BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Pada bagian ini, akan dibahas system predator-prey dengan respon fungsi tak

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Pada bagian ini, akan dibahas system predator-prey dengan respon fungsi tak"

Transkripsi

1 BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bagian ini, akan dibahas system predator-prey dengan respon fungsi tak monoton, titik ekuilibrium, pelinieran, analisa kestabilan titik ekuilibriumnya dengan menggunakan Software Maple 16 dan untuk mengetahui perilaku dari pemangsa-mangsa berdasarkan system predator-prey dengan respon fungsi tak monoton. 4.1 Analisis Titik Ekuilibrium Sistem Predator-Prey dengan Respon Fungsi Tak Monoton Bentuk umum system predator-prey dengan respon fungsi tak monoton (Prihantoso, Kus [4]): x = x(1 x) y = δy μy 2 + xy αx 2 + βx + 1 xy αx 2 + βx + 1 (4.1) Untuk memperoleh titik ekulibrium dari persamaan (4.1) maka harus dipenuhi persamaan berikut : x = 0 dan y = 0 Sehingga masing-masing persamaan (4.1) memberikan : x = 0, maka x(1 x) y = 0, maka = δy μy 2 + xy αx 2 +βx+1 = 0, xy αx 2 +βx+1 = 0 (4.2) Berdasarkan persamaan (4.2), maka titik ekulibrium yang diperoleh yakni : 1. Untuk titik ekuilibrium pertama, T 1 (0,0). 20

2 2. Untuk titik ekuilibrium pertama, T 2 (0, δ μ ). 3. Untuk titik ekuilibrium pertama, T 3 ( 1, 0). Berdasarkan uraian di atas, diketahui bahwa pada system predator-prey dengan respon fungsi tak monoton diperoleh tiga titik ekulibrium, yakni T 1 (0,0), T 2 (0, δ )dan T μ 3 ( 1, 0). 4.2 Pelinieran Pelinieran Titik Ekuilibrium T 1 (0,0) Untuk proses pelinieran pada titik ekuilibrium T 1 (0,0) tidak akan mengubah bentuk umum dari system predator-prey dengan respon fungsi tak monoton. Misal : p = x x 0, maka p = x atau x = p. Misal : q = y y 0, maka q = y atau y = q. Kemudian mensubtitusikan nilai x dan y ke persamaan (4.1), sehingga diperoleh : x = p(1 p) y = δq μq 2 + pq pq (4.3) Jika persamaan (4.3) disajikan dalam bentuk matriks, diperoleh : pq ( x ) = ( 1 0 p2 y 0 δ ) (p q ) + ( μq 2 pq ) Pelinieran Titik Ekuilibrium T 2 (0, δ μ ) Untuk proses pelinieran pada titik ekuilibrium T 2 (0, δ μ ). Misal : p = x x 0, maka p = x atau x = p. 21

3 Misal : q = y y 0, maka q = y + δ μ atau y = q δ μ. Kemudian mensubtitusikan nilai x dan y ke persamaan (4.1), sehingga diperoleh : (pq δ x = p p 2 μ p) (pq δ y = δq μq 2 μ p) + (4.4) Jika persamaan (4.4) disajikan dalam bentuk matriks, diperoleh : ( x ) = ( 1 0 y 0 δ ) (p q ) Pelinieran Titik Ekulibrium T 3 ( 1, 0) ( (pq δ p 2 μ p) μq 2 + (pq δ μ p) ) Untuk proses pelinieran pada titik ekuilibrium T 3 ( 1, 0). Misal : p = x x 0, maka p = x 1 atau x = p + 1. Misal : q = y y 0, maka q = y atau y = q. Kemudian mensubtitusikan nilai x dan y ke persamaan (4.1), sehingga diperoleh : x = p p 2 (4.5) y = δq μq 2 + Jika persamaan (4.5) disajikan dalam bentuk matriks, diperoleh : 22

4 ( x ) = ( 1 0 y 0 δ ) (p q ) Analisa Kestabilan Titik Ekuilibrium p 2 μq 2 + αp ( 2 + 2α p + βp + α 2 + β + 1 ) Dalam menentukan jenis titik ekuilibrium stabil atau tidak, diperlukan matriks Jacobi dan nilai eigen. Dari proses pelinieran, diperoleh matriks Jacobi berikut: y 1 2 x αx 2 + βx xy (αx 2 + βx + 1) 2 J (x,y) = y xy(2αx + β) ( αx 2 + βx + 1 αx 2 + βx + 1 x αx 2 + βx + 1 x δ 2μy + αx 2 + βx + 1) Titik Ekuilibrium T 1 (0,0) Berdasarkan matriks Jacobi yang diperoleh, didapatkan matriks Jacobi untuk titik ekuilibrium T 1 (0,0) sebagai berikut : Dengan nilai eigen, NE = 1, δ. J (0,0) = ( δ ) Karena salah satu nilai eigennya positif, 1 > 0 dan δ < 0, maka titik ekuilibrium T 1 (0,0) merupakan titik sadel yang tidak stabil Titik Ekuilibrium T 2 (0, δ μ ) Berdasarkan matriks Jacobi yang diperoleh, didapatkan matriks Jacobi untuk titik ekuilibrium T 2 (0, δ ) sebagai berikut : μ J (0, δ μ ) = ( 1 + δ μ 0 δ μ δ ) 23

5 Dengan nilai eigen, NE = μ+δ, δ. μ Karena nilai eigennya positif, μ+δ T 2 (0, δ ) merupakan titik tidak stabil. μ μ > 0 dan δ > 0, maka titik ekuilibrium Titik Ekuilibrium T 3 ( 1, 0) Berdasarkan matriks Jacobi yang diperoleh, didapatkan matriks Jacobi untuk titik ekuilibrium T 3 ( 1, 0) sebagai berikut : J ( 1,0) = ( 1 0 δ + 1 ( α 2 + β + 1) 1 ( α 2 + β + 1) ) Dengan nilai eigen, NE = 1, δα+δβ +δ 2 α+β + 2 Karena salah satu nilai eigennya negatif, 1 < 0 dan δα+δβ +δ 2 α+β + 2 belum diketahui δα+δβ +δ 2 α+β + 2 T 3 ( 1, 0) belum diketahui kestabilannya. 4.4 Metode Manifold Center < 0 atau δα+δβ +δ 2 α+β + 2 > 0, maka titik ekuilibrium Pada metode manifold center ini, yang akan dibahas hanya bagian titik ekuilibrium T 3 ( 1, 0). Untuk menyelesaikan persamaan (4.5), kita menyertakan parameter δ sebagai variable baru, sehingga diperoleh persamaan sebagai berikut : 24

6 x = p p 2 δ = 0 (4.6) y = δq μq 2 + Jika persamaan (4.6) disajikan dalam bentuk matriks, diperoleh : x p ( y ) = ( 0 0 0) ( q) + δ δ ( p 2 δq μq ) Setelah dilakukan langkah-langkah metode center manifold, diperoleh persamaan : p = ap 2 + bδp + cp 3 + dδp 2 + O(p, δ) 4 δ = 0 (4.7) Dimana : a = β α + α 2 β α, 2 b = 1 ( β α 2), 25

7 c = β 3 2 α 1 2 (( 2β α 2 ) (β + 2α ) β + 2 ) + α β α, 2 d = 1 + (β + 2α ) β α β α 2 Setelah itu, persamaan (4.7) dilakukan scalling variable sehingga diperoleh persamaan : dan q = bδq + q 2 q = bδq + q Analisis Bifurkasi Satu Parameter pada Sistem Predator-Prey dengan Respon Fungsi Tak Monoton Bifurkasi adalah perubahan kestabilan yang terjadi pada sistem ketika melewati sebuah titik ekuilibrium. Bifurkasi terjadi pada penyelesaian titik setimbang yang mempunyai paling sedikit satu nilai eigen sama dengan nol pada bagian realnya. Nilai dari parameter = 0 yang menyebabkan bagian real dari nilai-nilai eigen D x f adalah nol, disebut nilai bifurkasi. (Thomas,[7]) Pada pembahasan sebelumnya diketahui bahwa system predator-prey dengan respon fungsi tak monoton, setelah manifold center dan scalling variable diperoleh persamaan q = bδq + q 2. Hal ini menunjukkan bahwa terjadi bifurkasi transkritikal, digambarkan dengan q = bδq + q 2. Terdapat dua solusi ekuilibrium 26

8 yaitu q = 0 dan q = bδ, keduanya mengalami perubahan kestabilan pada saat bδ melewati 0. Gambar 4.1: Bifurkasi Transkiritikal pada Sistem predator-prey Selain itu, system predator-prey dengan respon fungsi tak monoton, setelah manifold center dan scalling variabel diperoleh persamaan q = bδq + q 3. Hal ini menunjukkan bahwa terjadi bifurkasi pitchfork, digambarkan dengan q = bδq + q 3. Jika bδ > 0 tidak ada solusi ekuilibrium, yaitu q = 0 yang merupakan solusi yang stabil. Jika bδ < 0 ada tiga buah solusi, yaitu solusi takstabil q = 0, dan dua buah solusi stabil q = ± bδ. 27

9 Gambar 4.2: Bifurkasi Pitchfork pada Sistem predator-prey Berdasarkan uraian di atas, jadi pada system predator-prey dengan respon fungsi tak monoton terjadi bifurkasi satu parameter yaitu bifurkasi transkritikal dan bifurkasi pitchfork. 28

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya BAB II KAJIAN TEORI 2.1 Persamaan Diferensial Persamaan diferensial sangat penting dalam pemodelan matematika khususnya untuk pemodelan yang membutuhkan solusi dari sebuah permasalahan. Pemodelan matematika

Lebih terperinci

ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR SKRIPSI

ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR SKRIPSI ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

BAB IV PENUTUP. Berdasarkan hasil analisis bifurkasi pada model predator-prey dengan dua

BAB IV PENUTUP. Berdasarkan hasil analisis bifurkasi pada model predator-prey dengan dua BAB IV PENUTUP A. Kesimpulan Berdasarkan hasil analisis bifurkasi pada model predator-prey dengan dua predator diperoleh kesimpulan sebagai berikut. 1. Diperoleh model predator-prey dengan dua predator

Lebih terperinci

ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR Lia Listyana 1, Dr. Hartono 2, dan Kus Prihantoso Krisnawan,M.

ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR Lia Listyana 1, Dr. Hartono 2, dan Kus Prihantoso Krisnawan,M. 1 Abstrak ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR Lia Listyana 1, Dr. Hartono 2, Kus Prihantoso Krisnawan,M.Si 3 1 Mahasiswa Jurusan Pendidikan Matematika, Universitas

Lebih terperinci

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika,

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika, BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema dari nilai eigen, vektor eigen, dan diagonalisasi, sistem persamaan differensial, model predator prey lotka-voltera,

Lebih terperinci

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai nilai eigen dan vektor eigen, sistem dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan sistem dinamik, kriteria Routh-Hurwitz,

Lebih terperinci

BAB I PENDAHULUAN. hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau

BAB I PENDAHULUAN. hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau 1 BAB I PENDAHULUAN A. LATAR BELAKANG Setiap mahluk hidup dituntut untuk senantiasa berinteraksi dengan mahluk hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau interaksi antara

Lebih terperinci

Lampiran 1 Penentuan titik tetap Model Gyllenberg-Webb. 1 ln

Lampiran 1 Penentuan titik tetap Model Gyllenberg-Webb. 1 ln LAMPIRAN 35 Lampiran 1 Penentuan titik tetap Model Gyllenberg-Webb Titik tetap dari sistem persamaan diferensial (3.7)-(3.8) diperoleh dengan menentukan 0 dan 0, sehingga diperoleh: 1 ln 0 (1) 1 ln 0 (2)

Lebih terperinci

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR 9 IV PEMBAHASAN 4.1 Model SIR 4.1.1 Titik Tetap Untuk mendapatkan titik tetap diperoleh dari dua persamaan singular an ) sehingga dari persamaan 2) diperoleh : - si + s = 0 9) si + )i = 0 didapat titik

Lebih terperinci

BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER

BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER T - 2 Andini Putri Ariyani 1, Kus Prihantoso Krisnawan 2 Jurusan Pendidikan Matematika FMIPA UNY 1 e-mail:andiniputri_ariyani@yahoo.com, 2 e-mail:

Lebih terperinci

Penentuan Bifurkasi Hopf Pada Predator Prey

Penentuan Bifurkasi Hopf Pada Predator Prey J. Math. and Its Appl. ISSN: 9-65X Vol., No., Nov 5, 5 Penentuan Bifurkasi Hopf Pada Predator Prey Dian Savitri Jurusan Teknik Sipil, Fakultas Teknik Universitas Negeri Surabaya d savitri@yahoo.com Abstrak

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Dalam kehidupan setiap makhluk hidup tidak dapat terlepas dengan yang namanya interaksi. Interaksi merupakan suatu jenis tindakan yang terjadi ketika dua atau lebih

Lebih terperinci

BIFURKASI PITCHFORK PADA SISTEM DINAMIK DIMENSI-n SKRIPSI

BIFURKASI PITCHFORK PADA SISTEM DINAMIK DIMENSI-n SKRIPSI BIFURKASI PITCHFORK PADA SISTEM DINAMIK DIMENSI-n SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memperoleh

Lebih terperinci

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI Yolpin Durahim 1 Novianita Achmad Hasan S. Panigoro Diterima: xx xxxx 20xx, Disetujui: xx xxxx 20xx o Abstrak Dalam

Lebih terperinci

MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK

MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK SEMIRATA MIPAnet 2017 24-26 Agustus 2017 UNSRAT, Manado MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK HASAN S. PANIGORO 1, EMLI RAHMI 2 1 Universitas

Lebih terperinci

Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan

Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan Prosiding Matematika ISSN: 2460-6464 Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan 1 Ai Yeni, 2 Gani Gunawan, 3 Icih Sukarsih 1,2,3 Prodi Matematika, Fakultas Matematika

Lebih terperinci

ANALISIS MODEL MANGSA PEMANGSA PADA PENANGKAPAN IKAN YANG DIPENGARUHI OLEH KONSERVASI

ANALISIS MODEL MANGSA PEMANGSA PADA PENANGKAPAN IKAN YANG DIPENGARUHI OLEH KONSERVASI ANALISIS MODEL MANGSA PEMANGSA PADA PENANGKAPAN IKAN YANG DIPENGARUHI OLEH KONSERVASI Eka Yuniarti 1, Abadi 1 Jurusan Matematika, Fakultas MIPA, Universitas Negeri Surabaya Jurusan Matematika, Fakultas

Lebih terperinci

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memperoleh gelar

Lebih terperinci

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan BAB II LANDASAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan matematika, teorema Taylor, nilai eigen,

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

PEMODELAN MATEMATIKA PENYEBARAN PENYAKIT VIRUS EBOLA DAN ANALISIS PENGARUH PARAMETER LAJU TRANSMISI TERHADAP PERILAKU DINAMISNYA TUGAS AKHIR SKRIPSI

PEMODELAN MATEMATIKA PENYEBARAN PENYAKIT VIRUS EBOLA DAN ANALISIS PENGARUH PARAMETER LAJU TRANSMISI TERHADAP PERILAKU DINAMISNYA TUGAS AKHIR SKRIPSI PEMODELAN MATEMATIKA PENYEBARAN PENYAKIT VIRUS EBOLA DAN ANALISIS PENGARUH PARAMETER LAJU TRANSMISI TERHADAP PERILAKU DINAMISNYA TUGAS AKHIR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Bab V Model Dengan Faktor Denda Bagi Para Perokok

Bab V Model Dengan Faktor Denda Bagi Para Perokok Bab V Model Dengan Faktor Denda Bagi Para Perokok V.1 Pembentukan Model Model ketiga ini merupakan pengembangan dari model kedua yaitu dengan memasukkan faktor yang dapat menekan laju pertambahan jumlah

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa. Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup

IV. HASIL DAN PEMBAHASAN. 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa. Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup IV. HASIL DAN PEMBAHASAN 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup berdampingan. Diasumsikan habitat ini dibagi menjadi dua

Lebih terperinci

Interaksi Antara Predator-Prey dengan Faktor Pemanen Prey

Interaksi Antara Predator-Prey dengan Faktor Pemanen Prey NATURALA Journal of Scientific Modeling & Computation Volume No. 03 58 ISSN 303035 Interaksi Antara PredatorPrey dengan Faktor Pemanen Prey Suzyanna Fakultas Sains dan Teknologi Universitas Airlangga Abstrak

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN Dalam bab ini akan diberikan latar belakang permasalahan, tujuan penelitian, tinjauan pustaka, metode penelitian dan sistematika penulisan. 1.1. Latar Belakang Masalah Menurut Effendie

Lebih terperinci

IV PEMBAHASAN. ,, dan, dengan menggunakan bantuan software Mathematica ( ) ( ) ( ) ( ) ( ) ( )

IV PEMBAHASAN. ,, dan, dengan menggunakan bantuan software Mathematica ( ) ( ) ( ) ( ) ( ) ( ) IV PEMBAHASAN 4.1 Analisis Model HSC Tanpa Terapi 4.1.1 Penentuan Titik Tetap Model HSC Tanpa Terapi Titik tetap dari persamaan (3.1) (3.3) akan diperoleh dengan menetapkan,, dan, dengan menggunakan bantuan

Lebih terperinci

ANALISIS KESTABILAN MODEL INTERAKSI PEMANGSA DAN MANGSA PADA DUA HABITAT YANG BERBEDA ADE NELVIA

ANALISIS KESTABILAN MODEL INTERAKSI PEMANGSA DAN MANGSA PADA DUA HABITAT YANG BERBEDA ADE NELVIA ANALISIS KESTABILAN MODEL INTERAKSI PEMANGSA DAN MANGSA PADA DUA HABITAT YANG BERBEDA ADE NELVIA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2012

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk asus Pemangsa Tergantung Sebagian pada Mangsa Ipah Junaedi 1, a), Diny Zulkarnaen 2, b) 3, c), dan Siti Julaeha 1, 2, 3 Jurusan Matematika,

Lebih terperinci

BAB I PENDAHULUAN. Besar Penelitian Tanaman Padi, tikus sawah merupakan hama utama penyebab

BAB I PENDAHULUAN. Besar Penelitian Tanaman Padi, tikus sawah merupakan hama utama penyebab BAB I PENDAHULUAN A. Latar Belakang Masalah Tikus sawah (Rattus argentiventer) merupakan salah satu spesies hewan pengerat yang mengganggu aktivitas manusia terutama petani. Menurut Balai Besar Penelitian

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR

ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR Jurnal Euler, ISSN: 2087-9393 Januari 2014, Vol.2, No.1, Hal.1-12 ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR Hasan S. Panigoro 1 Diterima:

Lebih terperinci

Bab III Model Awal Kecanduan Terhadap Rokok

Bab III Model Awal Kecanduan Terhadap Rokok Bab III Model Awal Kecanduan Terhadap Rokok III.1 Pembentukan Model Model kecanduan terhadap rokok dibentuk menggunakan model dasar dalam epidemiologi yaitu model SIR (Susceptible, Infective, Removed)

Lebih terperinci

BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada

BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada BAB III PEMBAHASAN Pada bab ini akan dibentuk model matematika dari penyebaran penyakit virus Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada parameter laju transmisi. A.

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

Mursyidah Pratiwi, Yuni Yulida*, Faisal Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat *

Mursyidah Pratiwi, Yuni Yulida*, Faisal Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat * Jurnal Matematika Murni an Terapan εpsilon ANALISIS MODEL PREDATOR-PREY TERHADAP EFEK PERPINDAHAN PREDASI PADA SPESIES PREY YANG BERJUMLAH BESAR DENGAN ADANYA PERTAHANAN KELOMPOK Mursyiah Pratiwi, Yuni

Lebih terperinci

BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit.

BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit. BAB I PENDAHULUAN A. Latar Belakang Masalah Sistem dinamik dapat dipandang sebagai suatu sistem yang bergantung terhadap waktu. Sistem dinamik yang menggunakan waktu kontinu disebut dengan sistem dinamik

Lebih terperinci

MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT

MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT Vol 10 No 2, 2013 Jurnal Sains, Teknologi dan Industri MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT Mohammad Soleh 1, Siti Kholipah 2 1,2 Jurusan Matematika Fakultas Sains dan Teknologi

Lebih terperinci

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

III PEMBAHASAN. μ v. r 3. μ h μ h r 4 r 5

III PEMBAHASAN. μ v. r 3. μ h μ h r 4 r 5 III PEMBAHASAN 3.1 Perumusan Model Model yang akan dibahas dalam karya ilmiah ini adalah model SIDRS (Susceptible Infected Dormant Removed Susceptible) dari penularan penyakit malaria dalam suatu populasi.

Lebih terperinci

BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II

BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika

Lebih terperinci

BIFURKASI PADA MODEL INTERAKASI TUMBUHAN DAN HERBIVORA IRMA SAHARA

BIFURKASI PADA MODEL INTERAKASI TUMBUHAN DAN HERBIVORA IRMA SAHARA i BIFURKASI PADA MODEL INTERAKASI TUMBUHAN DAN HERBIVORA IRMA SAHARA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2013 ii iii PERNYATAAN MENGENAI SKRIPSI

Lebih terperinci

Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi

Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi Seminar Matematika dan Pendidikan Matematika UNY 2017 Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi Sischa Wahyuning Tyas 1, Dwi Lestari 2 Universitas Negeri Yogyakarta 1 Universitas

Lebih terperinci

ANALISA KESEIMBANGAN INTERAKSI POPULASI TERUMBU KARANG, SIPUT DRUPELLA DAN PREDATORNYA MELALUI PHASE PORTRAIT

ANALISA KESEIMBANGAN INTERAKSI POPULASI TERUMBU KARANG, SIPUT DRUPELLA DAN PREDATORNYA MELALUI PHASE PORTRAIT JIMT Vol. 11 No. 1 Juni 2014 (Hal. 82 93) Jurnal Ilmiah Matematika dan Terapan ISSN : 2450 766X ANALISA KESEIMBANGAN INTERAKSI POPULASI TERUMBU KARANG, SIPUT DRUPELLA DAN PREDATORNYA MELALUI PHASE PORTRAIT

Lebih terperinci

Harjanto, E. 1 dan Tuwankotta, J. M. 2

Harjanto, E. 1 dan Tuwankotta, J. M. 2 ى ف مح ف فش Fold ى ف نى ف ء ف ه ف ىب Predator-Prey م ىس فلف Cusp ى ف نى فل ا ف فوف مذ فء فه مل ف ف م ف هه فا Harjanto, E. 1 dan Tuwankotta, J. M. 1 Ganesha 10, Bandung 4013, eric@math.itb.ac.id Ganesha

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Wereng batang cokelat (Nilaparvata lugens), biasa disebut hama WBC. Hama ini merupakan hama umum tanaman padi di Indonesia, yaitu sudah lebih dari 80 tahun menjadi

Lebih terperinci

PERSAMAAN KUADRAT. Nama Anggota Kelompok 4 : 1. Krisna Bani Putri Puspita Azah Elvana Eni Lestari

PERSAMAAN KUADRAT. Nama Anggota Kelompok 4 : 1. Krisna Bani Putri Puspita Azah Elvana Eni Lestari PERSAMAAN KUADRAT Jumlah dan Hasil Kali Akar-akar Persamaan Kuadrat dan Menyusun Persamaan Kuadrat Makalah ini disusun untuk memenuhi tugas mata kuliah Kajian Matematika SMA Dosen Pengampu: Padrul Jana,

Lebih terperinci

ANALISIS SISTEM PERSAMAAN DIFERENSIAL MODEL PREDATOR-PREY DENGAN PERLAMBATAN

ANALISIS SISTEM PERSAMAAN DIFERENSIAL MODEL PREDATOR-PREY DENGAN PERLAMBATAN ANALISIS SISTEM PERSAMAAN DIFERENSIAL MODEL PREDATOR-PREY DENGAN PERLAMBATAN Vivi Aida Fitria Dosen STMI STIE Asia Malang e-mail: v_dz@yahoocom ABSTRA Model predator-prey dengan perlambatan merupakan model

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

SISTEM FLUTTER PADA SAYAP PESAWAT TERBANG

SISTEM FLUTTER PADA SAYAP PESAWAT TERBANG SISTEM FLUTTER PADA SAYAP PESAWAT TERBANG SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana

Lebih terperinci

Selanjutnya didefinisikan fungsional objektif yang diperbesar (augmented) J ( u ) sebagai:

Selanjutnya didefinisikan fungsional objektif yang diperbesar (augmented) J ( u ) sebagai: LAMPIRAN Lampiran 1. Bukti Teorema 4 Diketahui masalah memaksimumkan: T J ( x) = S( x( T), T) + f ( x( t), u( t), t) dt (1) dengan kendala : x() t = f( x(), t u(),) t t dt () Misalkan x() = x, t =, sedangkan

Lebih terperinci

MODEL MANGSA PEMANGSA DENGAN RESPON FUNGSIONAL TAK MONOTON RIDWAN IDHAM

MODEL MANGSA PEMANGSA DENGAN RESPON FUNGSIONAL TAK MONOTON RIDWAN IDHAM MODEL MANGSA PEMANGSA DENGAN RESPON FUNGSIONAL TAK MONOTON RIDWAN IDHAM DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 011 ABSTRAK RIDWAN IDHAM. Model

Lebih terperinci

T 3 Model Dinamika Sel Tumor Dengan Terapi Pengobatan Menggunakan Virus Oncolytic

T 3 Model Dinamika Sel Tumor Dengan Terapi Pengobatan Menggunakan Virus Oncolytic T 3 Model Dinamika Sel Tumor Dengan Terapi Pengobatan Menggunakan Virus Oncolytic Oleh : Ali Kusnanto, Hikmah Rahmah, Endar H. Nugrahani Departemen Matematika FMIPA-IPB Email : alikusnanto@yahoo.com Abstrak

Lebih terperinci

Model Matematika Penyebaran Internal Demam Berdarah Dengue dalam Tubuh Manusia

Model Matematika Penyebaran Internal Demam Berdarah Dengue dalam Tubuh Manusia BAB IV Model Matematika Penyebaran Internal Demam Berdarah Dengue dalam Tubuh Manusia Bab ini menjelaskan model penyebaran virus Dengue dalam tubuh manusia, atau dikenal sebagai model internal. Bagian

Lebih terperinci

Analisis Bifurkasi Pitchfork pada Sistem Interaksi Non Linier Sepasang Osilator Melalui Metode Menifold Center

Analisis Bifurkasi Pitchfork pada Sistem Interaksi Non Linier Sepasang Osilator Melalui Metode Menifold Center Jurnal Euler, ISSN: 2087-9393 Januari 2012, Vol.1, No.1, Hal.35-49 Analisis Bifurkasi Pitchfork pada Sistem Interaksi Non Linier Sepasang Osilator Melalui Metode Menifold Center Wahnin Tangahu 1 Abstrak

Lebih terperinci

KESTABILAN MODEL BIOEKONOMI SISTEM MANGSA PEMANGSA SUMBER DAYA PERIKANAN DENGAN PEMANENAN PADA POPULASI PEMANGSA

KESTABILAN MODEL BIOEKONOMI SISTEM MANGSA PEMANGSA SUMBER DAYA PERIKANAN DENGAN PEMANENAN PADA POPULASI PEMANGSA KESTABILAN MODEL BIOEKONOMI SISTEM MANGSA PEMANGSA SUMBER DAYA PERIKANAN DENGAN PEMANENAN PADA POPULASI PEMANGSA Rustam Jurusan Matematika Universitas Sembilanbelas November Kolaka Email: rustam.math6@gmail.com/rustam.math@usn.ac.id

Lebih terperinci

T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf

T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf Rubono Setiawan Prodi Pendidikan Matematika, F.KIP

Lebih terperinci

ANALISIS TITIK EKUILIBRIUM DAN SOLUSI MODEL INTERAKSI PEMANGSA-MANGSA MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN

ANALISIS TITIK EKUILIBRIUM DAN SOLUSI MODEL INTERAKSI PEMANGSA-MANGSA MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN ANALISIS TITIK EKUILIBRIUM DAN SOLUSI MODEL INTERAKSI PEMANGSA-MANGSA MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN TESIS diajukan untuk memenuhi salah satu syarat memperoleh gelar Magister Pendidikan Disusun

Lebih terperinci

ANALISIS KESTABILAN DAN LIMIT CYCLE PADA MODEL PREDATOR - PREY TIPE GAUSE SKRIPSI

ANALISIS KESTABILAN DAN LIMIT CYCLE PADA MODEL PREDATOR - PREY TIPE GAUSE SKRIPSI ANALISIS KESTABILAN DAN LIMIT CYCLE PADA MODEL PREDATOR - PREY TIPE GAUSE SKRIPSI Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Bidang Matematika Pada Fakultas Sains dan Teknologi Universitas

Lebih terperinci

Teori Bifurkasi (3 SKS)

Teori Bifurkasi (3 SKS) Teori Bifurkasi (3 SKS) Department of Mathematics Faculty of Mathematics and Natural Sciences Gadjah Mada University E-mail : f_adikusumo@gadjahmada.edu Sistem Dinamik PENGERTIAN UMUM : - Formalisasi matematika

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN Matematika merupakan ilmu pengetahuan yang diperoleh dengan bernalar dan melakukan pengamatan-pengamatan. Matematika juga merupakan salah satu disiplin ilmu yang dapat

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya.

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya. BAB IV PEMBAHASAN Pada bab ini dilakukan analisis model penyebaran penyakit AIDS dengan adanya transmisi vertikal pada AIDS. Dari model matematika tersebut ditentukan titik setimbang dan kemudian dianalisis

Lebih terperinci

ANALISIS MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II DENGAN MANGSA YANG TERLINDUNG DAN ADANYA PEMANENAN POPULASI EKA PUJIYANTI

ANALISIS MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II DENGAN MANGSA YANG TERLINDUNG DAN ADANYA PEMANENAN POPULASI EKA PUJIYANTI ANALISIS MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II DENGAN MANGSA YANG TERLINDUNG DAN ADANYA PEMANENAN POPULASI EKA PUJIYANTI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam

Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam Jurnal Matematika Integratif ISSN 1412-6184 Volume 10 No 1, April 2014, hal 1-7 Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam Ni matur Rohmah, Wuryansari Muharini Kusumawinahyu Jurusan Matematika,

Lebih terperinci

BIFURKASI HOPF MODEL MANGSA-PEMANGSA DENGAN WAKTU TUNDA NI NYOMAN SURYANI

BIFURKASI HOPF MODEL MANGSA-PEMANGSA DENGAN WAKTU TUNDA NI NYOMAN SURYANI BIFURKASI HOPF MODEL MANGSA-PEMANGSA DENGAN WAKTU TUNDA NI NYOMAN SURYANI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI SKRIPSI

Lebih terperinci

BAB IV PENGEMBANGAN MODEL KAPLAN

BAB IV PENGEMBANGAN MODEL KAPLAN BAB IV PENGEMBANGAN MODEL KAPLAN Pada bab ini akan dibahas model yang dikembangkan dari model Kaplan. Terdapat beberapa asumsi Kaplan yang akan dimodifikasi. Selain itu, pada bab ini juga diberikan analisis

Lebih terperinci

ANALISIS KESTABILAN PADA MODEL DUA MANGSA- SATU PEMANGSA DENGAN FUNGSI RESPON HOLLING DAN PEMANENAN

ANALISIS KESTABILAN PADA MODEL DUA MANGSA- SATU PEMANGSA DENGAN FUNGSI RESPON HOLLING DAN PEMANENAN Seminar Nasional Matematika dan Aplikasinya 21 Oktober 2017 Surabaya Universitas Airlangga ANALISIS KESTABILAN PADA MODEL DUA MANGSA- SATU PEMANGSA DENGAN FUNGSI RESPON HOLLING DAN PEMANENAN Armin 1) Syamsuddin

Lebih terperinci

BARISAN HINGGA BIFURKASI PERIOD-DOUBLING PADA INTERAKSI NONLINEAR SEPASANG OSILATOR TESIS. Karya Tulis sebagai Salah Satu Syarat

BARISAN HINGGA BIFURKASI PERIOD-DOUBLING PADA INTERAKSI NONLINEAR SEPASANG OSILATOR TESIS. Karya Tulis sebagai Salah Satu Syarat BARISAN HINGGA BIFURKASI PERIOD-DOUBLING PADA INTERAKSI NONLINEAR SEPASANG OSILATOR TESIS Karya Tulis sebagai Salah Satu Syarat untuk Memperoleh Gelar Magister Matematika Institut Teknologi Bandung Oleh

Lebih terperinci

SISTEM DINAMIK DISKRET. Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan

SISTEM DINAMIK DISKRET. Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan SISTEM DINAMIK DISKRET Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan SISTEM DINAMIK Kontinu Sistem Dinamik Diskret POKOK BAHASAN SDD OTONOMUS NON-OTONOMUS 1-D MULTI-D LINEAR NON-LINEAR

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Chemostat atau disebut juga bioreaktor adalah suatu alat laboratorium (fermentor) untuk budidaya mikroorganisme[18]. Alat tersebut disusun sedemikian rupa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan

Lebih terperinci

BAB I PENDAHULUAN. Ekologi merupakan cabang ilmu yang mempelajari tentang interaksi antara

BAB I PENDAHULUAN. Ekologi merupakan cabang ilmu yang mempelajari tentang interaksi antara BAB I PENDAHULUAN 1.1 Latar Belakang Ekologi merupakan cabang ilmu yang mempelajari tentang interaksi antara organisme dengan organisme lain serta dengan lingkungannya. Pada dasarnya organisme tidak dapat

Lebih terperinci

MODEL PREDATOR-PREY DENGAN KONDISI INFEKSI DI KEDUA POPULASI ABSTRACT

MODEL PREDATOR-PREY DENGAN KONDISI INFEKSI DI KEDUA POPULASI ABSTRACT MODEL PREDATOR-PREY DENGAN KONDISI INFEKSI DI KEDUA POPULASI Rahmazona 1 Khozin Mu tamar 2 12 Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

STABILITAS GLOBAL MODEL HOLLING-TANNER TIPE II LAZUARDI RAMADHAN

STABILITAS GLOBAL MODEL HOLLING-TANNER TIPE II LAZUARDI RAMADHAN STABILITAS GLOBAL MODEL HOLLING-TANNER TIPE II LAZUARDI RAMADHAN DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 013 ABSTRAK LAZUARDI RAMADHAN. Stabilitas

Lebih terperinci

Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya

Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya JURNAL SAINS DAN SENI POMITS Vol 2, No 1, (2013) 2337-3520 (2301-928X Print) 1 Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya Nabila Asyiqotur Rohmah, Erna Apriliani Jurusan

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR TUGAS AKHIR ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR ( S TA B I L I T Y A N A LY S I S O F A P R E D AT O R - P R E Y M O D E L W I T H I N F E C T

Lebih terperinci

BIFURKASI HOPF PADA MODEL MANGSA PEMANGSA DENGAN WAKTU TUNDA DAN TINGKAT PEMANENAN KONSTAN LOLA OKTASARI

BIFURKASI HOPF PADA MODEL MANGSA PEMANGSA DENGAN WAKTU TUNDA DAN TINGKAT PEMANENAN KONSTAN LOLA OKTASARI BIFURKASI HOPF PADA MODEL MANGSA PEMANGSA DENGAN WAKTU TUNDA DAN TINGKAT PEMANENAN KONSTAN LOLA OKTASARI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

BIFURKASI HOPF PADA MODEL SILKUS BISNIS KALDOR-KALECKI TANPA WAKTU TUNDA

BIFURKASI HOPF PADA MODEL SILKUS BISNIS KALDOR-KALECKI TANPA WAKTU TUNDA BIFURKASI HOPF PADA MODEL SILKUS BISNIS KALDOR-KALECKI TANPA WAKTU TUNDA NURRACHMAWATI 1) DAN A. KUSNANTO 2) 1) Mahasiswa Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut

Lebih terperinci

BIFURKASI DARI HASIL MODIFIKASI SISTEM PERSAMAAN LORENZ

BIFURKASI DARI HASIL MODIFIKASI SISTEM PERSAMAAN LORENZ Jurnal Matematika Murni dan Terapan Vol. 6 No. Juni : - 8 BIFURKASI DARI HASIL MODIFIKASI SISTEM PERSAMAAN LOREN Faisal PS Matematika FMIPA Universitas Lambung Mangkurat Jl. Jend. A. ani km. 6 Kampus Unlam

Lebih terperinci

Bab 16. Model Pemangsa-Mangsa

Bab 16. Model Pemangsa-Mangsa Bab 16. Model Pemangsa-Mangsa Pada Bab ini akan dipelajari model matematis dari masalah dua spesies hidup dalam habitat yang sama, yang dalam hal ini keduanya berinteraksi dalam hubungan pemangsa dan mangsa.

Lebih terperinci

BAB I PENDAHULUAN. terdapat pada pengembangan aplikasi matematika di seluruh aspek kehidupan manusia. Peran

BAB I PENDAHULUAN. terdapat pada pengembangan aplikasi matematika di seluruh aspek kehidupan manusia. Peran BAB I PENDAHULUAN A. Latar Belakang Masalah Perkembangan dunia yang semakin maju tidak dapat dipisahkan dari peranan ilmu matematika. Penggunaan ilmu pengetahuan di bidang matematika dalam kehidupan sehari-hari

Lebih terperinci

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO 4.1 Model Dinamika Neuron Fitzhugh-Nagumo Dalam papernya pada tahun 1961, Fitzhugh mengusulkan untuk menerangkan model Hodgkin-Huxley menjadi lebih umum, yang

Lebih terperinci

BENTUK NORMAL BIFURKASI HOPF PADA SISTEM UMUM DUA DIMENSI

BENTUK NORMAL BIFURKASI HOPF PADA SISTEM UMUM DUA DIMENSI Jurnal Matematika UNAND Vol. 5 No. 3 Hal. 15 23 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BENTUK NORMAL BIFURKASI HOPF PADA SISTEM UMUM DUA DIMENSI MELA PUSPITA Program Studi Matematika, Fakultas

Lebih terperinci

BAB I PENDAHULUAN. Penyakit virus Ebola merupakan salah satu penyakit menular dan mematikan

BAB I PENDAHULUAN. Penyakit virus Ebola merupakan salah satu penyakit menular dan mematikan BAB I PENDAHULUAN A. Latar Belakang Penyakit virus Ebola merupakan salah satu penyakit menular dan mematikan yang pertama kali muncul pada tahun. Rata-rata tingkat kematian penyakit virus Ebola mencapai,

Lebih terperinci

DINAMIKA ORDE PERTAMA SISTEM NONLINIER TERKOPEL DENGAN RELASI PREDASI, MUTUAL, DAN SIKLIK (Tinjauan Kasus Mangsa-Pemangsa pada Sistem Ekologi)

DINAMIKA ORDE PERTAMA SISTEM NONLINIER TERKOPEL DENGAN RELASI PREDASI, MUTUAL, DAN SIKLIK (Tinjauan Kasus Mangsa-Pemangsa pada Sistem Ekologi) DINAMIKA ORDE PERTAMA SISTEM NONLINIER TERKOPEL DENGAN RELASI PREDASI, MUTUAL, DAN SIKLIK (Tinjauan Kasus Mangsa-Pemangsa pada Sistem Ekologi) Oleh: MADA SANJAYA WS G740308 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA

Lebih terperinci

BAB III MODEL KAPLAN. 3.1 Model Kaplan

BAB III MODEL KAPLAN. 3.1 Model Kaplan BAB III MODEL KAPLAN Pada bab ini akan dipaparkan model Kaplan secara terperinci sebelum memodifikasinya menjadi model yang lebih realistis pada bab selanjutnya. Kaplan memberikan suatu model deterministik

Lebih terperinci

ANALISA KESTABILAN DAN KENDALI OPTIMAL PADA MODEL PEMANENAN FITOPLANKTON-ZOOPLANKTON

ANALISA KESTABILAN DAN KENDALI OPTIMAL PADA MODEL PEMANENAN FITOPLANKTON-ZOOPLANKTON ANALISA KESTABILAN DAN KENDALI OPTIMAL PADA MODEL PEMANENAN FITOPLANKTON-ZOOPLANKTON Dosen Pembimbing: 1. Drs. Mohammad Setijo Winarko M. Si 2. Drs. Kamiran M. Si Arum Fitri Anisya 1209100054 JURUSAN MATEMATIKA

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II INTAN SELVYA

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II INTAN SELVYA ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II INTAN SELVYA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2016 PERNYATAAN MENGENAI

Lebih terperinci

BAB II DASAR DASAR TEORI

BAB II DASAR DASAR TEORI BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian

Lebih terperinci

HALAMAN PENGESAHAN HALAMAN PERNYATAAN KEASLIAN SKRIPSI ABSTRAK ABSTRACT KATA PENGANTAR...

HALAMAN PENGESAHAN HALAMAN PERNYATAAN KEASLIAN SKRIPSI ABSTRAK ABSTRACT KATA PENGANTAR... DAFTAR ISI Halaman HALAMAN PENGESAHAN HALAMAN PERNYATAAN KEASLIAN SKRIPSI ABSTRAK ABSTRACT KATA PENGANTAR... i DAFTAR ISI... iii DAFTAR GAMBAR... vi DAFTAR TABEL... vii DAFTAR LAMPIRAN... ix BAB I PENDAHULUAN

Lebih terperinci

SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS

SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya Nabila Asyiqotur Rohmah 1209 100 703 Dosen Pembimbing: Dr Erna Apriliani,

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HUTCHINSON DENGAN WAKTU TUNDA DAN PEMANENAN KONSTAN LILIS SAODAH

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HUTCHINSON DENGAN WAKTU TUNDA DAN PEMANENAN KONSTAN LILIS SAODAH ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HUTCHINSON DENGAN WAKTU TUNDA DAN PEMANENAN KONSTAN LILIS SAODAH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

BAB II KAJIAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II KAJIAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS Dengan Pemberian Vaksinasi Unggas. Jalan Sukarno-Hatta Palu,

Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS Dengan Pemberian Vaksinasi Unggas. Jalan Sukarno-Hatta Palu, Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS I. Murwanti 1, R. Ratianingsih 1 dan A.I. Jaya 1 1 Jurusan Matematika FMIPA Universitas Tadulako, Jalan Sukarno-Hatta

Lebih terperinci

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)]

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] Suatu sistem persamaan diferensial dinyatakan sebagai berikut: A adalah matriks koefisien konstan

Lebih terperinci

ANALISIS DINAMIK MODEL PREDATOR-PREY PADA POPULASI ECENG GONDOK DENGAN ADANYA IKAN GRASS CARP DAN PEMANENAN

ANALISIS DINAMIK MODEL PREDATOR-PREY PADA POPULASI ECENG GONDOK DENGAN ADANYA IKAN GRASS CARP DAN PEMANENAN ANALISIS DINAMIK MODEL PREDATOR-PREY PADA POPULASI ECENG GONDOK DENGAN ADANYA IKAN GRASS CARP DAN PEMANENAN Skripsi disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi

Lebih terperinci