TINJAUAN TEORITIS PERANCANGAN KOLOM DISTILASI UNTUK PRA-RENCANA PABRIK SKALA INDUSTRI

Ukuran: px
Mulai penontonan dengan halaman:

Download "TINJAUAN TEORITIS PERANCANGAN KOLOM DISTILASI UNTUK PRA-RENCANA PABRIK SKALA INDUSTRI"

Transkripsi

1 TINJAUAN TEORITIS PERANCANGAN KOLOM DISTILASI UNTUK PRA-RENCANA PABRIK SKALA INDUSTRI Leily Nurul Komariah, A. F. Ramdja, Nicky Leonard Jurusan Teknik Kimia Fakultas Teknik Universitas Sriwijaya leilydiaz@yahoo.com Abstrak Destilasi didefinisikan sebagai sebuah proses dimana campuran dua atau lebih zat liquid atau vapor dipisahkan menjadi komponen fraksi yang murni, dengan pengaplikasian dari perpindahan massa dan panas. Umumnya proses distilasi dalam skala industri dilakukan dalam menara, oleh karena itu unit proses dari distilasi ini sering disebut sebagai menara distilasi atau kolom distilasi. Kolom distilasi biasanya berukuran 2-5 meter dalam diameter dan tinggi berkisar antara 6-15 meter. Masukan dari Kolom Distilasi biasanya berupa cair jenuh (cairan yang dengan berkurang tekanan sedikit saja sudah akan terbentuk uap) dan memiliki dua arus keluaran, arus yang diatas adalah arus yang lebih volatil (lebih ringan/mudah menguap) dan arus bawah yang terdiri dari komponen berat. Dalam anatomi proses industri kimia, keberadaan Kolom Distilasi dalam tahapan pemisahan atau pemurnian produk sudah sangat banyak diaplikasikan. Perancangan Kolom Distilasi untuk Pra Rencana Pabrik bagi mahasiswa dan peneliti membutuhkan pemahaman mendasar tentang prinsip pemisahan dengan distilasi dan langkah-langkah perhitungan disian yang bersesuaian. Kata kunci : Bubble cap tray, distilasi, rectification, Sieve Tray I. PENDAHULUAN Dalam pra rencana pabrik, keberadaan kolom distilasi sebagai salah satu alat vitas pada tahap pemisahan, menjadi bagian yang hampir selalu ada dalam rancangan proses lengkap. Pemahaman secara khusus mengenai alat ini dinilai sangat penting dan penting khususnya bagi mahasiswa agar penguasaan perancangan dan akurasi hasil perhitungan disain dapat dipertanggung jawabkan secara ilmiah. Pemisahan campuran liquid dengan destilasi bergantung pada perbedaan volatilitas antar komponen. Komponen yang memiliki relative volatility yang lebih besar akan lebih mudah pemisahannya. Uap akan mengalir menuju puncak kolom sedangkan liquid menuju ke bawah kolom secara counter-current (berlawanan arah). Uap dan liquid akan terpisah pada plate atau packing. Sebagian kondensat dari Condensor dikembalikan ke puncak kolom sebagai liquid untuk dipisahkan lagi, dan sebagian liquid dari dasar bolom diuapkan pada Reboiler dan dikembalikan sebagai uap. Destilasi didefinisikan sebagai sebuah proses dimana campuran dua atau lebih zat liquid atau vapor dipisahkan menjadi komponen fraksi yang murni, dengan pengaplikasian dari perpindahan massa dan panas. Gambar 1. Gambaran umum destilasi II. TEORI PRINSIP DISTILASI Pemisahan komponen-komponen dari campuran liquid melalui destilasi bergantung pada perbedaan titik didih masing-masing komponen. Juga bergantung pada konsentrasi komponen yang ada. Campuran liquid akan memiliki karakteristik titik didih yang berbeda. Jurnal Teknik Kimia, No. 4, Vol. 16, Desember

2 Oleh karena itu, proses destilasi bergantung pada tekanan uap campuran liquid. Tekanan uap suatu liquid pada temperatur tertentu adalah tekanan keseimbangan yang dikeluarkan oleh molekul-molekul yang keluar dan masuk pada permukaan liquid. Berikut adalah halhal penting berkaitan dengan tekanan uap : a. Input energi menaikkan tekanan uap b. Tekanan uap berkaitan dengan proses mendidih c. Liquid dikatakan mendidih ketika tekanan uapnya sama dengan tekanan udara sekitar. d. Mudah atau tidaknya liquid untuk mendidih bergantung pada volatilitasnya. e. Liquid dengan tekanan uap tinggi (mudah menguap) akan mendidih pada temperatur yang lebih rendah. f. Tekanan uap dan titik didih campuran liquid bergantung pada jumlah relatif komponen-komponen dalam campuran. g. Destilasi terjadi karena perbedaan volatilitas komponen-komponen dalam campuran liquid. c. Tidak membentuk cairan azeotrop. Pada proses pemisahan secara distilasi, fase uap akan segera terbentuk setelah sejumlah cairan dipanaskan. Uap dipertahankan kontak dengan sisa cairannya (dalam waktu relatif cukup) dengan harapan pada suhu dan tekanan tertentu, antara uap dan sisa cairan akan berada dalam keseimbangan, sebelum campuran dipisahkan menjadi distilat dan residu. Fase uap yang mengandung lebih banyak komponen yang lebih mudah menguap relatif terhadap fase cair, berarti menunjukkan adanya suatu pemisahan. Sehingga kalau uap yang terbentuk selanjutnya diembunkan dan dipanaskan secara berulang-ulang, maka akhirnya akan diperoleh komponen-komponen dalam keadaan yang relatif murni. Keseimbangan Uap Cair Untuk dapat menyelesaikan soal-soal distilasi harus tersedia data-data keseimbangan uap-cair sistim yang dikenakan distilasi. Data keseimbangan uap-cair dapat berupa tabel atau diagram. Tiga macam diagram keseimbangan yang akan dibicarakan, yaitu : Gambar 2. Tower destilasi Secara fundamental semua proses-proses distilasi dalam kilang minyak bumi adalah sama. Semua proses distilasi memerlukan beberapa peralatan yang penting seperti Kondensor dan Cooler, Menara Fraksionasi, Kolom Stripping. Proses pemisahan secara distilasi dengan mudah dapat dilakukan terhadap campuran, dimana antara komponen satu dengan komponen yang lain terdapat dalam campuran : a. Dalam keadaan standar berupa cairan, saling melarutkan menjadi campuran homogen. b. Mempunyai sifat penguapan relatif (α) cukup besar. a. Diagram Titik didih Diagram titik didih adalah diagram yang menyatakan hubungn antara temperatur atau titik didih dengan komposisi uap dan cairan yang berkeseimbangan. Di dalam diagram titik didih tersebut terdapat dua buah kurva, yaitu kurva cair jenuh dan uap jenuh. Kedua kurva ini membagi daerah didalam diagram menjadi 3 bagian, yaitu : 1. Daerah satu fase yaitu daerah cairan yang terletak dibawah kurva cair jenuh. 2. Daerah satu fase yaitu daerah yang terletak datas kurva uap jenuh. 3. Daerah dua fase yaitu daerah uap jenuh dan cair jenuh yang terletak di antara kurva cair jenuh dan kurva uap jenuh. b. Diagram Keseimbangan uap-cair Diagram keseimbangan uap-cair adalah diagram yang menyatakan hubungan keseimbangan antara komposisi uap dengan komposisi cairan. Diagram keseimbangan uapcair dengan mudah dapat digambar, jika tersedia titik didihnya. 20 Jurnal Teknik Kimia, No. 4, Vol. 16, Desember 2009

3 c. Diagram Entapi-komposisi Diagram entalpi-komposisi adalah diagram yang menyatakan hubungan antara entalpi dengan komposisi sesuatu sistim pada tekanan tertentu. Didalam diagram tersebut terdapat dua buah kurva yaitu kurva cair jenuh dan kurva uap jenuh. Setiap titik pada kurva cair jenuh dihubungkan dengan gari hubung tie line dengan titik tertentu pada kurva uap jenuh, dimana titik-titik tersebut dalam keadaan keseimbangan. Dengan adanya kedua kurva tersebut, daerah didalam diagram terbagi menjadi 3 daerah, yaitu Daerah cairan yang terletak dibawah kurva cair jenuh. Daerah uap yang terletak diatas kurva uap jenuh. Daerah cair dan uap yang terletak diantara kurva cair jenuh dengan kurva uap jenuh Dibawah kurva cair jenuh terdapat isoterm-isoterm yang menunjukkan entalpi cairan pada berbagai macam komposisi pada berbagai temperatur. zat cair sedemikian rupa sehingga uap yang keluar berada dalam keseimbangan dengan zat cair yang tersisa. Uap tersebut dipisahkan dari zat cair dan dikondensasikan. Destilasi ini digunakan untuk memisahkan komponenkoponen yang memiliki titik didih yang berbeda. Destilasi ini tidak efektif untuk memisahkan komponen-komponen yang volatilitasnya sebanding. 2. Destilasi Continue dengan Refluks (Rektifikasi) Klasifikasi Destilasi Distilasi berdasarkan prosesnya terbagi menjadi dua, yaitu : 1. Distilasi kontinyu 2. Distilasi batch Berdasarkan basis tekanan operasinya terbagi menjadi tiga, yaitu : 1. Distilasi atmosferis (0,4-5,5 atm mutlak) 2. Distilasi vakum ( 300 mmhg pada bagian atas kolom) 3. Distilasi tekanan ( 80 psia pada bagian atas kolom) Berdasarkan komponen penyusunnya : 1. Distilasi sistem biner 2. Distilasi sitem multi komponen Berdasarkan sistem operasinya terbagi dua, yaitu : 1. Single-stage Distillation 2. Multi stage Distillation Gambar 3.. Neraca Bahan Plate n Dari gambar 3 terlihat di dalam kolom terdapat plate ideal. Jika plate ini diberi nomor dari atas ke bawah maka plate acuan adalah plate ke-n dari puncak, di atasnya adalah plate ke-n-1 dan di bawahnya adalah plate ke-n+1. Ada dua arus fluida yang masuk ke plate ke-1 dan dua arus keluar, yaitu arus zat cair Ln-1 mol/jam dari plate ke-n-1 dan arus uap Vn- 1 mol/jam dari plate ke-n+ 1 yang mengalami kontak akrab di plate ke-n: a. Uap keluar dari plate, Yn b. Zat cair yang keluar dari plate, Xn c. Uap masuk ke plate, Yn+1 d. Zat cair masuk ke plate, Xn+1 Umumnya Distilasi juga dapat dibedakan sebagai berikut : 1.Destilasi Kilat (Flash Destilation) Destilasi kilat merupakan destilasi continue (steady state) satu tahap tanpa refluks. Destilasi kilat ini terdiri dari penguapan sebagian dari suatu Jurnal Teknik Kimia, No. 4, Vol. 16, Desember

4 berpindah ke arus uap dan komponen B ke arus zat cair. III. PERANCANGAN KOLOM DISTILASI Faktor-faktor yang Mempengaruhi Operasi Kolom Destilasi Kinerja kolom destilasi ditentukan oleh beberapa faktor, diantaranya : Gambar 4. proses Distilasi 3. Distilasi Vakum Distilasi vakum adalah distilasi yang tekanan operasinya 0,4 atm (300 mmhg absolut). Distilasi yang dilakukan dalam tekanan operasi ini biasanya karena beberapa alasan yaitu : Gambar 5. Diagram Titik Didih Gambar 5 menunjukkan titik didih campuran yang diolah, dan keempat konsentrasi yang disebutkan di atas tergambar pada diagram tersebut. Uap dan zat cair yang keluar dari plate ken berada dalam kesetimbangan, sehingga Xn dan Yn merupakan konsentrasi kesetimbangan. Bila uap yang keluar dari plate ke-n+1 dan zat cair dari plate ke-n-1 dikontakkan secara akrab, konsentrasinya cenderung bergerak kearah keadaan setimbang. Arus zat cair berada pada titik gelembung (bubble point), sedangkan arus uap berada pada pada titik embunnya (dew point), sehingga kalor yang diperlukan untuk menguapkan komponen A harus didapat dari kalor yang dibebaskan pada waktu kondensasi komponen B. Setiap plate berfungsi sebagai piranti pertukaran pada saat komponen A 1. Kondisi Feed (q) a. Keadaan campuran dan komposisi feed (q) mempengaruhi garis operasi dan jumlah stage dalam pemisahan. Itu juga mempengaruhi lokasi feed tray. 2. Kondisi Refluks Pemisahan semakin baik jika sedikit tray yang digunakan untuk mendapatkan tingkat pemisahan. Tray minimum dibutuhkan di bawah kondisi total refluks, yakni tidak ada penarikan destilat. Sebaiknya refluks berkurang, garis operasi untuk seksi rektifikasi bergerak terhadap garis kesetimbangan. 3. Kondisi Aliran Uap Kondisi aliran uap yang merugikan dapat menyebabkan : a. Foaming Mengacu pada ekspansi liquid melewati uap atau gas. Walaupun menghasilkan kontak antar fase liquid-uap yang tinggi, foaming berlebihan sering mengarah pada terbentuknya liquid pada tray. b. Entrainment Mengacu pada liquid yang terbawa uap menuju tray di atasnya dan disebabkan laju alir uap yang tinggi menyebabkan efisiensi tray berkurang. Bahan yang sukar menguap terbawa menuju plate yang menahan liquid dengan bahan yang mudah menguap. Dapat mengganggu kemurnian destilat. Enterainment berlebihan dapat menyebabkan flooding. c. Weeping/Dumping Fenomena ini disebabkan aliran uap yang rendah. Tekanan yang dihasilkan uap tidak cukup untuk menahan liquid pada tray. Karena itu liquid mulai merembes melalui perforasi. 22 Jurnal Teknik Kimia, No. 4, Vol. 16, Desember 2009

5 d. Flooding Terjadi karena aliran uap berlebih menyebabkan liquid terjebak pada uap di atas kolom. Peningkatan tekanan dari uap berlebih menyebabkan kenaikkan liquid yang tertahan pada plate di atasnya. Flooding ditandai dengan adanya penurunan tekanan diferensial dalam kolom dan penurunan yang signifikan pada efisiensi pemisahan. Jumlah tray aktual yang diperlukan untuk pemisahan khusus ditentukan oleh efisiensi plate dan packing. Semua faktor yang menyebabkan penurunan efisiensi tray juga akan mengubah kinerja kolom. Effisiensi tray dipengaruhi oleh fooling, korosi, dan laju dimana ini terjadi bergantung pada sifat liquid yang diproses. Material yang sesuai harus dipakai dalam pembuatan tray. Kebanyakan kolom destilasi terbuka terhadap lingkungan atmosfer. Walaupun banyak kolom diselubungi, perubahan kondisi cuaca tetap dapat mempengaruhi operasi kolom. Reboiler harus diukur secara tetap untuk memastikan bahwa dihasilkan uap yang cukup selama musim dingin dan dapat dimatikan selama musim panas. Gambar 6. Skema destilasi yang sederhana b. Pengoperasian Destilasi Campuran liquid yang akan diproses dikenal sebagai feed dan diinput pada bagian tengah kolom pada sebuah tray yang dikenal sebagai feed tray. Feed tray dibagi menjadi kolom atas (enriching or rectification) dan kolom bottom (stripping). Feed mengalir ke bawah kolom dikumpulkan pada bagian bawah reboiler. Dasar Peralatan Destilasi dan Pengoperasiannya a. Komponen Utama Kolom Destilasi Sebuah sistem destilasi umumnya mengandung beberapa komponen utama : Sebuah Shell vertikal dimana pemisahan komponen liquid terjadi, terdapat pada bagian dalam kolom (internal column) seperti tray atau plate dan packing yang digunakan untuk meningkatkan derajat pemisahan komponen. Sebuah Reboiler untuk menyediakan penguapan yang cukup pada proses destilasi. Kondenser untuk mendinginkan dan mengkondensasikan uap yang keluar dari atas kolom. Reflux drum untuk menampung uap yang terkondensasi dari top kolom sehingga liquid(reflux) dapat di recycle kembali ke kolom. Rumah shell vertikal bagian dalam kolom beserta kondenser dan reboiler membentuk sebuah kolom destilasi. Gambaran unit destilasi dengan satu feed dan dua aliran produk adalah sebagai berikut : Gambar 7. Bottom destilasi Panas di suplai ke reboiler untuk menghasilkan uap. Sumber panas dapat berasal dari fluida, tetapi kebanyakan juga digunakan steam. Pada penguapan, sumber panas di dapat dari aliran keluar dari kolom lain. Uap terbentuk pada reboiler diinput kembali pada bagian bottom. Liquid dikeluarkan dari reboiler dikenal sebagai produk bottom. Gambar 8. Top destilasi Jurnal Teknik Kimia, No. 4, Vol. 16, Desember

6 Uap bergerak ke atas kolom, didinginkan oleh kondensor. Liquid yang dikondensasi ditampung pada vessel yang dikenal sebagai reflux drum. Sebagian liquid di recycle kembali ke top yang dikenal reflux. Liquid yang terkondensasi dikeluarkan dari sistem dikenal sebagai destilat atau produk top. Type dari kolom destilasi berdasarkan tipe internal column 1. Tray dan Plate Istilah tray dan plate adalah sama. Ada banyak tipe desain tray, tetapi yang paling umum adalah: a. Bubble cap tray Bubble-cup biasanya didesain di atas plate pada sudut equilateral triangular, dengan baris yang disesuaikan secara normal dengan arah aliran menyilang plate. Bubble cap tray mempunyai tingkat-tingkat atau cerobong yang terpasang di atas hole (lubang), dan sebuah cap yang menutupi tingkat-tingkat. Bubble cap tray digunakan pada kondisi aliran rendah, di mana tray harus tetap basah, kecuali kondisi bentuk polymer, coking, atau fouling yang tinggi. c. Sieve Tray Adalah plate metal sederhana dengan lubang diantaranya. Vapor lewat ke atas melalui liquid pada plate. Jumlah dan ukuran lubang menjadi parameter desain. Karena luas range operasi, kemudahan perawatan, dan faktor biaya, kebanyakan aplikasinya sieve dan valve tray diganti dengan bubble cup tray. Gambar 11. Sieve Tray 2. Packing Ada kecenderungan untuk meningkatkan pemisahan dengan penambahan penggunaan tray dengan packing. Packing adalah peralatan pasif yang didesain untuk meningkatkan kontak area interfacial uapliquid. Aliran liquid dan Vapor dalam kolom tray Gambar berikut menunjukkan aliran liquid dan vapor sepanjang tray dan sepanjang kolom. Gambar 9.. Bubble cap tray b. Valve Tray Pada valve tray, perforasi (lubang-lubang kecil) ditutupi dengan valve yang mudah dilepas. Uap naik melalui perforasi pada tray, bubble pada liquid berbentuk sama. Valve yang terangkat menunjukkan uap mengalir horizontal ke dalam liquid, dengan demikian menyediakan campuran yang mungkin terjadi dalam sieve tray. Gambar 12. Aliran liquid dan vapor Setiap tray mempunyai dua sisi bersebelahan pada setiap sisinya yang disebut downcomers. Liquid jatuh melalui downcomer oleh gaya gravitasi dari satu tray ke bagian bawahnya. Aliran sepanjang tiap plate diperlihatkan pada diagram. Gambar 10. Valve Tray 24 Jurnal Teknik Kimia, No. 4, Vol. 16, Desember 2009

7 Gambar 13. Aliran pada tiap plate Sebuah weir pada tray didesain agar selalu ada sebagian liquid yang tertahan pada tray dengan tinggi yang masih diperbolehkan, seperti bubble cap yang ditutupi oleh liquid. Yang lebih ringan, aliran vapor ke atas dan bergerak melewati liquid, melalui buka-an pada setiap tray. Area rendah untuk aliran vapor pada setiap tray disebut aktif tray area. Packing Versus Trays Kolom Tray menghadapi masalah throughput dan dapat diatasi dengan menganti tray dengan packing dikarenakan : Packing memberikan area interfacial extra untuk kontak liquid-vapour. Efisiensi pemisahan meningkat untuk tinggi kolom yang sama. Packed kolom lebih pendek daripada trayed kolom. Packed kolom dikenal sebagai continuous-contact columns, sedangkan trayed columns dikenal sebagai staged-contact columns karena karateristiknya kontak vapour dan liquid. Pemilihan Tipe Kolom Destilasi Kolom destilasi yang digunakan yaitu tipe sieve tray dengan alasan: a. tray ini lebih ringan dan sedikit mahal b. lebih mudah dan murah dalam pemasangan dibanding dengan bubble cap c. kapasitas uap dan liquid yang di-handle lebih besar d. efisiensi peak lebih besar e. pressure drop lebih rendah dibanding dengan bubble cap f. biaya pemeliharaan berkurang karena konstruksinya lebih sederhana Perancangan Sieve Tray Kolom Destilasi Saat ini terdapat banyak jenis kolom rektifikasi dan penerapannya pun bermacammacam. Unit-unit terbesar biasanya terdapat dalam industri minyak bumi, tetapi instalasi yang besar dan rumit terdapat pada fraksionasi bahan-bahan pelarut, pengolahan udara cair, dan pengolahan bahan kimia pada umumnya. Diameter kolom biasanya berkisar antara 1 ft (0,3048 m ) sampai 30 ft (9 m) dan jumlah tray dan beberapa buah sampai puluhan buah. Ada empat tipe tray utama : bubblecap, sieve tray, valve tray dan, counterflow tray. Dewasa ini kebanyakan kolom menggunakan sieve tray atau valve tray. Operasional Sieve Tray Sieve tray dirancang untuk membuat uap hasil yang mengalir naik mengalami kontak dengan liquid yang mengalir ke bawah. Liquid ini mengalir melintasi tray dan melewati weir (tanggul) ke downcomer menuju ke tray di bawahnya. Oleh karena itu pola aliran pada setiap tray adalah aliran silang (crossflow). Sieve tray adalah plate logam dengan lubang-lubang di dalamnya. Di bawah ini merupakan sieve tray with downcomer. Permukaan Zat Cair Dalam Downcomer Permukaan zat cair di dalam downcomer harus lebih tinggi dari permukaan di atas tray karena ada penurunan tekanan melintas di tray itu. Untuk desain yang aman dimisalkan nilai fraksi volume rata-rata zat cair = 0.5, dan jarak antara tray serta kondisi operasi dipilih sedemikian rupa sehingga tinggi tekanan kurang dari jarak antara tray. Batas Operasi Sieve Tray Batas atas kecepatan di dalam sieve tray ditentukan oleh flooding point atau kecepatan di mana zat cair yang terbawah ikut menjadi berlebihan jumlahnya. Flooding terjadi bila zat cair di dalam downcomer kembali ke tray di atasnya, dan ini ditentukan oleh penurunan tekanan melintas tray serta oleh jarak antara tray. Tray Spacing Tray spacing merupakan jarak antara satu tray dengan tray yang lainnya. Biasanya sekitar 6 inci lebih pendek dari bubble cap tray. Sieve tray beroperasi pada spacing sekitar 9 inci Jurnal Teknik Kimia, No. 4, Vol. 16, Desember

8 sampai 3 inci. Yang biasa digunakan adalah sekitar inci.. Hole Size, arrangement and Spacing Diameter lubang dan pengaturannya bervariasi tergantung kebutuhan dan keinginan dari yang mendesain. Yang biasa dipakai untuk kegiatan komersil yaitu diameter ¾ dan 1 inci. Diameter lubang direkomendasikan untuk self cleaning yaitu 3/16 inci. Diameter ½ inci bisa digunakan untuk berbagai macam kebutuhan termasuk yang melibatkan fouling dan cairan yang mengandung solid tanpa kehilangan efisiensi. Diameter 1/8 inci sering digunakan untuk kondisi vakum. Active Hole Area adalah luasan total pada plate termasuk di dalamnya ialah perforated area dan calming zone. Perforated Area Perforated area atau hole area ialah area pada plate dimana masih terdapat lubang-lubang tempat kontaknya cairan dan uap. Calming Zone ialah area pada plate yang tidak terdapat lubanglubang. Height of Liquid Over Outlet Weir, how Batas minimum tinggi weir adalah 0.5 inci, dengan 1-3 inci yang paling direkomendasikan. Untuk lebih jelasnya biasa dilihat pada gambar di bawah ini. Untuk menentukan jumlah tahap yang dibutuhkan pada distilasi multi komponen diperlukan dua kunci, yaitu Light Key Component (LK) dan Heavy Key Component (HK) komponen. Light Key Component adalah komponen fraksi ringan pada produk bawah dalam jumlah kecil tapi tidak dapat diabaikan. Efisiensi Tray Ada 3 (tiga) macam effisiensi tray yang biasa digunakan: a. Overall efficiency, yang meliputi keseluruhan kolom b. Murphree efficiency yang berkaitan dengan satu tray c. Local efficiency, yang menyangkut suatu lokasi tertentu pada satu tray a. Overall Efficiency, ηo Overall efficiency sangat mudah digunakan tetapi paling kurang fundamental. Effisiensi ini didefinisikan sebagai rasio jumlah tray ideal yang diperlukan pada keseluruhan kolom terhadap jumlah tray aktual. b. Murphree Efficiency, ηm Murphree efficiency didefinisikan sebagai: Murphree efficiency merupakan perubahan komposisi uap dari satu tray ke tray berikutnya dibagi dengan perubahan yang terjadi jika uap yang meninggalkan tray itu berada dalam kesetimbangan dengan zat cair rata-rata yang berada di atas tray, dan dengan perbedaan yang penting dalam perbandingan local efficiency dengan murphree efficiency. c. Local Efficiency, η Local efficiency didefinisikan sebagai: dengan : y n = konsentrasi uap yang meninggalkan suatu lokasi y n-1 = konsentrasi uap yang masuk tray ke-n pada lokasi yang sama y en = konsentrasi uap yang dalam kesetimbangan dengan zat cair yang sama Syarat-syarat yang penting dalam mendapatkan tray efficiency yang memuaskan adalah mengoperasikan tray tersebut sebagaimana mestinya, yaitu adanya kontak antara uap dan zat cair. Pengoperasian kolom yang tidak effisien disebabkan oleh pembentukan foam, distribusi uap yang tidak sempurna, pemintasan weeping dan penumpahan zat cair. IV. KESIMPULAN Innovasi teknologi dalam perancangan kolom distilasi skala Industri mutlak perlu di telusuri untuk memperkaya wawasan pengetahuan mahasiswa dalam merancang kolom distilasi skala pra rencana pabrik. Dasardasar teoritis yang prinsip menjadi landasan pertimbangan teknis dan perhitungan disain selain penyesuaiaannya dengan tuntutan implementasi nya dilapangan yang mengarah pada keekonimian proses. 26 Jurnal Teknik Kimia, No. 4, Vol. 16, Desember 2009

9 V. DAFTAR PUSTAKA Coulson, J.M. Richardson, Sinnot, R.K Chemical Engineering Volume 6 (SI Units) Design. Oxford: Pergamon Press. Felder, Richard M. and Rousseau, Ronald W Elementary Principles of Chemical Process, 3 rd Edition. New York: John Wiley & Sons, Inc. Treybal, R.E.. Mass Transfer Operations, 3 rd Edition. Rhode Island: McGraw-Hill Book Co. M.T. Tham,,, Distillation Column Design, Copyright , Distillation Menara Distilasi, ttp:// Jurnal Teknik Kimia, No. 4, Vol. 16, Desember

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Distilasi Distilasi atau penyulingan adalah suatu metode pemisahan campuran bahan kimia berdasarkan perbedaan kemudahan menguap (volatilitas) bahan dengan titik didih

Lebih terperinci

BAB I DISTILASI BATCH

BAB I DISTILASI BATCH BAB I DISTILASI BATCH I. TUJUAN 1. Tujuan Instruksional Umum Dapat melakukan percobaan distilasi batch dengan system refluk. 2. Tujuan Instrusional Khusus Dapat mengkaji pengaruh perbandingan refluk (R)

Lebih terperinci

BAB IV. PERHITUNGAN STAGE CARA PENYEDERHANAAN (Simplified Calculation Methods)

BAB IV. PERHITUNGAN STAGE CARA PENYEDERHANAAN (Simplified Calculation Methods) BAB IV. PERHITUNGAN STAGE CARA PENYEDERHANAAN (Simplified Calculation Methods) Di muka telah dibicarakan tentang penggunaan diagram entalpi komposisi pada proses distilasi dan penggunaan diagram (x a y

Lebih terperinci

PEMILIHAN TIPE KOLOM PEMISAH. Asep Muhamad Samsudin

PEMILIHAN TIPE KOLOM PEMISAH. Asep Muhamad Samsudin PEMILIHAN TIPE KOLOM PEMISAH PERANCANGAN ALAT PROSES Asep Muhamad Samsudin Menara Menara adalah alat proses, umumnya berupa bejana (silinder) tegak yang digunakan pada proses pemisahan secara Distilasi,

Lebih terperinci

Sumber : Karl Kolmetz, et al, 2007, Optimization Design Column

Sumber : Karl Kolmetz, et al, 2007, Optimization Design Column Sumber : Karl Kolmetz, et al, 2007, Optimization Design Column Sumber : Karl Kolmetz, et al, 2007, Optimization Design Column 2. SIEVE TRAY JENIS TRAY BUBBLE CUPS Beberapa jenis bubble cups Aliran uap

Lebih terperinci

PERFORMA KOLOM SIEVE TRAY DENGAN PACKING SERABUT PADA DISTILASI ETANOL-AIR

PERFORMA KOLOM SIEVE TRAY DENGAN PACKING SERABUT PADA DISTILASI ETANOL-AIR PERFORMA KOLOM SIEVE TRAY DENGAN PACKING SERABUT PADA DISTILASI ETANOL-AIR Oleh : Indi Raisa Girsang 2310100119 Melvina Eliana 2310100161 Pembimbing : Prof. Dr. Ir. Nonot Soewarno, M.Eng. Siti Nurkhamidah,

Lebih terperinci

Laporan Praktikum Kimia Fisik

Laporan Praktikum Kimia Fisik Laporan Praktikum Kimia Fisik DestilasiCampuranBiner Oleh :Anindya Dwi Kusuma Marista (131424004) Annisa Novita Nurisma (131424005) Rahma Ausina (131424022) Kelas : 1A- Teknik Kimia Produksi Bersih Politeknik

Lebih terperinci

BAB II. KESEIMBANGAN

BAB II. KESEIMBANGAN BAB II. KESEIMBANGAN Pada perhitungan stage wise contact konsep keseimbangan memegang peran penting selain neraca massa dan neraca panas. Konsep rate processes tidak diperhatikan pada alat kontak jenis

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Absorpsi dan stripper adalah alat yang digunakan untuk memisahkan satu komponen atau lebih dari campurannya menggunakan prinsip perbedaan kelarutan. Solut adalah komponen

Lebih terperinci

Bab VI. CAMPURAN MULTI KOMPONEN

Bab VI. CAMPURAN MULTI KOMPONEN Bab VI. CAMPURAN MULTI KOMPONEN Pada bab ini akan dibahas secara ringkas prinsip pemisahan multi komponen. Pembahasan pemisahan campuran multi komponen bersifat singkat karena secara prinsip atau konsep

Lebih terperinci

ALAT TRANSFER MASSA ABSORBER DAN STRIPPER

ALAT TRANSFER MASSA ABSORBER DAN STRIPPER PMD D3 Sperisa Distantina ALAT TRANSFER MASSA ABSORBER DAN STRIPPER Silabi D3 Teknik Kimia: 1. Prinsip dasar alat transfer massa absorber dan stripper. 2. Variabel-variabel proses alat absorber dan stripper.

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1 Uraian Proses 3.1.1 Persiapan Bahan Baku Proses pembuatan Acrylonitrile menggunakan bahan baku Ethylene Cyanohidrin dengan katalis alumina. Ethylene Cyanohidrin pada T-01

Lebih terperinci

PERANCANGAN TRAY TOWER. Asep Muhamad Samsudin

PERANCANGAN TRAY TOWER. Asep Muhamad Samsudin PERANCANGAN TRAY TOWER PERANCANGAN ALAT PROSES Asep Muhamad Samsudin Ruang Lingkup 1. Pemilihan Tipe Kolom 2. Penentuan Kondisi operasi 3. Perancangan Tray Tower 4. Perancangan Packed Tower Penentuan Kondisi

Lebih terperinci

MENENTUKAN SUHU MINIMAL PADA CONDENSOR DAN REBOILER DENGAN MENGGUNAKAN KESETIMBANGAN

MENENTUKAN SUHU MINIMAL PADA CONDENSOR DAN REBOILER DENGAN MENGGUNAKAN KESETIMBANGAN MENENTUKAN SUHU MINIMAL PADA CONDENSOR DAN REBOILER DENGAN MENGGUNAKAN KESETIMBANGAN oleh Lilis Harmiyanto *) ABSTRAK Di dalam proses distilasi untuk memisahkan gas-gas dengan cairannya perlu pengaturan

Lebih terperinci

Laporan Praktikum Operasi Teknik Kimia II Kolom Berpacking (HETP) BAB I PENDAHULUAN

Laporan Praktikum Operasi Teknik Kimia II Kolom Berpacking (HETP) BAB I PENDAHULUAN BAB I PENDAHULUAN I.1 Latar Belakang Destilasi adalah proses pemisahan secara fisik yang berdasarkan atas perbedaan titik didih dan sedikitnya dibutuhkan dua komponen proses pemisahan tidak dapat dilakukan

Lebih terperinci

BAB I. PENDAHULUAN OTK di bidang Teknik Kimia?

BAB I. PENDAHULUAN OTK di bidang Teknik Kimia? BAB I. PENDAHULUAN OTK di bidang Teknik Kimia? Aplikasi dasar-dasar ilmu pengetahuan alam yang dirangkai dengan dasar ekonomi dan hubungan masyarakat pada bidang yang berkaitan Iangsung dengan proses dan

Lebih terperinci

FISIKA 2. Pertemuan ke-4

FISIKA 2. Pertemuan ke-4 FISIKA 2 Pertemuan ke-4 Teori Termodinamika Bila suatu campuran memenuhi sifat ideal, baik fasa gas dan fasa cairannya, maka hubungan keseimbangannya dapat dinyatakan dengan Hukum Raoult dan Dalton: dengan

Lebih terperinci

Aplikasi data keseimbangan uap-cair: 1. Penentuan kondisi jenuh, seperti uap jenuh dan cair jenuh. 2. Penentuan jumlah stage pada Menara Distilasi.

Aplikasi data keseimbangan uap-cair: 1. Penentuan kondisi jenuh, seperti uap jenuh dan cair jenuh. 2. Penentuan jumlah stage pada Menara Distilasi. MATERI : MENARA DISTILASI CAMPURAN BINER PMD D3 Sperisa Distantina Aplikasi data keseimbangan uap-cair: 1. Penentuan kondisi jenuh, seperti uap jenuh dan cair jenuh. 2. Penentuan jumlah stage pada Menara

Lebih terperinci

DISTILASI 08/03/2018 Nur Istianah-KP1-Distilasi-2015

DISTILASI 08/03/2018 Nur Istianah-KP1-Distilasi-2015 DISTILASI Distilasi Proses pemisahan dua komponen atau lebih berdasarkan perbedaan titik didihnya atau volatilitas Pemisahan tepat terjadi pasa saat kondisi setimbang atau equilibrium Feed Distillate Residue/

Lebih terperinci

V. SPESIFIKASI ALAT. Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan

V. SPESIFIKASI ALAT. Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan V. SPESIFIKASI ALAT Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan pabrik furfuril alkohol dari hidrogenasi furfural. Berikut tabel spesifikasi alat-alat yang digunakan.

Lebih terperinci

PENGARUH KENAIKKAN REFLUX RATIO TERHADAP KEBUTUHAN PANAS PADA KOLOM DISTILASI DENGAN DISTRIBUTED CONTROL SYSTEM (DCS)

PENGARUH KENAIKKAN REFLUX RATIO TERHADAP KEBUTUHAN PANAS PADA KOLOM DISTILASI DENGAN DISTRIBUTED CONTROL SYSTEM (DCS) TUGAS AKHIR PENGARUH KENAIKKAN REFLUX RATIO TERHADAP KEBUTUHAN PANAS PADA KOLOM DISTILASI DENGAN DISTRIBUTED CONTROL SYSTEM (DCS) (The Influence Of Reflux Ratio Increasment To Heat Requiry at Distilation

Lebih terperinci

Lebih Jauh tentang Absorpsi Gas dan Pembahasan CONTOH: Soal #2

Lebih Jauh tentang Absorpsi Gas dan Pembahasan CONTOH: Soal #2 Kuliah #3: Lebih Jauh tentang Absorpsi Gas dan Pembahasan CONTOH: Soal #2 Prof. Dr. Ir. Setijo Bismo, DEA. DTK-FTUI, 27 Oktober 2015 Beberapa Model Kolom Absorpsi A. Kolom Talam (Tray-type Plate Columns)

Lebih terperinci

TRANSFER MASSA ANTAR FASE. Kode Mata Kuliah :

TRANSFER MASSA ANTAR FASE. Kode Mata Kuliah : TRANSFER MASSA ANTAR FASE Kode Mata Kuliah : 2045330 Bobot : 3 SKS ALAT-ALAT TRANSFER MASSA Perancangan alat transfer massa W A = W A = N A A jumlah A yang ditransfer waktu N A : Fluks molar atau massa

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1. Uraian Proses Reaksi pembentukan C8H4O3 (phthalic anhydride) adalah reaksi heterogen fase gas dengan katalis padat, dimana terjadi reaksi oksidasi C8H10 (o-xylene) oleh

Lebih terperinci

KOLOM BERPACKING ( H E T P )

KOLOM BERPACKING ( H E T P ) PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 1 KOLOM BERPACKING ( H E T P ) LABORATORIUM RISET DAN OPERASI TEKNIK KIMIA PROGRAM STUDI TEKNIK KIMA FAKULTAS TEKNOLOGI INDUSTRI UPN VETERAN JAWA TIMUR SURABAYA

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES

BAB III SPESIFIKASI ALAT PROSES BAB III SPESIFIKASI ALAT PROSES III.. Spesifikasi Alat Utama Alat-alat utama di pabrik ini meliputi mixer, static mixer, reaktor, separator tiga fase, dan menara destilasi. Spesifikasi yang ditunjukkan

Lebih terperinci

PERANCANGAN PACKED TOWER. Asep Muhamad Samsudin

PERANCANGAN PACKED TOWER. Asep Muhamad Samsudin PERANCANGAN PACKED TOWER PERANCANGAN ALAT PROSES Asep Muhamad Samsudin Ruang Lingkup 1. Perhitungan Tinggi Kolom Packing 2. Perhitungan Diameter Kolom Perhitungan Tinggi Kolom Packing Tinggi kolom packing

Lebih terperinci

BASIC OF SHORT CUT & RIGOROUS COLUMN DISTILLATION SIMULATION IN HYSYS. CREATED BY DENNY FIRMANSYAH

BASIC OF SHORT CUT & RIGOROUS COLUMN DISTILLATION SIMULATION IN HYSYS. CREATED BY DENNY FIRMANSYAH BASIC OF SHORT CUT & RIGOROUS COLUMN DISTILLATION SIMULATION IN HYSYS CREATED BY DENNY FIRMANSYAH Email : dennyfirmansyah49@gmail.com EXAMPLE CASE Sebuah larutan yang merupakan campuran dari komponen methanol

Lebih terperinci

BAB III SPESIFIKASI ALAT

BAB III SPESIFIKASI ALAT BAB III SPESIFIKASI ALAT III.1. Spesifikasi Alat Utama III.1.1 Reaktor : R-01 : Fixed Bed Multitube : Mereaksikan methanol menjadi dimethyl ether dengan proses dehidrasi Bahan konstruksi : Carbon steel

Lebih terperinci

MAKALAH ALAT INDUSTRI KIMIA ABSORPSI

MAKALAH ALAT INDUSTRI KIMIA ABSORPSI MAKALAH ALAT INDUSTRI KIMIA ABSORPSI Disusun Oleh : Kelompok II Salam Ali 09220140004 Sri Dewi Anggrayani 09220140010 Andi Nabilla Musriah 09220140014 Syahrizal Sukara 09220140015 JURUSAN TEKNIK KIMIA

Lebih terperinci

Ruang Lingkup. 1. Pemilihan Tipe Kolom 2. Penentuan Kondisi operasi 3. Perancangan Tray Tower 4. Perancangan Packed Tower

Ruang Lingkup. 1. Pemilihan Tipe Kolom 2. Penentuan Kondisi operasi 3. Perancangan Tray Tower 4. Perancangan Packed Tower Ruang Lingkup 1. Pemilihan Tipe Kolom 2. Penentuan Kondisi operasi 3. Perancangan Tray Tower 4. Perancangan Packed Tower Penentuan Kondisi Operasi Kolom Kondisi operasi kolom ditentukan oleh pasangan suhu

Lebih terperinci

proses oksidasi Butana fase gas, dibagi dalam tigatahap, yaitu :

proses oksidasi Butana fase gas, dibagi dalam tigatahap, yaitu : (pra (Perancangan (PabnHjhjmia 14 JlnhiridMaleat dari(butana dan Vdara 'Kapasitas 40.000 Ton/Tahun ====:^=^=============^==== BAB III PERANCANGAN PROSES 3.1 Uraian Proses 3.1.1 Langkah Proses Pada proses

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang

BAB I PENDAHULUAN. A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Semangkin meningkatnya kebutuhan terhdap bahan bakar yang alami, atau dengan kata lain tidak membahayakan, baik secara Global maupun secara Individu. Dengan melihat

Lebih terperinci

BAB III. PERHITUNGAN STAGE SEIMBANG

BAB III. PERHITUNGAN STAGE SEIMBANG BAB III. PERHITUNGAN STAGE SEIMBANG Konsep stage seimbang dapat dipergunakan untuk memperkirakan hasil pemisahan suatu campuran. Konsep ini menggunakan dasar bahwa arus yang keluar stage dalam keadaan

Lebih terperinci

FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI

FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI BAB VI FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI VI.1 Pendahuluan Sebelumnya telah dibahas pengetahuan mengenai konversi reaksi sintesis urea dengan faktor-faktor yang mempengaruhinya.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Steam merupakan bagian penting dan tidak terpisahkan dari teknologi modern. Tanpa steam, maka industri makanan kita, tekstil, bahan kimia, bahan kedokteran,daya, pemanasan

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

BAB II STUDI LITERATUR

BAB II STUDI LITERATUR BAB II STUDI LITERATUR 2.1 Kebutuhan Air Tawar Siklus PLTU membutuhkan air tawar sebagai bahan baku. Hal ini dikarenakan peralatan PLTU sangat rentan terhadap karat. Akan tetapi, semakin besar kapasitas

Lebih terperinci

TUGAS PERANCANGAN ALAT PROSES PERANCANGAN TRAY MENARA DESTILASI

TUGAS PERANCANGAN ALAT PROSES PERANCANGAN TRAY MENARA DESTILASI TUGAS PERANCANGAN ALAT PROSES PERANCANGAN TRAY MENARA DESTILASI PEMISAHAN FORMAMID DAN AIR Disusun oleh : Kelompok : Tiga (3) Anggota Kelompok : 1. Arif Budiman 2. Elza Jamayanti 3. Naufal Alif Syarifuddin

Lebih terperinci

BAB III SPESIFIKASI PERALATAN PROSES

BAB III SPESIFIKASI PERALATAN PROSES 34 BAB III SPESIFIKASI PERALATAN PROSES 3.1. Tangki Tangki Bahan Baku (T-01) Tangki Produk (T-02) Menyimpan kebutuhan Menyimpan Produk Isobutylene selama 30 hari. Methacrolein selama 15 hari. Spherical

Lebih terperinci

DISTILASI BERTAHAP BATCH (DBB)

DISTILASI BERTAHAP BATCH (DBB) MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA DISTILASI BERTAHAP BATCH (DBB) Disusun oleh: Dinna Rizqi Awalia Dr. Danu Ariono Dr. Ardiyan Harimawan PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNOLOGI

Lebih terperinci

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan I. Pendahuluan A. Latar Belakang Dalam dunia industri terdapat bermacam-macam alat ataupun proses kimiawi yang terjadi. Dan begitu pula pada hasil produk yang keluar yang berada di sela-sela kebutuhan

Lebih terperinci

/ Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8

/ Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8 Faris Razanah Zharfan 06005225 / Teknik Kimia TUGAS. MENJAWAB SOAL 9.6 DAN 9.8 9.6 Air at 27 o C (80.6 o F) and 60 percent relative humidity is circulated past.5 cm-od tubes through which water is flowing

Lebih terperinci

/ Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8

/ Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8 Faris Razanah Zharfan 1106005225 / Teknik Kimia TUGAS 1. MENJAWAB SOAL 19.6 DAN 19.8 19.6 Air at 27 o C (80.6 o F) and 60 percent relative humidity is circulated past 1.5 cm-od tubes through which water

Lebih terperinci

BAB I PENDAHULUAN. Destilasi merupakan suatu cara yang digunakan untuk memisahkan dua atau

BAB I PENDAHULUAN. Destilasi merupakan suatu cara yang digunakan untuk memisahkan dua atau 1 BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Destilasi merupakan suatu cara yang digunakan untuk memisahkan dua atau lebih komponen cairan berdasarkan perbedaan titik didihnya. Uap yang dibentuk

Lebih terperinci

DESAIN ALAT DISTILASI UNTUK MEMPEROLEH ETANOL DENGAN KADAR OPTIMUM

DESAIN ALAT DISTILASI UNTUK MEMPEROLEH ETANOL DENGAN KADAR OPTIMUM DESAIN ALAT DISTILASI UNTUK MEMPEROLEH ETANOL DENGAN KADAR OPTIMUM Widji Utami, Surya Rosa Putra Laboratorium Biokimia, Fakultas Matematika dan Ilmu Pengetahuan Alam ITS uut@chem.its.ac.id ABSTRAK Packed

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES

BAB III SPESIFIKASI ALAT PROSES BAB III SPESIFIKASI ALAT PROSES Alat proses pabrik isopropil alkohol terdiri dari tangki penyimpanan produk, reaktor, separator, menara distilasi, serta beberapa alat pendukung seperti kompresor, heat

Lebih terperinci

1) Menghitung laju uap dan cairan maksimum dan minimum 2) Mengumpulkan dan perkirakan sifat fisis campuran 3) Memilih jarak antar plat 4) Menetukan

1) Menghitung laju uap dan cairan maksimum dan minimum 2) Mengumpulkan dan perkirakan sifat fisis campuran 3) Memilih jarak antar plat 4) Menetukan PERANCANGAN PLAT Tahapan Perancangan Plat 1) Menghitung laju uap dan cairan maksimum dan minimum 2) Mengumpulkan dan perkirakan sifat fisis campuran 3) Memilih jarak antar plat 4) Menetukan diamater kolom

Lebih terperinci

Materi kuliah OTK 3 Sperisa Distantina EKSTRAKSI CAIR-CAIR

Materi kuliah OTK 3 Sperisa Distantina EKSTRAKSI CAIR-CAIR Materi kuliah OTK 3 perisa istantina EKTRKI CIR-CIR Peserta kuliah harus membawa: 1. kertas grafik milimeter 2. pensil/ballpoint berwarna 3. penggaris Pustaka: Foust,.., 1960, Principles of Unit Operation,

Lebih terperinci

ATK I DASAR-DASAR NERACA MASSA ASEP MUHAMAD SAMSUDIN, S.T.,M.T.

ATK I DASAR-DASAR NERACA MASSA ASEP MUHAMAD SAMSUDIN, S.T.,M.T. ATK I DASAR-DASAR NERACA MASSA ASEP MUHAMAD SAMSUDIN, S.T.,M.T. Pembuatan Gula Berapa banyak air yang dihilangkan didalam evaporator (lb/jam)? Berapa besar fraksi massa komponen-komponen dalam arus buangan

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1. Uraian Proses Larutan benzene sebanyak 1.257,019 kg/jam pada kondisi 30 o C, 1 atm dari tangki penyimpan (T-01) dipompakan untuk dicampur dengan arus recycle dari menara

Lebih terperinci

atm dengan menggunakan steam dengan suhu K sebagai pemanas.

atm dengan menggunakan steam dengan suhu K sebagai pemanas. Pra (Rancangan PabrikjEthanoldan Ethylene danflir ' BAB III PERANCANGAN PROSES 3.1 Uraian Proses 3.1.1 Langkah proses Pada proses pembuatan etanol dari etilen yang merupakan proses hidrasi etilen fase

Lebih terperinci

EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA

EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA PRARANCANGAN PABRIK ETIL ASETAT PROSES ESTERIFIKASI DENGAN KATALIS H 2 SO 4 KAPASITAS 18.000 TON/TAHUN Oleh : EKO AGUS PRASETYO 21030110151124 DIANA CATUR

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Proses evaporasi telah dikenal sejak dahulu, yaitu untuk membuat garam dengan cara menguapkan air dengan bantuan energi matahari dan angin. Evaporasi adalah salah satu

Lebih terperinci

Prarancangan Pabrik Metil Salisilat dari Metanol dan Asam Salisilat Kapasitas Ton/Tahun BAB III SPESIFIKASI ALAT. Kode T-01 T-02 T-03

Prarancangan Pabrik Metil Salisilat dari Metanol dan Asam Salisilat Kapasitas Ton/Tahun BAB III SPESIFIKASI ALAT. Kode T-01 T-02 T-03 BAB III SPESIFIKASI ALAT 1. Tangki Penyimpanan Spesifikasi Tangki Metanol Tangki Asam Tangki Metil Sulfat Salisilat Kode T-01 T-02 T-03 Menyimpan Menyimpan asam Menyimpan metil metanol untuk 15 sulfat

Lebih terperinci

PERSENTASE PRODUK ETANOL DARI DISTILASI ETANOL AIR DENGAN DISTRIBUTE CONTROL SYSTEM (DCS) PADA BERBAGAI KONSENTRASI UMPAN

PERSENTASE PRODUK ETANOL DARI DISTILASI ETANOL AIR DENGAN DISTRIBUTE CONTROL SYSTEM (DCS) PADA BERBAGAI KONSENTRASI UMPAN TUGAS AKHIR PERSENTASE PRODUK ETANOL DARI DISTILASI ETANOL AIR DENGAN DISTRIBUTE CONTROL SYSTEM (DCS) PADA BERBAGAI KONSENTRASI UMPAN (PERCENTAGE OF ETHANOL PRODUCT FROM ETHANOL WATER DISTILATION WITH

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES

BAB III SPESIFIKASI ALAT PROSES 47 BAB III SPESIFIKASI ALAT PROSES 3.1. Alat Utama Tabel 3.1 Spesifikasi Reaktor Kode R-01 Mereaksikan asam oleat dan n-butanol menjadi n-butil Oleat dengan katalis asam sulfat Reaktor alir tangki berpengaduk

Lebih terperinci

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 2 EQUILIBRIUM STILL

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 2 EQUILIBRIUM STILL PRKTIKUM OPERSI TEKNIK KIMI II MODUL 2 EQUILIRIUM STILL LORTORIUM RISET DN OPERSI TEKNIK KIMI PROGRM STUDI TEKNIK KIM FKULTS TEKNOLOGI INDUSTRI UPN VETERN JW TIMUR SURY EQUILIRIUM STILL TUJUN Percobaan

Lebih terperinci

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 7 WETTED WALL COLUMN

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 7 WETTED WALL COLUMN PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 7 WETTED WALL COLUMN LABORATORIUM RISET DAN OPERASI TEKNIK KIMIA PROGRAM STUDI TEKNIK KIMA FAKULTAS TEKNOLOGI INDUSTRI UPN VETERAN JAWA TIMUR SURABAYA I. TUJUAN

Lebih terperinci

BAB III VACUUM DISTILLATION UNIT (VDU)

BAB III VACUUM DISTILLATION UNIT (VDU) BAB III VACUUM DISTILLATION UNIT (VDU) I. Pendahuluan Pada awalnya kilang hanya terdiri dari suatu Crude Distillation Unit (CDU) yang beroperasi dengan prinsip dasar pemisahan berdasarkan titik didih komponen

Lebih terperinci

Penuntun praktikum DISTILASI BATCH

Penuntun praktikum DISTILASI BATCH Penuntun praktikum DISTILASI BATCH I. Pendahuluan Distilasi adalah unit operasi yang sudah ratusan tahun diaplikasikan secara luas. Di sperempat abad pertama dari abad ke-20 ini, aplikasi unit distilasi

Lebih terperinci

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil BAB II LANDASAN TEORI II.1 Teori Dasar Ketel Uap Ketel uap adalah pesawat atau bejana yang disusun untuk mengubah air menjadi uap dengan jalan pemanasan, dimana energi kimia diubah menjadi energi panas.

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Produksi bahan bakar alternatif (biofuel) saat ini mendapat perhatian lebih dari beberapa pemerintahan di seluruh dunia. Beberapa pemerintahan telah mengumumkan komitmen

Lebih terperinci

PEMISAHAN DAN PEMURNIAN ZAT CAIR. Distilasi dan Titik Didih

PEMISAHAN DAN PEMURNIAN ZAT CAIR. Distilasi dan Titik Didih PEMISAHAN DAN PEMURNIAN ZAT CAIR Distilasi dan Titik Didih I. Tujuan 1.1 Mengetahui prinsip destilasi dan pengertian campuran azeotrop 1.2 Dapat mengkalibrasi thermometer dan dapat merangkai peralatan

Lebih terperinci

LAPORAN HASIL PENELITIAN

LAPORAN HASIL PENELITIAN LAPORAN HASIL PENELITIAN KAJIAN KINERJA MEDIA KONDENSASI UNTUK PEMURNIAN ETHANOL Oleh : 1. Suharto Wibowo ( NPM. 0631010047 ) 2. Mochamad Yanuar Nadzif ( NPM. 0731210070 ) JURUSAN TEKNIK KIMIA FAKULTAS

Lebih terperinci

PMD D3 Sperisa Distantina

PMD D3 Sperisa Distantina PMD D3 Sperisa Distantina KESEIMNGN UP CIR Pustaka: Foust,.S., 1960, Principles of Unit Operation, John Wiley and Sons. Geankoplis, C.J., 1985, Transport Processes and Unit Operation, Prentice Hall, Inc.,

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1]

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1] BAB I PENDAHULUAN I.1. Latar Belakang Dewasa ini kelangkaan sumber energi fosil telah menjadi isu utama. Kebutuhan energi tersebut setiap hari terus meningkat. Maka dari itu, energi yang tersedia di bumi

Lebih terperinci

BAB III SPESIFIKASI PERALATAN PROSES

BAB III SPESIFIKASI PERALATAN PROSES BAB III SPESIFIKASI PERALATAN PROSES 3.1. Furnace : F : Tempat terjadinya reaksi cracking ethylene dichloride menjadi vinyl chloride dan HCl : Two chamber Fire box : 1 buah Kondisi Operasi - Suhu ( o C)

Lebih terperinci

Kumpulan Laporan Praktikum Kimia Fisika PERCOBAAN VI

Kumpulan Laporan Praktikum Kimia Fisika PERCOBAAN VI PERCOBAAN VI Judul Percobaan : DESTILASI Tujuan : Memisahkan dua komponen cairan yang memiliki titik didih berbeda. Hari / tanggal : Senin / 24 November 2008. Tempat : Laboratorium Kimia PMIPA FKIP Unlam

Lebih terperinci

SATUAN OPERASI-2 ABSORPSI I. Disusun Oleh:

SATUAN OPERASI-2 ABSORPSI I. Disusun Oleh: SATUAN OPERASI-2 ABSORPSI I Kelas : 4 KB Kelompok Disusun Oleh: : II Ari Revitasari (0609 3040 0337) Eka Nurfitriani (0609 3040 0341) Kartika Meilinda Krisna (0609 3040 0346) M. Agus Budi Kusuma (0609

Lebih terperinci

MAKALAH KIMIA PEMISAHAN

MAKALAH KIMIA PEMISAHAN MAKALAH KIMIA PEMISAHAN Destilasi Bertingkat DISUSUN OLEH : Nama :1. Shinta Lestari ( A1F014011) 2. Liis Panggabean ( A1F014018) 3. Dapot Parulian M ( A1F014021) 4. Wemiy Putri Yuli ( A1F014022) 5. Epo

Lebih terperinci

c. Kenaikan suhu akan meningkatkan konversi reaksi. Untuk reaksi transesterifikasi dengan RD. Untuk percobaan dengan bahan baku minyak sawit yang

c. Kenaikan suhu akan meningkatkan konversi reaksi. Untuk reaksi transesterifikasi dengan RD. Untuk percobaan dengan bahan baku minyak sawit yang KESIMPULAN Beberapa hal yang dapat disimpulkan dari hasil penelitian adalah sebagai berikut: 1. Studi eksperimental pembuatan biodiesel dengan Reactive Distillation melalui rute transesterifikasi trigliserida

Lebih terperinci

2. Fase komponen dan derajat kebebasan. Pak imam

2. Fase komponen dan derajat kebebasan. Pak imam 2. Fase komponen dan derajat kebebasan Pak imam Fase dan komponen Fase adalah keadaan materi yang seragam di seluruh bagiannya, dalam komposisi kimia maupun fisiknya. (Gibbs) Banyaknya fase diberi lambang

Lebih terperinci

OTK 3 S1 Sperisa Distantina

OTK 3 S1 Sperisa Distantina OTK 3 S1 Sperisa Distantina KESEIMNGN UP CIR Pustaka: Foust,.S., 1960, Principles of Unit Operation, John Wiley and Sons. Geankoplis, C.J., 1985, Transport Processes and Unit Operation, Prentice Hall,

Lebih terperinci

Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair

Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair Kelompok 3 Nahida Rani (1106013555) Nuri Liswanti Pertiwi (1106015421) Rizqi Pandu Sudarmawan (0906557045) Sony Ikhwanuddin (1106052902) Sulaeman

Lebih terperinci

PENGETAHUAN PROSES PADA UNIT SINTESIS UREA

PENGETAHUAN PROSES PADA UNIT SINTESIS UREA BAB V PENGETAHUAN PROSES PADA UNIT SINTESIS UREA V.I Pendahuluan Pengetahuan proses dibutuhkan untuk memahami perilaku proses agar segala permasalahan proses yang terjadi dapat ditangani dan diselesaikan

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES. Alat-alat di pabrik ini meliputi reactive distillation, menara distilasi,

BAB III SPESIFIKASI ALAT PROSES. Alat-alat di pabrik ini meliputi reactive distillation, menara distilasi, BAB III SPESIFIKASI ALAT PROSES Alat-alat di pabrik ini meliputi reactive distillation, menara distilasi, kondenser, accumulator, reboiler, heat exchanger, pompa dan tangki. tiap alat ditunjukkan dalam

Lebih terperinci

BAB III PERANCANGAN PROSES. bahan baku Metanol dan Asam Laktat dapat dilakukan melalui tahap-tahap sebagai

BAB III PERANCANGAN PROSES. bahan baku Metanol dan Asam Laktat dapat dilakukan melalui tahap-tahap sebagai BAB III PERANCANGAN PROSES 3.1 Uraian Proses Proses pembuatan Metil Laktat dengan reaksi esterifikasi yang menggunakan bahan baku Metanol dan Asam Laktat dapat dilakukan melalui tahap-tahap sebagai berikut

Lebih terperinci

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR Arif Kurniawan Institut Teknologi Nasional (ITN) Malang; Jl.Raya Karanglo KM. 2 Malang 1 Jurusan Teknik Mesin, FTI-Teknik Mesin

Lebih terperinci

EKSTRAKSI CAIR-CAIR. Bahan yang digunkan NaOH Asam Asetat Indikator PP Air Etil Asetat

EKSTRAKSI CAIR-CAIR. Bahan yang digunkan NaOH Asam Asetat Indikator PP Air Etil Asetat EKSTRAKSI CAIR-CAIR I. TUJUAN PERCOBAAN Mahasiswa mampu mengoperasikan alat Liqiud Extraction dengan baik Mahasiswa mapu mengetahui cara kerja alat ekstraksi cair-cair dengan aliran counter current Mahasiswa

Lebih terperinci

BAB II DESKRIPSI PROSES

BAB II DESKRIPSI PROSES BAB II DESKRIPSI PROSES 2.1. Spesifikasi Bahan Baku dan Produk 2.1.1. Spesifikasi bahan baku 2.1.1.1. Ethylene Dichloride (EDC) a. Rumus Molekul : b. Berat Molekul : 98,96 g/mol c. Wujud : Cair d. Kemurnian

Lebih terperinci

Nama : Nur Arifin NPM : Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : DR. C. Prapti Mahandari, ST.

Nama : Nur Arifin NPM : Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : DR. C. Prapti Mahandari, ST. KESEIMBANGAN ENERGI KALOR PADA ALAT PENYULINGAN DAUN CENGKEH MENGGUNAKAN METODE AIR DAN UAP KAPASITAS 1 Kg Nama : Nur Arifin NPM : 25411289 Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing

Lebih terperinci

Before UTS. Kode Mata Kuliah :

Before UTS. Kode Mata Kuliah : Before UTS Kode Mata Kuliah : 2045330 Bobot : 3 SKS Pertemuan Materi Submateri 1 2 3 4 Konsep dasar perpindahan massa difusional Difusi molekuler dalam keadaan tetap Difusi melalui non stagnan film 1.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

Prarancangan Pabrik Asam Stearat dari Minyak Kelapa Sawit Kapasitas ton/tahun BAB I PENDAHULUAN

Prarancangan Pabrik Asam Stearat dari Minyak Kelapa Sawit Kapasitas ton/tahun BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Industri kimia memiliki peranan penting dalam kehidupan masyarakat dikarenakan industri kimia banyak memproduksi barang mentah maupun barang jadi untuk mencukupi kebutuhan

Lebih terperinci

V. SPESIFIKASI PERALATAN

V. SPESIFIKASI PERALATAN V. SPESIFIKASI PERALATAN A. Peralatan Proses Peralatan proses Pabrik Tricresyl Phosphate dengan kapasitas 25.000 ton/tahun terdiri dari : 1. Tangki Penyimpanan Phosphorus Oxychloride (ST-101) Tabel. 5.1

Lebih terperinci

3 METODE PENELITIAN 3.1 Waktu dan Tempat 3.2 Alat dan Bahan Alat Bahan 3.3 Prosedur Penelitian

3 METODE PENELITIAN 3.1 Waktu dan Tempat 3.2 Alat dan Bahan Alat Bahan 3.3 Prosedur Penelitian 17 3 METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian telah dilaksanakan pada bulan Desember 2010 sampai dengan Juni 2011, bertempat di Laboratorium Surya, Bagian Teknik Energi Terbarukan, Departemen

Lebih terperinci

III. PERANCANGAN KONDISI PROSES

III. PERANCANGAN KONDISI PROSES III. PERANCANGAN KONDISI PROSES III.1 Kondisi Proses Yang diartikan dengan kondisi proses adalah kondisi operasi yang diperlukan sehingga perancangan yang dilakukan itu dapat memenuhi design itention,

Lebih terperinci

B T A CH C H R EAC EA T C OR

B T A CH C H R EAC EA T C OR BATCH REACTOR PENDAHULUAN Dalam teknik kimia, Reaktor adalah suatu jantung dari suatu proses kimia. Reaktor kimia merupakan suatu bejana tempat berlangsungnya reaksi kimia. Rancangan dari reaktor ini tergantung

Lebih terperinci

TERMODINAMIKA I G I T A I N D AH B U D I AR T I

TERMODINAMIKA I G I T A I N D AH B U D I AR T I TERMODINAMIKA I G I T A I N D AH B U D I AR T I REFERENSI Smith, J.M., and Van Ness, H.C. 1987, Introduction to Chemical Engineering Thermodynamics, 4 ed., Mc Graw Hill Book Co. Inc., New York PENILAIAN

Lebih terperinci

BAB II DESKRIPSI PROSES

BAB II DESKRIPSI PROSES BAB II DESKRIPSI PROSES 2.1. Spesifikasi Bahan Baku dan Produk 2.1.1. Spesifikasi bahan baku Etanol Fase (30 o C, 1 atm) : Cair Komposisi : 95% Etanol dan 5% air Berat molekul : 46 g/mol Berat jenis :

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Fase merupakan keadaan dari suatu zat, dapat berupa padat, gas maupun cair. Dalam kehidupan sehari-hari selain aliran satu fase, kita juga temukan aliran multi fase.

Lebih terperinci

STUDY PERPINDAHAN PANAS DAN MASSA PADA EVAPORASI NIRA DI DALAM FALLING FILM EVAPORATOR DENGAN ADANYA ALIRAN UDARA

STUDY PERPINDAHAN PANAS DAN MASSA PADA EVAPORASI NIRA DI DALAM FALLING FILM EVAPORATOR DENGAN ADANYA ALIRAN UDARA Jurusan Teknik Kimia Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2010 STUDY PERPINDAHAN PANAS DAN MASSA PADA EVAPORASI NIRA DI DALAM FALLING FILM EVAPORATOR DENGAN ADANYA ALIRAN

Lebih terperinci

EVALUASI KOLOM DISTILASI BUTANOL-AIR DENGAN INTEGRASI PANAS UNTUK MENDAPATKAN TOTAL ANNUAL COST (TAC) MINIMUM

EVALUASI KOLOM DISTILASI BUTANOL-AIR DENGAN INTEGRASI PANAS UNTUK MENDAPATKAN TOTAL ANNUAL COST (TAC) MINIMUM EVALUASI KOLOM DISTILASI BUTANOL-AIR DENGAN INTEGRASI PANAS UNTUK MENDAPATKAN TOTAL ANNUAL COST (TAC) MINIMUM Nama Mahasiswa : 1. Satrio Pamungkas NRP.230610005 : 2. Tri Hartanto A NRP.230610000 Dosen

Lebih terperinci

NME D3 Sperisa Distantina BAB II NERACA MASSA

NME D3 Sperisa Distantina BAB II NERACA MASSA 1 NME D3 Sperisa Distantina BAB II NERACA MASSA PENYUSUNAN DAN PENYELESAIAN NERACA MASSA KONSEP NERACA MASSA = persamaan yang disusun berdasarkan hukum kekekalan massa (law conservation of mass), yaitu

Lebih terperinci

BAB II DISKRIPSI PROSES. 2.1 Spesifikasi Bahan Baku, Bahan Pendukung dan Produk. Isobutanol 0,1% mol

BAB II DISKRIPSI PROSES. 2.1 Spesifikasi Bahan Baku, Bahan Pendukung dan Produk. Isobutanol 0,1% mol BAB II DISKRIPSI PROSES 2.1 Spesifikasi Bahan Baku, Bahan Pendukung dan Produk 2.1.1. Spesifikasi bahan baku tert-butyl alkohol (TBA) Wujud Warna Kemurnian Impuritas : cair : jernih : 99,5% mol : H 2 O

Lebih terperinci

Gambar 1 Open Kettle or Pan

Gambar 1 Open Kettle or Pan JENIS-JENIS EVAPORATOR 1. Open kettle or pan Prinsip kerja: Bentuk evaporator yang paling sederhana adalah bejana/ketel terbuka dimana larutan didihkan. Sebagai pemanas biasanya steam yang mengembun dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dimetil Eter Dimetil Eter (DME) adalah senyawa eter yang paling sederhana dengan rumus kimia CH 3 OCH 3. Dikenal juga sebagai methyl ether atau wood ether. Jika DME dioksidasi

Lebih terperinci

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Arif Kurniawan Jurusan Teknik Mesin Institut Teknologi Nasional (ITN) Malang E-mail : arifqyu@gmail.com Abstrak. Pada bagian mesin pendingin

Lebih terperinci

BAB II SISTEM VAKUM. Vakum berasal dari kata latin, Vacuus, berarti Kosong. Kata dasar dari

BAB II SISTEM VAKUM. Vakum berasal dari kata latin, Vacuus, berarti Kosong. Kata dasar dari BAB II SISTEM VAKUM II.1 Pengertian Sistem Vakum Vakum berasal dari kata latin, Vacuus, berarti Kosong. Kata dasar dari kata vacuum tersebut merupakan Vakum yang ideal atau Vakum yang sempurna (Vacuum

Lebih terperinci