepatan I.1 Latar Belakang Sistem kolom distilasi (penyulingan) merupakan sebuah proses fisika yang banyak digunakan di industri kimia ataupun industri perminyakan. Tujuan dari proses ini adalah untuk memisahkan

Lebih terperinci

Pengolahan Minyak Bumi

Pengolahan Minyak Bumi Primary Process Oleh: Syaiful R. K.(2011430080) Achmad Affandi (2011430096) Allief Damar GE (2011430100) Ari Fitriyadi (2011430101) Arthur Setiawan F Pengolahan Minyak Bumi Minyak Bumi Minyak bumi adalah

Lebih terperinci

LAMPIRAN A HASIL PERHITUNGAN NERACA MASSA

LAMPIRAN A HASIL PERHITUNGAN NERACA MASSA LAMPIRAN A HASIL PERHITUNGAN NERACA MASSA Kapasitas Produksi 15.000 ton/tahun Kemurnian Produk 99,95 % Basis Perhitungan 1.000 kg/jam CH 3 COOH Pada perhitungan ini digunakan perhitungan dengan alur maju

Lebih terperinci

BAB III PERANCANGAN PROSES. bahan baku Metanol dan Asam Laktat dapat dilakukan melalui tahap-tahap sebagai

BAB III PERANCANGAN PROSES. bahan baku Metanol dan Asam Laktat dapat dilakukan melalui tahap-tahap sebagai BAB III PERANCANGAN PROSES 3.1 Uraian Proses Proses pembuatan Metil Laktat dengan reaksi esterifikasi yang menggunakan bahan baku Metanol dan Asam Laktat dapat dilakukan melalui tahap-tahap sebagai berikut

Lebih terperinci

MODUL 2.05 Distilasi

MODUL 2.05 Distilasi MODUL 2.05 Distilasi I. Pendahuluan Proses perpindahan massa merupakan salah satu proses yang cukup penting. Peprindahan massa merupakan peristiwa yang dijumpau hampir dalam setiap operasi dalam kegiatan

Lebih terperinci

DESTILASI, RESIN PENUKAR ION DAN PEMURNIAN

DESTILASI, RESIN PENUKAR ION DAN PEMURNIAN Nama : Suryani Rizki NRP : 113020097 Asisten : Dandy Yusuf DESTILASI, RESIN PENUKAR ION DAN PEMURNIAN DESTILASI Destilasi atau penyulingan adalah suatu proses pemisahan komponen yang berdasarkan pada perbedaan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Proses evaporasi telah dikenal sejak dahulu, yaitu untuk membuat garam dengan cara menguapkan air dengan bantuan energi matahari dan angin. Evaporasi adalah salah satu

Lebih terperinci

BAB III SPESIFIKASI ALAT

BAB III SPESIFIKASI ALAT BAB III SPESIFIKASI ALAT III.1. Spesifikasi Alat Utama III.1.1 Reaktor : R-01 : Fixed Bed Multitube : Mereaksikan methanol menjadi dimethyl ether dengan proses dehidrasi Bahan konstruksi : Carbon steel

Lebih terperinci

BAB II DISKRIPSI PROSES. 2.1 Spesifikasi Bahan Baku, Bahan Pendukung dan Produk. Isobutanol 0,1% mol

BAB II DISKRIPSI PROSES. 2.1 Spesifikasi Bahan Baku, Bahan Pendukung dan Produk. Isobutanol 0,1% mol BAB II DISKRIPSI PROSES 2.1 Spesifikasi Bahan Baku, Bahan Pendukung dan Produk 2.1.1. Spesifikasi bahan baku tert-butyl alkohol (TBA) Wujud Warna Kemurnian Impuritas : cair : jernih : 99,5% mol : H 2 O

Lebih terperinci

BAB II DESKRIPSI PROSES

BAB II DESKRIPSI PROSES 16 BAB II DESRIPSI PROSES II.1. Spesifikasi Bahan Baku dan Produk II.1.1. Spesifikasi Bahan Baku Nama Bahan Tabel II.1. Spesifikasi Bahan Baku Propilen (PT Chandra Asri Petrochemical Tbk) Air Proses (PT

Lebih terperinci

Metoda-Metoda Ekstraksi

Metoda-Metoda Ekstraksi METODE EKSTRAKSI Pendahuluan Ekstraksi proses pemisahan suatu zat atau beberapa dari suatu padatan atau cairan dengan bantuan pelarut Pemisahan terjadi atas dasar kemampuan larutan yang berbeda dari komponen-komponen

Lebih terperinci

STRUKTUR KONTROL KOLOM DISTILASI ALDEHYDE

STRUKTUR KONTROL KOLOM DISTILASI ALDEHYDE STRUKTUR KONTROL KOLOM DISTILASI ALDEHYDE Totok R. Biyanto Jurusan Teknik Fisika - FTI ITS Surabaya Kampus ITS Keputih Sukolilo Surabaya 60111 Telp : 62 31 5947188 Fax : 62 31 5923626 Email : trb@ep.its.ac.id

Lebih terperinci

PENGETAHUAN PROSES PADA UNIT SINTESIS UREA

PENGETAHUAN PROSES PADA UNIT SINTESIS UREA BAB V PENGETAHUAN PROSES PADA UNIT SINTESIS UREA V.I Pendahuluan Pengetahuan proses dibutuhkan untuk memahami perilaku proses agar segala permasalahan proses yang terjadi dapat ditangani dan diselesaikan

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

III ZAT MURNI (PURE SUBSTANCE)

III ZAT MURNI (PURE SUBSTANCE) III ZAT MURNI (PURE SUBSTANCE) Tujuan Instruksional Khusus: Mahasiswa mampu 1. menjelaskan karakteristik zat murni dan proses perubahan fasa 2. menggunakan dan menginterpretasikan data dari diagram-diagram

Lebih terperinci

LAPORAN PRAKTIKUM KIMIA ORGANIK 2

LAPORAN PRAKTIKUM KIMIA ORGANIK 2 LAPORAN PRAKTIKUM KIMIA ORGANIK 2 DESTILASI UAP Jum at, 25 April 2014 Disusun Oleh: MA WAH SHOFWAH 1112016200040 KELOMPOK 1 Fahmi Herdiansyah Siti Ipah Masripah Yasa Esa Yasinta PROGRAM STUDI PENDIDIKAN

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Produksi bahan bakar alternatif (biofuel) saat ini mendapat perhatian lebih dari beberapa pemerintahan di seluruh dunia. Beberapa pemerintahan telah mengumumkan komitmen

Lebih terperinci

BAB II DESKRIPSI PROSES. Rumus Molekul : C 3 H 4 O 2

BAB II DESKRIPSI PROSES. Rumus Molekul : C 3 H 4 O 2 BAB II DESKRIPSI PROSES II.1. Spesifikasi Bahan Baku dan Produk II.1.1. Spesifikasi Bahan Baku A. Asam Akrilat (PT. Nippon Shokubai) : Nama IUPAC : prop-2-enoic acid Rumus Molekul : C 3 H 4 O 2 Berat Molekul

Lebih terperinci

NME D3 Sperisa Distantina BAB II NERACA MASSA

NME D3 Sperisa Distantina BAB II NERACA MASSA 1 NME D3 Sperisa Distantina BAB II NERACA MASSA PENYUSUNAN DAN PENYELESAIAN NERACA MASSA KONSEP NERACA MASSA = persamaan yang disusun berdasarkan hukum kekekalan massa (law conservation of mass), yaitu

Lebih terperinci

EKSTRAKSI CAIR-CAIR. BAHAN YANG DIGUNAKAN Aquades Indikator PP NaOH 0,1 N Asam asetat pekat Trikloroetan (TCE)

EKSTRAKSI CAIR-CAIR. BAHAN YANG DIGUNAKAN Aquades Indikator PP NaOH 0,1 N Asam asetat pekat Trikloroetan (TCE) EKSTRAKSI CAIR-CAIR I. TUJUAN Dapat menerapkan prinsip perpindahan massa pada operasi pemisahan secara ekstraksi dan memahami konsep perpindahan massa pada operasi stage dalam kolom berpacking. II. III.

Lebih terperinci

Pemodelan Kolom Distilasi Pabrik Petrokimia dengan Menggunakan Distributed Control System

Pemodelan Kolom Distilasi Pabrik Petrokimia dengan Menggunakan Distributed Control System Abstrak Pemodelan Kolom Distilasi Pabrik Petrokimia dengan Menggunakan Distributed Control System Hafid S.N. Muzwar, Atindriyo K. Pamososuryo, dan Estiyanti Ekawati Teknik Fisika, Fakultas Teknologi Industri,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tinjauan pustaka penunjang penelitian ini meliputi beberapa penjelasan mengenai proses pemurnian pada gas, proses dehidrasi gas yang terdapat di SPG Merbau, larutan Triethylene

Lebih terperinci

STUDY PERPINDAHAN PANAS DAN MASSA PADA EVAPORASI NIRA DI DALAM FALLING FILM EVAPORATOR DENGAN ADANYA ALIRAN UDARA

STUDY PERPINDAHAN PANAS DAN MASSA PADA EVAPORASI NIRA DI DALAM FALLING FILM EVAPORATOR DENGAN ADANYA ALIRAN UDARA Jurusan Teknik Kimia Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2010 STUDY PERPINDAHAN PANAS DAN MASSA PADA EVAPORASI NIRA DI DALAM FALLING FILM EVAPORATOR DENGAN ADANYA ALIRAN

Lebih terperinci

Prarancangan Pabrik Metil Salisilat dari Metanol dan Asam Salisilat Kapasitas Ton/Tahun BAB III SPESIFIKASI ALAT. Kode T-01 T-02 T-03

Prarancangan Pabrik Metil Salisilat dari Metanol dan Asam Salisilat Kapasitas Ton/Tahun BAB III SPESIFIKASI ALAT. Kode T-01 T-02 T-03 BAB III SPESIFIKASI ALAT 1. Tangki Penyimpanan Spesifikasi Tangki Metanol Tangki Asam Tangki Metil Sulfat Salisilat Kode T-01 T-02 T-03 Menyimpan Menyimpan asam Menyimpan metil metanol untuk 15 sulfat

Lebih terperinci

BAB IV PROSES DENGAN SISTEM ALIRAN KOMPLEKS

BAB IV PROSES DENGAN SISTEM ALIRAN KOMPLEKS NME D3 Sperisa Distantina 1 BAB IV PROSES DENGAN SISTEM ALIRAN KOMPLEKS Dalam industri kimia beberapa macam sistem aliran bahan dilakukan dengan tujuan antara lain: 1. menaikkan yield. 2. mempertinggi

Lebih terperinci

HUKUM RAOULT. campuran

HUKUM RAOULT. campuran HUKUM RAOULT I. TUJUAN - Memperhatikan pengaruh komposisi terhadap titik didih campuran - Memperlihatkan pengaruh gaya antarmolekul terhadap tekanan uap campuran II. TEORI Suatu larutan dianggap bersifat

Lebih terperinci

DISTILASI. 19/10/2014 Nur Istianah-KPP-Distilasi

DISTILASI. 19/10/2014 Nur Istianah-KPP-Distilasi DISTILSI 1 Distilasi Proses pemisahan dua komponen atau lebih berdasarkan perbedaan titik didihnya atau volatilitas Pemisahan tepat terjadi pasa saat kondisi setimbang atau equilibrium Feed Distillate

Lebih terperinci

atm dengan menggunakan steam dengan suhu K sebagai pemanas.

atm dengan menggunakan steam dengan suhu K sebagai pemanas. Pra (Rancangan PabrikjEthanoldan Ethylene danflir ' BAB III PERANCANGAN PROSES 3.1 Uraian Proses 3.1.1 Langkah proses Pada proses pembuatan etanol dari etilen yang merupakan proses hidrasi etilen fase

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES. Alat-alat di pabrik ini meliputi reactive distillation, menara distilasi,

BAB III SPESIFIKASI ALAT PROSES. Alat-alat di pabrik ini meliputi reactive distillation, menara distilasi, BAB III SPESIFIKASI ALAT PROSES Alat-alat di pabrik ini meliputi reactive distillation, menara distilasi, kondenser, accumulator, reboiler, heat exchanger, pompa dan tangki. tiap alat ditunjukkan dalam

Lebih terperinci

BAB 1. PENDAHULUAN. kolom distilasi ini disebut menara distilasi. Secara umum terdapat 2 jenis menara

BAB 1. PENDAHULUAN. kolom distilasi ini disebut menara distilasi. Secara umum terdapat 2 jenis menara BAB 1. PENDAHULUAN 1.1 Latar Belakang Kolom Distilasi merupakan komponen proses yang penting baik dalam industri besar seperti penyulingan minyak bumi dan gas, sampai industri menengah dan kecil seperti

Lebih terperinci

KESETIMBANGAN UAP-CAIR (VLE) ETHANOL-AIR DARI HASIL FERMENTASI RUMPUT GAJAH

KESETIMBANGAN UAP-CAIR (VLE) ETHANOL-AIR DARI HASIL FERMENTASI RUMPUT GAJAH KESETIMBANGAN UAP-CAIR (VLE) ETHANOL-AIR DARI HASIL FERMENTASI RUMPUT GAJAH Disusun oleh : DENI RAMLAH 0631010075 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN

Lebih terperinci

MINYAK ATSIRI (2) Karakteristik Bahan dan Teknologi Proses

MINYAK ATSIRI (2) Karakteristik Bahan dan Teknologi Proses MINYAK ATSIRI (2) Karakteristik Bahan dan Teknologi Proses O L E H : D R. I R. S U S I N G G I H W I J A N A, M S. J U R U SA N T E K N O L O G I I N D U S T R I P E RTA N I A N FA KU LTA S T E K N O L

Lebih terperinci

PERFORMA KOLOM SIEVE TRAY DENGAN PACKING SERABUT PADA DISTILASI ETANOL-AIR

PERFORMA KOLOM SIEVE TRAY DENGAN PACKING SERABUT PADA DISTILASI ETANOL-AIR PERFORMA KOLOM SIEVE TRAY DENGAN PACKING SERABUT PADA DISTILASI ETANOL-AIR Oleh : Indi Raisa Girsang 2310100119 Melvina Eliana 2310100161 Pembimbing : Prof. Dr. Ir. Nonot Soewarno, M.Eng. Siti Nurkhamidah,

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Bahan dan Peralatan 3.1.1 Bahan yang digunakan Pada proses distilasi fraksionasi kali ini bahan utama yang digunakan adalah Minyak Nilam yang berasal dari hasil penyulingan

Lebih terperinci

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan I. Pendahuluan A. Latar Belakang Dalam dunia industri terdapat bermacam-macam alat ataupun proses kimiawi yang terjadi. Dan begitu pula pada hasil produk yang keluar yang berada di sela-sela kebutuhan

Lebih terperinci

6/12/2014. Distillation

6/12/2014. Distillation Distillation Distilasi banyak digunakan untuk mendapatkan minyak atsiri. Minyak atsiri dapat bermanfaat sebagai senyawa antimikroba, diantaranya: 1. Minyak biji pala 2. Minyak daun jeruk 1 Distillation

Lebih terperinci