Jurusan Teknik Fisika Fakultas Teknologi Industri 2

Ukuran: px
Mulai penontonan dengan halaman:

Download "Jurusan Teknik Fisika Fakultas Teknologi Industri 2"

Transkripsi

1 PERANCANGAN SISTEM PENGENDALIAN PADA KAPAL BERBASIS DATA AIS (AUTOMATIC IDENTIFICATION SYSTEM) UNTUK MENGHINDARI TABRAKAN DI PERAIRAN TANJUNG PERAK SURABAYA AULIA Siti Aisjah 1, A.A,MASROERI 2, SYAMSUL Arifin 1, SAIKO 1 1 Jurusan Teknik Fisika Fakultas Teknologi Industri 2 Jurusan Teknik Sistem Perkapalan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih Sukolilo, Surabaya auliasa@ep.its.ac.id Abstract Efforts to improve the quality of management marine transportation through the use of technology has done, one of those efforts is installation of AIS (Automatic Identification System) technology. AIS can provide information about the position and speed of the ship to another ship or to the authorities in ashore. Automatic control to avoid collision between the ships can be done by utilizing the AIS data. In this study the design of automatic control system to avoid a collision based on AIS data. Control system used is a Sugeno type fuzzy logic to control the direction and speed of ship as well as avoiding a collision between two ships. Objects in this study is to ship MV.CARAKA JAYA COMMERCIAL III-7. Testing is done by providing an obstacle in front, and on the right f side on the ship. Response generated by the control system is able to avoid obstacles and adjust its speed according to the rules of IMO (International maritime organitation). Keywords: AIS, Fuzzy logic, collision avoidance, automatic, 1 Pendahuluan Pelayaran di wilayah barat perairan Indonesia salah satunya adalah pelabuhan Tanjung Perak. Pelabuhan ini merupakan salah satu pelabuhan internasional yang memiliki alur pelayaran sempit dan pelabuhan tersibuk nomor dua di Indonesia setelah Tanjung Priok. Kondisi lalu lintas seperti ini menyebabkan terjadinya tabrakan antar kapal. Pernyataan tersebut diperkuat bahwa dalam kurun waktu 5 tahun terakhir ini telah banyak terjadi kecelakaan kapal diantaranya adalah tabrakan kapal 11% [Dirjen Hubla, Desember 2006] dan tahun 2007 terdapat 159 kejadian kecelakaan [Dirjen Hubla, Desember 2007] atau setiap dua hari sekali terjadi kecelakaan laut. Penyebab kecelakaan ini, 41% disebabkan oleh kesalahan manusia (human error). Hal tersebut menunjukkan manajemen transportasi yang masih rendah. IMO (International Maritim Organization) mencatat Indonesia sebagai negara dengan tingkat kecelakaan di laut yang cukup tinggi / high risk country [Lukita, Bapenas, 2007]. Upaya peningkatan kualitas pada manajemen transportasi laut melalui penggunaan teknologi telah dilakukan, salah satu upaya tersebut diberlakukannya pemasangan teknologi AIS (Automatic Identification System) untuk beberapa tipe dan ukuran kapal. Tetapi disisi lain beberapa kelemahan yang ditemui pada teknologi ini antara lain: Pada AIS digunakan tidak lebih dari 20 karakter, sering terjadi kesalahan display tentang dimensi kapal, Kesalahan informasi tentang Heading, course overground (COG), speed overground (SOG) dan posisi, serta seringkali tidak kompatibelnya dengan hardware / instrumen yang lain [Aisjah, A.S, 2009]. Sama seperti pelabuhan internasional lainnya, kapal-kapal besar di Indonesia telah dilengkapi oleh AIS. Pada tahun 2000, IMO membuat peraturan baru untuk semua kapal untuk memasang peralatan AIS yang dapat memberikan informasi-informasi mengenai kapal kepada kapal lain maupun kepada pihak otoritas darat. Namun yang tidak tersedia didalam AIS adalah suatu rekomendasi terhadap pengaturan arah dan kecepatan kapal secara otomatis pada sistem informasi pelayaran untuk memberikan layanan advise pada nahkoda. Tujuan dari penelitian ini adalah merancang sistem kontrol arah / haluan dan kecepatan kapal untuk menghindari tabrakan pada kapal yang berbasis data AIS (Automatic Identification System). 2 Tinjauan Pustaka 2.1 Teknologi AIS Automatic Identification Sistem (AIS) adalah sebuah sistem komunikasi yang digunakan pada kapal dan Vessel Traffic Sevices (VTS) atau pelayanan lalu lintas kapal yang secara prinsip untuk identifikasi status navigasi kapal. Automatic Identification Sistem (AIS) digunakan untuk bertukar data secara elektronik yaitu: identifikasi kapal, posisi, kegiatan atau keadaan kapal, dan kecepatan, dengan kapal terdekat yang lainnya dan stasiun VTS. International Maritime Organization (IMO) International Convetion for the Safety of Life at Sea (SOLAS) mewajibkan penggunaan AIS pada Seminar Nasional Teori dan Aplikasi Teknologi Kelautan, 15 Desember 2011 X - 1

2 pelayaran kapal internasional dengan Gross Tonnage (GT) mulai 300 GT, dan semua kapal penumpang tanpa memperhatikan segala ukuran. Rancangan operasi dasar AIS adalah alat komunikasi otonomi antar kapal. Pada rancangan ini, tiap kapal mengirimkan data ke kapal AIS lain yang sudah dilengkapi AIS dalam jangkauan VHF. Gambar 1Komunikasi antar kapal secara otonomi, Jenis informasi dari AIS Posisi dan data lain disediakan secara otomatis dari sensor kapal ke dalam sistem AIS, dimana data tersebut diformat dan dipancarkan dalam data pendek yang cepat pada saluran VHF. Ketika kapal lain menerima data, data tersebut diartikan dan ditunjukkan pada pengawas kapal, yang bisa melihat laporan AIS dari kapal lain yang sudah dilengkapi grafis dan teks format. Data AIS bisa juga di simpan dalam VDR (Voyage Data Recorder) kapal untuk analisis rekaman kembali di masa depan. 2.2 Peraturan IMO mengenai tabrakan Berikut ini adalah beberapa aturan IMO yang akan diterapkan dalam penelitian ini yaitu: (1) Rule of right, jika kedua kapal bertemu berhadap hadapan maka keduanya harus memanuever kapalnya kea rah kanan dan jika ingin mendahului kepala yang ada didepannya maka kapal yang ada dibelakangnya memanuver kapalnya kekanan sedangkan yang lainnya kekiri. (2) West is the best, East is the last. Jika nahkoda kapal yang satu melihat kapal yang lain berada dikirinya maka nahkoda kapal tersebut diharuskan untuk lewat terlebih dahulu dan sebaliknya jika nahkoda kapal yang satu melihat kapal lain berada di kanannya maka nahkoda kapal tersebut diharuskan untuk mengurangi kecepatannya dan menunggu kapal yang dilihat untuk lewat terlebih dahulu. Gambar 2 Skenario (a) Rule of right (b) West is the best, East is the last 2.3 Fungsi Transfer Manuver Kapal Dinamika kapal diperoleh dari penurunan hukum Newton II. Kapal merupakan wahana laut dengan 6 derajat kebebasan (DOF) Keenam komponen pergerakan kapal yaitu: surge, sway, heave, roll, pitch dan yaw. Model dinamika manuvering kapal didapatkan dari pendekatan yang dilakukan oleh Nomoto (1957) sebagai bentuk matematis orde 1 dan 2 [7]. Di bawah ini adalah fungsi transfer dari model Nomoto, sebagai fungsi alih untuk menghasilkan heading yang tepat sesuai dengan sudut kemudi, dengan ψ adalah heading kapal dan R adalah defleksi sudut rudder. s s K R 1 T3s 1 T s 1 T s R 1 2 (1) 2.4 Fungsi Transfer Kecepatan Kapal Model dari kecepatan kapal didapatkan dari pendekatan yang dilakukan oleh Horigome, Hara, Hotta dan Hotsu (1990) sebagai bentuk matematis orde 1. Di bawah ini adalah fungsi alih dari kecepatan kapal: Seminar Nasional Teori dan Aplikasi Teknologi Kelautan, 15 Desember 2011 X - 2

3 Q m (s) = K y (2) Y 1+T y s Ky merupakan gain constant dan Ty merupakan time constant. Nilai dari time constant didekati dengan persamaan: T y 0.9 2π (3) n Dengan n adalah rotation per second dari propeller sebagai penggerak [7]. 2.5 Model Dinamika Gangguan Arus pada Kapal Gangguan yang mempengaruhi performansi pemenuhan lintasan pada kapal umunya ada 3 yaitu arus, angin dan gelombang. Gangguan yang digunakan dalam penelitian ini adalah arus karena jalur pelayaran dari Tanjung Perak ke Karang Jamuang merupakan daerah yang berupa selat sehingga tinggi gelombang dan kecepatan angin tidak begitu berpengaruh. Dalam pembahasan ini, digunakan model arus dua dimensi (Fossen, 1994; Vukic, 1998). Komponen arus dapat dijelaskan dengan dua parameter: kecepatan rata-rata arus Vc dan arah arus γc. Komponen dari body-fixed dapat dihitung dari: uc = Vccos(γc-ψ) υc = Vcsin(γc-ψ) (4) kecepatan arus laut rata-rata untuk simulasi komputer dapat dibangkitkan menggunakan process Gauss-Markov orde satu : dvc(t) + μ0vc(t) = ω(t) (5) dt dengan ω(t) adalah akar dari zero mean Gaussian white noise dan μ0 0 adalah konstan. Proses ini harus dibatasi : Vmin Vc(t) Vmax agar menstimulasi arus laut yang realistis. Alogaritma pembangkitan arus menggunakan integrasi euler adalah sebagai berikut : Nilai awal : Vc (0) = 0.5 (Vmax + Vmin) Integrasi euler dengan sampling waktu h o Vc (k + 1) = Vc(k) + h V c(k) Limiter : jika (Vc (k+1)> Vmax)atau(Vc (k+1)< Vmin) maka o Vc (k+1)= Vc (k)- h V c (k) k=k+1, kembali ke langkah Logika Fuzzy (KLF) Logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input kedalam suatu ruang output, mempunyai nilai kontinyu. Fuzzy dinyatakan dalam derajat dari suatu keanggotaan dan derajat dari kebenaran. Oleh sebab itu sesuatu dapat dikatakan sebagian benar dan sebagian salah pada waktu yang sama (Kusumadewi. 2004). Logika Fuzzy memungkinkan nilai keanggotaan antara 0 dan 1, tingkat keabuan dan juga hitam dan putih, dan dalam bentuk linguistik, konsep tidak pasti seperti "sedikit", "lumayan" dan "sangat" (Zadeh 1965). Kelebihan dari teori logika fuzzy adalah kemampuan dalam proses penalaran secara bahasa (linguistic reasoning). Sehingga dalam perancangannya tidak memerlukan persamaan matematik dari objek yang akan dikendalikan. Sisitem logika fuzzy terdiri dari beberapa unit, yaitu Fuzzifier, Fuzzy Rule Base, Fuzzy Inference Engine dan Defuzzifier. Fungsi dari masing masing unit adalah sebagai berikut: 1. Fuzzifier Berfungsi untuk merubah sinyal masukan yang bersifat crisp ( bukan fuzzy ) ke himpunan fuzzy dengan menggunakan operator fuzzifikasi. Pemetaannya dilakukan dengan menggunakan fungsi yang disebut membership function. Terdapat beberapa metode fuzzifier, 3 diantaranya yaitu: Singleton fuzzifier, Gausian fuzzifier dan Triangular fuzzifier. 2. Fuzzy rule base berisi pernyataan-pernyataan logika fuzzy (fuzzy statement), yang berbentuk pernyataan If-Then. 3. Fuzzy inference engine menerjemahkan pernyataan-pernyataan fuzzy dalalm rule base menjadi perhitungan matematika (fuzzy combinational). 4. Defuzzifier berfungsi untuk mentransformasikan kesimpulan tentang aksi atur yang bersifat fuzzy menjadi sinyal sebenarnya yang bersifat crisp dengan menggunakan operator defuzzifikasi. Terdapat beberapa metode defuzzifier, 3 diantaranya yaitu: Center of gravity defuzzifier, Center average dufuzzifier, Maximum defuzzifier. Seminar Nasional Teori dan Aplikasi Teknologi Kelautan, 15 Desember 2011 X - 3

4 3 Perancangan Sistem Kontrol Anti Tabrakan Untuk menyelesaikan permasalahan yang telah dirumuskan dan untuk mencapai tujuan yang diinginkan dibutuhkan metodologi tertentu sebagai alur yang harus dilampaui dalam Penelitian ini. Tahapan dalam perancangan sistem kontrol ini diuraikan di bawah ini. 3.1 Pengambilan data Pengambilan data dilakukan di dua tempat yaitu PT.PELINDO III Surabaya dan Distrik navigasi kelas 1 Surabaya. Data-data yang dibutuhkan diantaranya adalah : 1. Data spesifikasi kapal, meliputi :Lpp(panjang), U(kecepataan),B(lebar),T(tinggi),CB(koefisien Blok), XG(center of gravitation), A δ dan m(displacement). 2. Data tampilan AIS meliputi : Data statis, Data Dinamis dan data pelayaran. 3. Data koordinat lintasan aman yang telah direkomendasikan oleh Distrik Navigasi Tanjung Perak Surabaya 3.2 Pengembangan dan penyempurnaan modul-modul kontrol Berikut ini adalah diagram blok sistem pengendalian yang telah di kembangkan dan disempurnakan dari hasil penelitian sebelumnya. Berikut merupakan beberapa variabel pada perancangan Kontrol Logika Fuzzy anti tabrakan. Tabel 1 Hubungan Input Output KLF Kontrol Logika Fuzzy Input Output Error ψ δc (rudder command) dψ/dt Selisih koordinat X Jarak (d) V2/V1 V motor penggerak propeller 3.3 Perancangan modul kontrol Pemodelan dinamika kapal Data spesifikasi kapal MV.CARAKA JAYA NIAGA III yang didapatkan dari PT.PELINDO III Surabaya digunakan untuk melakukan pemodelan dinamika dari kapal. Model matematik dinamika kapal didapatkan dari pendekatan yang dilakukan oleh Nomoto (1957) sebagai bentuk matematis orde 2. Berikut ini adalah data spesifikasi kapal MV.CARAKA JAYA NIAGA III : Lpp ( panjang ) : 92,53 m, U ( kecepataan ): 4,63 m/s, B ( lebar ):16,5 m, T (tinggi):7,8 m, CB (Coefisien Blok) : 0,41, XG (center of Gravity):6,8, Ad: (rasio luasan rudder):0,69, m (displacement) : 5245 Ton, r (jari-jari girasi) :13,879, DWT: 3650 Ton Dari spesifikasi kapal tersebut digunakan untuk menentukan koefisien hidrodinamika kapal dengan pendekatan regresi Clarke. Berikut merupakan koefisien hidrodinamika kapal: Y v = , Y r = 0, , N v = 0,002441, N r = 0,003836, Y v = 0,030053, Y r = 0,00618, N v = 0,015671, N r = 0,005191, Y δ = 0,760991, N δ = 0,3805, I z = 0, I r = 0, Koefisien tersebut, digunakan untuk menentukan matrik inersia dan redaman model manuver kapal, 0, M = [ 0, , ] 0, ,12262 N = [ 0, , ] detm = 0, detn = 0, Berdasar koefisien pada matrik M dan N sebagai model manuver kapal MV.CARAKA JAYA NIAGA III diperoleh fungsi transfer sebagai berikut: Seminar Nasional Teori dan Aplikasi Teknologi Kelautan, 15 Desember 2011 X - 4

5 s s K R 1 T3s 1 T s 1 T s R 1 2 ψ 3, ,3821s (s) = δ R 814,42089s ,69319s 2 + s Alur pelarang di Tanjung perak Berikut adalah Data koordinat dari Alur pelayaran yang diizinkan untuk dilintasi Kapal di Pelabuhan Tanjung Perak Surabaya berdasarkan data dari Distrik Navigasi Tanjung Perak Surabaya. No Nama/Buoy Koordinat (x,y) 1 Karang Jamuang y 06 55" 35' x " 42' 2 Buoy Nr.4 y 06 57" 50' x " 30' 3 Buoy Nr.11 y 06 58" 23' x " 10' 4 Buoy Nr.6 y 07 00" 15' x " 00' 5 Buoy Nr.13 y 07 02" 08' x " 47' 6 12 m on jetty y 07 06" 41' x " 08' 7 Buoy Nr.8 y 07 07" 46' x " 36' 8 MV Typison y 07 10" 30' x " 50' 9 Buoy Nr.10 y 07 11" 05' x " 32' 10 Buoy Nr.12 y 07 11" 30' x " 50' y 07 11" 04' x " 40' 11 West channel kamal 12 Naval Base y 07 11" 48' x " 20' Gambar 3.3 (a) Peta alur pelayaran, (b) Koordinat pada pelayaran Karang Jamuang Tanjung Perak 3.4 Kontrol Logika Fuzzy anti Tabrakan Sistem yang di rancang ini terdapat dua sistem kontrol yaitu sistem kontrol haluan dan kontrol kecepatan. Untuk sistem kontrol haluan terdiri dari dua input dan satu output yaitu input (error yaw dan yaw rate). Sedangkan untuk sistem kontrol kecepatan terdiri dari dua input dan satu output. Variabel error yaw dibagi dalam 7 fungsi keanggotaan yaitu NB, NM, NS, ZE, PS, PM, PB dengan rentang kerja (range) yang digunakan untuk fungsi keanggotaan adalah -35 o sampai 35 o demikian juga variabel masukan yaw rate juga di bagi dalam 7 fungsi keanggotaan yaitu NB, NM, NS, ZE, PS, PM, PB dengan rentang kerja (range) yang digunakan untuk fungsi keanggotaan adalah -7 o sampai 7 o. Penentuan range ini berdasarkan karakteristik rudder van amorengen. Keluaran dari KLF pengendali haluan adalah command rudder yang juga dibagi menjadi 7 fungsi keanggotaan sama seperti masukan eror yaw. Pada KLF kontrol kecepatan, terdapat tiga variabel input dan satu variabel output. Input yaitu d ( jarak antara dua kapal), perbandingan kecepatan kapal pertama V2/V1 (sebagai obyek yang dikontrol) dengan kapal kedua (sebagai obyek yang menghalangi) dan jarak antar kedua kapal X (del X). Notasi pada rule base: N, Z, P: negative, zero,positive, d, D: dekat, jauh, S, M, B: small, medium, big. Untuk kecepatan S,M, F: small, medium, fast. Seminar Nasional Teori dan Aplikasi Teknologi Kelautan, 15 Desember 2011 X - 5

6 3.4.1 Basis aturan Basis aturan ini terdiri dari kumpulan aturan kendali lintasan yang berbasis logika fuzzy untuk menyatakan aksi kontrol agar mencapai tujuan yang diharapkan. Berikut merupakan tabel untuk rule base KLF sebagai kontrol terhadap haluan kapal. Tabel 2 (a) Basis aturan KLF sistem pengendalian haluan, (b) Basis aturan KLF sistem pengendalian kecepatan r\e NB NM NS Z PS PM PB V2/V1 S M B PB NB NB NB NB NM NS Z del X d V Propeller PM NB NB NB NM NS Z PS N S S S S PS NB NB NM NS Z PS PM D M F F Z NB NM NS Z PS PM PB Z S S S S NS NM NS Z PS PM PB PB D M F M NM NS Z PS PM PB PB PB P S S S S NB Z PS PM PB PB PB PB D S S S Interfrensi Fuzzy Pada proses perancangan sistem pengendali menghindari tabrakan antara dua kapal dengan menggunakan metode fuzzy ini terdapat tahap inferensi fuzzy. Tahap ini merupakan tahap pengambilan keputusan, dimana masukan kendali masih berupa himpunan crisp yang nantinya akan diubah menjadi himpunan fuzzy dengan fungsi keanggotaan yang berbeda-beda untuk setiap variabel. Dengan mengacu pada basis aturan diperoleh keluaran nilai fuzzy sinyal kontrol Defuzzifikasi Defuzzifikasi merupakan langkah terakhir dalam sistem kendali logika fuzzy dimana tujuannya adalah mengkonversi setiap hasil dari inference engine yang diekspresikan dalam bentuk fuzzy set ke satu bilangan crisp. Hasil dari konversi tersebut merupakan aksi yang diambil oleh sistem kendali logika fuzzy. Karena itu, pemilihan metoda defuzzifikasi yang sesuai juga turut mempengaruhi sistem kendali logika fuzzy dalam menghasilkan respon yang optimum. Dalam Penelitian ini, metode defuzzfikasi yang digunakan adalah center of area (COA). Metoda center of area sering kali juga dinamakan metoda center of gravity atau metoda centroid. Hasil defuzzifikasi dengan metoda ini dihitung menggunakan posisi titik puncak dan derajad keanggotaan sebagai perhitungan matematis nilai keluaran yaitu dengan menjumlahkan hasil perkalian derajad keanggotaan dengan nilai center area, kemudian membagai dengan jumlah derajad keanggotaannya. 4 Hasil Analisa dan Pembahasan Perancangan sistem kendali logika fuzzy ini digunakan untuk menghindari tabrakan antara dua kapal dan digunakan untuk pengendalian pemenuhan lintasan alur pelayaran yang diizinkan oleh distrik navigasi kelas 1 Surabaya. Variabel yang dikendalikan adalah haluan dan kecepatan kapal dengan variabel yang dimanipulasi adalah δc (rudder command) dan tegangan motor penggerak propeller. Perancangan sistem kendali haluan dan kecepatan kapal dalam penelitian ini menggunakan logika fuzzy tipe Sugeno. Simulasi terhadap model kapal MV.CARAKA JAYA NIAGA III-7 dilakukan secara open loop dan close loop. Simulasi dengan close loop dilakukan dengan memberikan halangan kapal yang berada didepan, dikiri dan dikanan kapal. Pengujian terhadapkemampuan sistem kontrol dilakukan dalam berbagai tahap, yaitu uji open loop, uji close loop, uji pada saat terdapat kapal sebagai penghalang, uji saat kondisi lingkungan mengganggu dinamika manuver kapal. 4.1 Uji Open loop dan Close loop Sistem Manuver kapal Pengujian secara open loop ini dilakukan untuk mengetahui respon kapal MV.CARAKA JAYA Seminar Nasional Teori dan Aplikasi Teknologi Kelautan, 15 Desember 2011 X - 6

7 NIAGA III-7 terhadap waktu dan sudut yaw tanpa adanya controller sedangkan untuk uji close loop untuk mengetahui pengaruh controller terhadap respon kapal. Uji open loop dan close loop dilakukan sesuai dengan model dinamika kapal dan diagram blok yang telah dirancang dalam penelitian ini dengan masukan fungsi step atau sudut turning 20 dan 30, penggunaan kedua sudut untuk memenuhi uji kontrol turning yang telah ditetapkan dalam IMO (Internasional Maritime Organisation). Hasil uji open loop pada turning 20 o menunjukkan bahwa perubahan sudut heading terus bertambah cepat seiring bertambahnya waktu. Pada saat detik ke 21 hasil simulasi menunjukkan sistem mencapai set point, namun tidak dapat mempertahankan posisi tetap pada keadaan stabil, dengan kata lain perubahan sudut heading terus meningkat melampaui set point. Begitu juga pada turning 30 o, respon mencapai set point saat detik ke-25 namun perubahan sudut heading semakin naik. Hal ini dikarenakan tidak ada kendali yang mampu menjaga keadaan tetap steady sehingga sistem ini perlu adanya sistem kendali yang mampu menjaga agar keadaan tetap steady. Hasil uji close loop dengan set point 20 dan set point 30, terlihat pada performansi sistem kontrol untuk kedua uji tersebut menunjukkan kontrol mampu mencapai set point dengan baik dan mampu mempertahankan samapai dalam keadaan steady. Waktu yang diperlukan untuk mencapai set point 20 adalah 40 detik sedangkan untuk mencapai set point 30 adalah 45 detik. Uji open loop terhadapkontrol kecepatan kapal dilakukan dengan mengubah masukan kecepatan dari 0 sampai 4,63 m/s, dan hasil respon kecepatan mengikuti set point yang diinginkan. Hal tersebut menjadi indikasi bahwa model matematis dari kecepatan kapal adalah orde Pengujian sistem kendali haluan dan kecepatan kapal untuk memenuhi lintasan Pengujian tanpa ada halangan kapal dan tanpa gangguan arus. Pengujian ini dimaksudkan untuk mengetahui sistem kendali yang telah dirancang untuk memenuhi lintasan pelayaran yang telah direkomendasikan oleh distrik navigasi kelas 1 Surabaya. Uji performasi ini dilakukan dengan memasukan set point berupa koordinat lintasan yaitu alur pelayaran dari Tanjung Perak ke Karang Jamuang. Koordinat lintasan berupa unit DMS (Degree Minutes Second) yang diubah menjadi koordinat xy. Koordinat xy inilah yang mewakili alur lintasan kapal. Gambar 3 Lintasan desired dan lintasan aktual (a )tanpa gangguan dan (b) gangguan arus Keterangan 1 = Naval base 2 = west channel kamal 3 = Buoy no.12 4 = Buoy no.10 5 = Typison 6 = Buoy no.8 7 = K = Buoy no.13 9 = Buoy no.6 10 = Buoy no = Buoy no.4 12 = Karang Jamuang Grafik diatas bisa dilihat bahwa lintasan aktual kapal bisa mengikuti lintasan desired atau lintasan yang diinginkan, hal tersebut menunjukkan bahwa sistem kendali yang telah dirancang telah mampu untuk pemenuhan lintasan desired. Grafik diatas jika diperbesar maka akan terlihat dengan jelas perbedaan antara dua grafik tersebut. Perbedaan tersebut di sebut dengan eror Seminar Nasional Teori dan Aplikasi Teknologi Kelautan, 15 Desember 2011 X - 7

8 lintasan. Pada pengujian selanjutnya yaitu dengan menambahkan gangguan arus pada pengujian pertama. Hal tersebut disebabkan karena dalam kondisi real saat pelayaran, kapal mengalami gangguan yaitu berupa arus, angin dan gelombang. Gangguan yang disimulasikan dalam pengujian ini hanya arus karena pada kondisi real alur pelayaran Karang Jamuang-Tanjung Perak yang paling berpengaruh adalah arus hal tersebut disebabkan wilayah di Tanjung Perak berupa selat. Selain itu juga pemberian gangguan ini juga beguna untuk menguji seberapa robust kendali yang telah dirancang. Berikut ini adalah grafik lintasan desired dan lintasan aktual pada pengujian dengan adanya gangguan arus. Gambar diatas dapat dievaluasi bahwa lintasan aktual memiliki pola yang sesuai dengan lintasan yang diinginkan namun terlihat adanya eror. Pada pengujian yang pertama yaitu tanpa menggunakan gangguan arus didapatka eror minimum 4.63 m dan eror maksimum m sedangkan untuk pengujian yang kedua dengan menambahkan gangguan arus didapatkan eror minimum m dan maksimum m. Hal tersebut dikarenakan sistem yang dirancang kurang optimal sehingga perlu adanya iterasi lagi untuk mendapatkan eror lintasan yang sekecil mungkin namun mengingat bahwa kapal yang dikendalikan adalah kapal-kapal yang dilengkapi dengan AIS yang umumnya berukuran besar maka nilai eror tersebut bisa dikatakan dalam range yang diperbolehkan atau nilai eror bisa dikatakan kecil sehingga sistem kendali yang telah dirancang mampu mengatasi gangguan yang berupa arus laut Pengujian dengan ada halangan kapal dan dengan gangguan arus. Pengujian selanjutnya yaitu dengan memberikan halangan berupa adanya kapal lain yang bergerak dan gangguan arus. Pengujian ini dilakukan untuk mengetahui apakah sistem kendali yang dirancang mampu menghindar dan mengendalikan kecepatannya. Pada pengujian ini kapal yang dikendalikan berlayar dari Tanjung Perak ke Karang Jamuang dengan kecepatan 4,6 m/s sedangkan halangan kapal bergerak dari Karang Jamuang ke Tanjung Perak pada lintasan yang sama dengan kecepatan 23,33 m/s. Dengan lintasan yang sama bisa dipastikan kedua kapal tersebut akan terjadi tabrakan. Gambar di atas menunjukkan lintasan desired dan aktual kapal yang dikendalikan dan juga lintasan kapal lain. Dari gambar tersebut bisa dilihat adanya lingkaran berwarna hitam yang menunjukkan tempat kemungkinan terjadinya tabrakan. Jika gambar tersebut diperbesar maka terlihat bahwa kapal yang dikendalikan akan berbelok ketika ada halangan kapal. Konsep belok dalam penelitian ini adalah ketika ada halangan kapal maka set point secara otomatis akan berubah yaitu dengan menambahkan koordinat x dan koordinat y. Perubahan setpoint ini ini didesain pada jarak aman yaitu 400 m karena umumnya kapal-kapal yang dilengkapi AIS memiliki dimensi yang sangat besar. Lintasan aktual kapal bisa mengikuti lintasan desired dengan baik dan menghindar ketika ada halangan kapal sesuai dengan setpoint yang diinginkan. Untuk mengetahui dengan pasti apakah kapal yang dikendalikan terjadi tabrakan atau tidak, bisa dilihat jarak antar kapal yang dikendalikan dengan halangan kapal. Jika kedua kapal itu terjadi tabrakan maka jarak antara keduanya adalah nol tetapi jika tidak terjadi tabrakan maka jaraknya lebih dari nol. Dari pengujian ini, jarak terdekat anatara dua kapal adalah 62 m sehingga bisa dikatakan bahwa antara dua kapal tidak terjadi tabrakan hal tersebut juga diperkuat dengan melihat lintasan antara keduanya pada gambar. Dari pengujian ini bisa kita lihat perubahan rudder pada saat akan berbelok dan juga perubahan heading kapal tersebut. Dari pengujian ini juga bisa dilihat respon kecepatan kapal. Gambar di bawah adalah respon kecepatan pada pengujian adanya kapal lain dari depan tanpa adanya gangguan arus. Dari gambar bisa dilihat bahwa kapal yang dikendalikan mempunyai kecepatan sekitar 4,6 m/s, hal tersebut dikarenakan kecepatan kapal lain yaitu 23,33 m/s yang artinya lebih besar dari kapal yang dikendalikan. Pada saat akan terjadi tabrakan, kapal akan belok dan kecepatan kapal yang dikendalikan akan dipercepat menjadi 15 m/s. Aturan tersebut sudah ditentukan oleh peneliti dalam rule base kendali fuzzy. Pengujian selanjutnya yaitu dengan halangan kapal yang berada disebelah samping kiri maupun samping kanan kapal. Sesuai aturan IMO jika nahkoda kapal melihat kapal lain berada di sebelah kirinya maka nahkoda kapal tersebut diharuskan untuk lewat terlebih dahulu, sedangkan jika nahkoda kapal melihat kapal lain berada di sebelah kanannya maka nahkoda kapal tersebut diharuskan untuk mengurangi kecepatannya dan menunggu kapal yang dilihat untuk lewat terlebih dahulu. Berikut ini adalah gambar lintasan desired, lintasan aktual dan lintasan halangan kapal yang berada disebelah kiri tanpa adanya gangguan arus. Dari gambar di bawah yang diberi tanda lingkaran hitam adalah tempat kemungkinan Seminar Nasional Teori dan Aplikasi Teknologi Kelautan, 15 Desember 2011 X - 8

9 terjadinya tabrakan, setelah gambar (b) diperbesar maka akan didapatkan gambar seperti disampinya yang terlihat bahwa kapal yang dikendalikan bergerak lurus tanpa berbelok dan ketika jarak antara kapal kurang dari 400 m maka kapal akan secara otomatis mengurangi kecepatnnya sampai kapal yang berada dikanannya bergerak terlebih dahulu. Gambar (b) adalah gambar jarak antara kapal yang dikendalikan dengan kapal kalangan kapal yang berada disebelah kiri. Dari gambar tersebut bisa kita lihat bahwa jarak terdekat antar dua kapal sekitar 158 m. hal tersebut bisa dikatakan bahwa antara dua kapal tidak terjadi tabrakan. Gambar 4 Lintasan desired, lintasan aktual dan lintasan halangan kapal dengan gangguan arus (a) halangan dari depan, (b) halangan dari samping kiri, (c) halangan disamping kanan 5 KESIMPULAN Berdasarkan hasil penelitian yang telah dilakukan, diperoleh kesimpulan sebagai berikut : 1. Telah dihasilkan sebuah rancangan sistem kendali logika fuzzy untuk pengendalian haluan dan kecepatan kapal pada kapal MV.CARAKA JAYA NIAGA III yang mampu memenuhi target lintasan pada alur pelayaran kapal di Pelabuhan Tanjung Perak Surabaya dan mampu menghindar ketika akan terjadi tabrakan dengan memanfaatkan data Automatic identification sistem (AIS) yaitu posisi dan kecepatan kapal lain. 2. Eror minimum pada titik perbelokkan adalah 4,63 m dan maksimum 371,93 m terjadi pada pengujian lintasan kapal tanpa gangguan arus dan gangguan. Seminar Nasional Teori dan Aplikasi Teknologi Kelautan, 15 Desember 2011 X - 9

10 3. Kapal yang dikendalikan berbelok kekanan dan kecepatan berkurang ketika akan terjadi tabrakan atau pada saat akan berbelok serta jarak terdekat antara dua kapal adalah 62 m terjadi pada pengujian dengan halangan di depan,. 4. Kapal yang dikendalikan bergerak mendahului kapal yang berada di sebelah kirinya dengan kecepatan 15 m dan jarak terdekat antara dua kapal adalah 110 m pada pengujian dengan halangan disamping kiri. 5. Kapal yang dikendalikan mengurangi kecepatannya atau tetap pada kecepatan 4,6 m/s dan jarak terdekat antara dua kapal adalah 160 m terjadi pada pengujian dengan halangan di samping kanan. Ucapan Terima Kasih Terima kasih kepada Kementrian KNRT yang telah memberikan dana untuk penelitian ini dan ucapan terima ksih kepada LPPM ITS yang mewadahi kegiatan penelitian. Daftar Pustaka Aditya, A. (2008). Indonesia Bangkit Lewat Laut. University of Leiden. Nioo Knaw, Yerseke, Netherlands. Aisjah, A. d. (2006). Fuzzy Logic Control of Type Sugeno Takagi with The Model Refference of LQG/LTR at Maneuvering Ship Controller. International JSPS. Jakarta: JSPS. Aisjah, A. M. (2005c). Extended Fuzzy Logic Control for Ship Maneuvering Based on LQG/LTR Control. ISME. Japan: ISME Japan. Aisjah, A. S. (2005b). A Study of Extended Fuzzy Logic Control for Ship Maneuvering Based on LQG/LTR Control. Seminar Nasional FTI ITS. Surabaya: FTI ITS. Aisjah, A. S. (2006). Kerobustan Kontrol Logika Fuzzy pada Manuvering Kapal akibat gangguan yang bersifat stokastik. Seminar Pasca Sarjana ITS. Surabaya: Pasca Sarjana ITS. Aisjah, A.S., Soegiono, Masroeri, AA., Djatmiko, E.B., dan Wasis, D.A,, (2007c), Perkembangan Strategi Kontrol Pada Manuvering Kapal : Konvensional, Modern Vs Kepakaran, Proceeding Seminar FTK SENTA Aisjah, A.S., Soegiono, Masroeri, AA., Djatmiko, E.B., dan Wasis, D.A,, (2007d), Analisis Performansi Sistem Kontrol Pada manuvering Kapal, Jurnal Teknik Fisika, Vol. 2, No. 1, Februari Aisjah AS, Peningkatan Kualitas Manajemen Transportasi Laut Melalui Perancangan Sistem Monitor Dan Kontrol Cerdas, Jurnal Teknik Fisika, Vol. 3, No. 3, November Aisjah, A.S, Perancangan Sistem Autopilot Cerdas pada Kapal Cepat untuk meningkatkan performansi Manuvering, Laporan Penelitian SPP-SPI ITS, Aisjah, A.S and Masroeri, (2009), Fuzzy Logic Control System For Developing Expert Sea Transportation, International Seminar ICTS. Aisjah, A.S, M & C System Sebagai Peningkatan Fungsi AIS Dalam Manajemen Transportasi Laut, Seminar Nasional SENTA FTK ITS, Desember Aisjah, A.S, Perancangan Sistem Kendali Lintasan Kapal Dengan Metode Logika Fuzzy Untuk Effisiensi Pelayaran, Studi Kasus : Karang Jamuang Tanjung Perak, Seminar Nasional SENTA FTK ITS, Desember Aisjah, A.S, Design Of Smart Course Control System Based On Fuzzy Logic In The Tracking Ship At Tanjung Perak Port Surabaya, Seminar Nasional 1 st APTECS ITS, Desember Aisjah, A.S, Increasing The Safety And Efficiency Sea Transportation By Designing Monitoring And Control System At Tanjung Perak Port, Seminar Nasional 1 st APTECS ITS, Desember Consultans, T. A. (2009). Kajian Analisis Trend Kecelakaan Transportasi Laut Tahun Jakarta. Fossen, T. I. (1994). Guidance and Control of Ocean Vehicle. England: John Wiley & Sons Ltd. KNKT. (2010). Laporan Kecelakaan. Jakarta: KNKT. Zhou, Y. H. (2008). A Ship Based Intelligent Anti-Collision Decision- Making Support System Utilizing Trial Manouvres. Dalian: Dalian Fisheries University, Dalian. Seminar Nasional Teori dan Aplikasi Teknologi Kelautan, 15 Desember 2011 X - 10

Jurusan Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih Sukolilo, Surabaya 60111

Jurusan Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih Sukolilo, Surabaya 60111 PERANCANGAN SISTEM PENGENDALIAN PADA KAPAL BERBASIS DATA AIS (AUTOMATIC IDENTIFICATION SYSTEM) UNTUK MENGHINDARI TABRAKAN (Saiko, Dr.Ir. Aulia Siti Aisjah, MT, Dr.Ir.A.A,Masroeri,M.Eng) Jurusan Teknik

Lebih terperinci

SEMINAR TUGAS AKHIR PERANCANGAN SISTEM KONTROL BERBASIS LOGIKA FUZZY UNTUK MENGHINDARI BENDA ASING DI PERAIRAN TANJUNG PERAK

SEMINAR TUGAS AKHIR PERANCANGAN SISTEM KONTROL BERBASIS LOGIKA FUZZY UNTUK MENGHINDARI BENDA ASING DI PERAIRAN TANJUNG PERAK SEMINAR TUGAS AKHIR PERANCANGAN SISTEM KONTROL BERBASIS LOGIKA FUZZY UNTUK MENGHINDARI BENDA ASING DI PERAIRAN TANJUNG PERAK Oleh: Anita Faruchi 2407 100 048 Dosen Pembimbing: Dr. Ir. Aulia Siti Aisyah,

Lebih terperinci

OCKY NOOR HILLALI

OCKY NOOR HILLALI OCKY NOOR HILLALI 2407100045 Dosen Pembimbing I: Dr. Ir. AULIA SITI AISJAH, MT Dosen Pembimbing II: Dr. Ir. AGOES A. MASROERI, M. Eng JURUSAN TEKNIK FISIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI

Lebih terperinci

Perancangan Sistem Kontrol Sandar Kapal Otomatis Berbasis Logika Fuzzy di Pelabuhan Tanjung Perak Surabaya

Perancangan Sistem Kontrol Sandar Kapal Otomatis Berbasis Logika Fuzzy di Pelabuhan Tanjung Perak Surabaya JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: 2337-3539 (2301-9271 Print) E-57 Perancangan Sistem Kontrol Sandar Kapal Otomatis Berbasis Logika Fuzzy di Pelabuhan Tanjung Perak Surabaya Randika Gunawan,

Lebih terperinci

BAB V PENUTUP 5.1 Kesimpulan

BAB V PENUTUP 5.1 Kesimpulan BAB V PENUTUP 5.1 Kesimpulan Berdasarkan penelitian yang telah dilakukan, diperoleh kesimpulan sebagai berikut : 1. Telah dihasilkan suatu perancangan sistem pemenuhan lintasan berbasis logika Fuzzy pada

Lebih terperinci

Perancangan Sistem Kontrol Trajectory pada Kondisi Gangguan Arus Laut Non Uniform di Ketapang-Gilimanuk

Perancangan Sistem Kontrol Trajectory pada Kondisi Gangguan Arus Laut Non Uniform di Ketapang-Gilimanuk JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: 2301-9271 A-201 Perancangan Sistem Kontrol Trajectory pada Kondisi Gangguan Arus Laut Non Uniform di - Anindita Adikaputri Vinaya, Aulia Siti Aisjah,A.A

Lebih terperinci

PERANCANGAN SISTEM KONTROL SANDAR KAPAL OTOMATIS BERBASIS LOGIKA FUZZY DI PELABUHAN TANJUNG PERAK SURABAYA

PERANCANGAN SISTEM KONTROL SANDAR KAPAL OTOMATIS BERBASIS LOGIKA FUZZY DI PELABUHAN TANJUNG PERAK SURABAYA PERANCANGAN SISTEM KONTROL SANDAR KAPAL OTOMATIS BERBASIS LOGIKA FUZZY DI PELABUHAN TANJUNG PERAK SURABAYA Oleh : Randika Gunawan 2409100070 Dosen Pembimbing: Dr. Ir. Aulia Siti Aisjah, MT NIP. 196601161989032001

Lebih terperinci

Perancangan Sistem Kontrol Sandar Kapal Otomatis Berbasis Logika Fuzzy di Pelabuhan Tanjung Perak Surabaya

Perancangan Sistem Kontrol Sandar Kapal Otomatis Berbasis Logika Fuzzy di Pelabuhan Tanjung Perak Surabaya JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1 Perancangan Sistem Kontrol Sandar Kapal Otomatis Berbasis Logika Fuzzy di Pelabuhan Tanjung Perak Surabaya Randika Gunawan, Aulia Siti Aisjah, A.A. Masroeri

Lebih terperinci

Jurusan Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih Sukolilo, Surabaya 60111

Jurusan Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih Sukolilo, Surabaya 60111 PERANCANGAN KENDALI CERDAS BERBASIS LOGIKA FUZZY UNTUK PENINGKATAN PERFORMANSI MANUVERING KAPAL (Maratul Hamidah, Dr.Ir. Aulia Siti Aisjah, MT, Dr. Ir. A.A. Masroeri M.Eng ) Jurusan Teknik Fisika Fakultas

Lebih terperinci

PERANCANGAN SISTEM KENDALI MANUVER UNTUK MENGHINDARI TABRAKAN PADA KAPAL TANGKI BERBASIS LOGIKA FUZZY

PERANCANGAN SISTEM KENDALI MANUVER UNTUK MENGHINDARI TABRAKAN PADA KAPAL TANGKI BERBASIS LOGIKA FUZZY PERANCANGAN SISTEM KENDALI MANUVER UNTUK MENGHINDARI TABRAKAN PADA KAPAL TANGKI BERBASIS LOGIKA FUZZY (Ruri Anitasari, Dr. Ir. Aulia Siti Aisyah, MT., Dr. Ir. A. A. Masroeri, M.Eng.) Jurusan Teknik Fisika

Lebih terperinci

PERANCANGAN SISTEM GUIDANCE UNTUK MEMBANGUN AUTOPILOT KAPAL PKR KRI KELAS SIGMA

PERANCANGAN SISTEM GUIDANCE UNTUK MEMBANGUN AUTOPILOT KAPAL PKR KRI KELAS SIGMA JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-1 1 PERANCANGAN SISTEM GUIDANCE UNTUK MEMBANGUN AUTOPILOT KAPAL PKR KRI KELAS SIGMA Robbi Handito, Dr. Ir. Aulia Siti Aisjah, MT, dan Dr. Ir. Agoes A. Masroeri,

Lebih terperinci

PERANCANGAN SISTEM KONTROL LOGIKA FUZZY PADA MANUVER NONLINIER KAPAL PERANG KELAS SIGMA (EXTENDED)

PERANCANGAN SISTEM KONTROL LOGIKA FUZZY PADA MANUVER NONLINIER KAPAL PERANG KELAS SIGMA (EXTENDED) JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) G-144 PERANCANGAN SISTEM KONTROL LOGIKA FUZZY PADA MANUVER NONLINIER KAPAL PERANG KELAS SIGMA (EXTENDED) Dandy Haris Firdianda,

Lebih terperinci

PENGEMBANGAN SISTEM MCST - MONITORING AND CONTROL IN SEA TRANSPORTATION PADA KONDISI KEPADATAN LALU LINTAS PELAYARAN DI ALUR BARAT TANJUNG PERAK 1

PENGEMBANGAN SISTEM MCST - MONITORING AND CONTROL IN SEA TRANSPORTATION PADA KONDISI KEPADATAN LALU LINTAS PELAYARAN DI ALUR BARAT TANJUNG PERAK 1 PENGEMBANGAN SISTEM MCST - MONITORING AND CONTROL IN SEA TRANSPORTATION PADA KONDISI KEPADATAN LALU LINTAS PELAYARAN DI ALUR BARAT TANJUNG PERAK 1 Aulia Siti Aisyah, A. A. Masroeri 2, Fitri Adi I. 1, Wasis

Lebih terperinci

PERANCANGAN SISTEM PENGENDALIAN DAN MONITORING UNTUK MENGHINDARI TABRAKAN ANTAR KAPAL DI ALUR PELAYARAN TANJUNG PERAK SURABAYA

PERANCANGAN SISTEM PENGENDALIAN DAN MONITORING UNTUK MENGHINDARI TABRAKAN ANTAR KAPAL DI ALUR PELAYARAN TANJUNG PERAK SURABAYA PERANCANGAN SISTEM PENGENDALIAN DAN MONITORING UNTUK MENGHINDARI TABRAKAN ANTAR KAPAL DI ALUR PELAYARAN TANJUNG PERAK SURABAYA (Devina Puspita Sari, Dr. Ir. Aulia Siti Aisyah, MT., Dr. Ir. A. A. Masroeri,

Lebih terperinci

PERANCANGAN SISTEM KONTROL BERBASIS LOGIKA FUZZY PADA KAPAL NIAGA UNTUK MENGHINDARI BENDA ASING DI PERAIRAN TANJUNG PERAK

PERANCANGAN SISTEM KONTROL BERBASIS LOGIKA FUZZY PADA KAPAL NIAGA UNTUK MENGHINDARI BENDA ASING DI PERAIRAN TANJUNG PERAK PERANCANGAN SISTEM KONTROL BERBASIS LOGIKA FUZZY PADA KAPAL NIAGA UNTUK MENGHINDARI BENDA ASING DI PERAIRAN TANJUNG PERAK (Anita Faruchi, Dr. Ir. Aulia Siti Aisyah, MT., Dr. Ir. A. A. Masroeri, M.Eng.)

Lebih terperinci

MCST-INTELLIGENT AUTOPILOT SHIP SYSTEM INCREASING SAFETY IN SEA NAVIGATION

MCST-INTELLIGENT AUTOPILOT SHIP SYSTEM INCREASING SAFETY IN SEA NAVIGATION 0012: Aulia Siti Aisjah dkk. TR-9 MCST-INTELLIGENT AUTOPILOT SHIP SYSTEM INCREASING SAFETY IN SEA NAVIGATION Aulia Siti Aisjah 1,, A.A. Masroeri 2, Eko Budi Djatmiko 3, Wasis Dwi A. 4, Fitri Adi 5, dan

Lebih terperinci

Perancangan Sistem Kendali Manuver Kapal Berbasis Logika Fuzzy untuk Mengatasi Faktor Gangguan Gelombang, Angin, dan Arus Laut

Perancangan Sistem Kendali Manuver Kapal Berbasis Logika Fuzzy untuk Mengatasi Faktor Gangguan Gelombang, Angin, dan Arus Laut Perancangan Sistem Kendali Manuver Kapal Berbasis Logika Fuzzy untuk Mengatasi Faktor Gangguan Gelombang, Angin, dan Arus Laut Abstrak Kapal tangki banyak digunakan untuk pelayaran lintas negara untuk

Lebih terperinci

Kata kunci : Kontrol Logika Fuzzy, Kapal, Sistem Pengendalian, dan halangan kapal.

Kata kunci : Kontrol Logika Fuzzy, Kapal, Sistem Pengendalian, dan halangan kapal. PENGEMBANGAN SISTEM MCST -MONITORING AND CONTROL IN SEA TRANSPORTATION PADA KONDISI KEPADATAN LALU LINTAS PELAYARAN DI ALUR BARAT TANJUNG PERAK (Ocky Noor Hillali, Dr. Ir. Aulia Siti Aisyah, MT., Dr. Ir.

Lebih terperinci

STUDI NUMERIK SISTEM KENDALI OTOMATIS OLAH GERAK KAPAL BERBASIS LOGIKA FUZZY UNTUK MENGHINDARI BENTURAN (COLLISION AVOIDANCE)

STUDI NUMERIK SISTEM KENDALI OTOMATIS OLAH GERAK KAPAL BERBASIS LOGIKA FUZZY UNTUK MENGHINDARI BENTURAN (COLLISION AVOIDANCE) STUDI NUMERIK SISTEM KENDALI OTOMATIS OLAH GERAK KAPAL BERBASIS LOGIKA FUZZY UNTUK MENGHINDARI BENTURAN (COLLISION AVOIDANCE) Ahmad Syafiul M 1, Anita Faruchi 2, Wibowo H Nugroho 1,3 1. Dynamic Analysis

Lebih terperinci

UJI MANUVER KAPAL MELALUI AUTOPILOT FUZZY STUDI KASUS DI LABORATORIUM HIDRODINAMIKA INDONESIA (Bima Herlambang P., Aulia Siti Aisyah, A. A.

UJI MANUVER KAPAL MELALUI AUTOPILOT FUZZY STUDI KASUS DI LABORATORIUM HIDRODINAMIKA INDONESIA (Bima Herlambang P., Aulia Siti Aisyah, A. A. UJI MANUVER KAPAL MELALUI AUTOPILOT FUZZY STUDI KASUS DI LABORATORIUM HIDRODINAMIKA INDONESIA (Bima Herlambang P., Aulia Siti Aisyah, A. A. Masroeri) Jurusan Teknik Fisika Fakultas Teknologi Industri Institut

Lebih terperinci

Analisa Kestabilan Sistem dalam Penelitian ini di lakukan dengan dua Metode Yaitu:

Analisa Kestabilan Sistem dalam Penelitian ini di lakukan dengan dua Metode Yaitu: Analisa Kestabilan Sistem dalam Penelitian ini di lakukan dengan dua Metode Yaitu: o Analisa Stabilitas Routh Hurwith 1. Suatu metode menentukan kestabilan sistem dengan melihat pole-pole loop tertutup

Lebih terperinci

Jurusan Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih Sukolilo, Surabaya 60111

Jurusan Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih Sukolilo, Surabaya 60111 PERANCANGAN SISTEM KENDALI LINTASAN KAPAL BERBASIS LOGIKA FUZZY : STUDI KASUS KEPULAUAN RIAU (Illa Rizianiza, Dr.Ir. Aulia Siti Aisjah, MT, Dr.Ir.A.A Masroeri, M.Eng) Jurusan Teknik Fisika Fakultas Teknologi

Lebih terperinci

PERANCANGAN KONTROLER KASKADE FUZZY UNTUK PENGATURAN TEKANAN PADA PRESSURE CONTROL TRAINER

PERANCANGAN KONTROLER KASKADE FUZZY UNTUK PENGATURAN TEKANAN PADA PRESSURE CONTROL TRAINER TUGAS AKHIR TE 091399 PERANCANGAN KONTROLER KASKADE FUZZY UNTUK PENGATURAN TEKANAN PADA PRESSURE CONTROL TRAINER 38-714 Nur Muhlis NRP 2208 100 662 JURUSAN TEKNIK ELEKTRO Fakultas Teknologi Industri Institut

Lebih terperinci

AUTOMATIC COLLISION AVOIDANCE SYSTEM BASE ON AIS DATA IN WEST VOYAGE LINES OF SURABAYA

AUTOMATIC COLLISION AVOIDANCE SYSTEM BASE ON AIS DATA IN WEST VOYAGE LINES OF SURABAYA AUTOMATIC COLLISION AVOIDANCE SYSTEM BASE ON AIS DATA IN WEST VOYAGE LINES OF SURABAYA Dion Nuryahya 1 ), Dr. Ir. AA. Masroeri, MEng 1 ),Dr. Trika Pitana, ST, MSc 1 ), Department of Marine Engineering,

Lebih terperinci

R = matriks pembobot pada fungsi kriteria. dalam perancangan kontrol LQR

R = matriks pembobot pada fungsi kriteria. dalam perancangan kontrol LQR DAFTAR NOTASI η = vektor orientasi arah x = posisi surge (m) y = posisi sway (m) z = posisi heave (m) φ = sudut roll (rad) θ = sudut pitch (rad) ψ = sudut yaw (rad) ψ = sudut yaw frekuensi rendah (rad)

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Alur pelayaran merupakan salah satu fasilitas pokok dari peruntukan wilayah perairan sebuah pelabuhan dan memiliki peranan penting sebagai akses keluar dan/atau masuk

Lebih terperinci

ANALISA SISTEM KENDALI FUZZY PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) DENGAN DUA PENGGERAK PUSH BELT UNTUK MENINGKATKAN KINERJA CVT

ANALISA SISTEM KENDALI FUZZY PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) DENGAN DUA PENGGERAK PUSH BELT UNTUK MENINGKATKAN KINERJA CVT ANALISA SISTEM KENDALI FUZZY PADA CONTINUOUSLY VARIABLE TRANSMISSION (CVT) DENGAN DUA PENGGERAK PUSH BELT UNTUK MENINGKATKAN KINERJA CVT Oleh : Agung Prasetya Adhayatmaka NRP 2108100521 Dosen Pembimbing

Lebih terperinci

Herry gunawan wibisono Pembimbing : Ir. Syamsul Arifin, MT

Herry gunawan wibisono Pembimbing : Ir. Syamsul Arifin, MT PERANCANGAN SISTEM PENGENDALIAN DAYA REAKTOR NUKLIR MENGGUNAKAN LOGIKA FUZZY DI PUSAT TEKNOLOGI NUKLIR BAHAN DAN RADIOMETRI BADAN TENAGA NUKLIR NASIONAL (PTNBR BATAN) BANDUNG Herry gunawan wibisono 2406

Lebih terperinci

APLIKASI AUTOMATIC IDENTIFICATION SYSTEM (AIS) UNTUK MENENTUKAN RISK COLLISION KAPAL BERDASARKAN FUZZY INFERENCE SYSTEM

APLIKASI AUTOMATIC IDENTIFICATION SYSTEM (AIS) UNTUK MENENTUKAN RISK COLLISION KAPAL BERDASARKAN FUZZY INFERENCE SYSTEM APLIKASI AUTOMATIC IDENTIFICATION SYSTEM (AIS) UNTUK MENENTUKAN RISK COLLISION KAPAL BERDASARKAN FUZZY INFERENCE SYSTEM Emmy Pratiwi 1, Ketut Buda Artana 2, AAB Dinariyana 2 Putri Dyah Setyorini 2 1 Program

Lebih terperinci

PERANCANGAN SISTEM KENDALI STABILITAS ROLLING PADA KAPAL PERANG KAWAL RUDAL KELAS SIGMA KRI DIPONEGORO DENGAN MENGGUNAKAN LOGIKA FUZZY

PERANCANGAN SISTEM KENDALI STABILITAS ROLLING PADA KAPAL PERANG KAWAL RUDAL KELAS SIGMA KRI DIPONEGORO DENGAN MENGGUNAKAN LOGIKA FUZZY 1 PERANCANGAN SISTEM KENDALI STABILITAS ROLLING PADA KAPAL PERANG KAWAL RUDAL KELAS SIGMA KRI DIPONEGORO DENGAN MENGGUNAKAN LOGIKA FUZZY Vibrio Yulian Dontiawan 1), Aulia Siti Aisyah 1), Agoes A. Masroeri

Lebih terperinci

Perancangan Sistem Stabilisasi Rudder Roll pada Kapal Perang Kelas SIGMA dengan Kontrol Logika Fuzzy

Perancangan Sistem Stabilisasi Rudder Roll pada Kapal Perang Kelas SIGMA dengan Kontrol Logika Fuzzy JURNAL TEKNIK POMITS Vol., No., (03) ISSN: 337-3539 (30-97 Print) A-6 Perancangan Sistem Stabilisasi Rudder Roll pada Kapal Perang Kelas SIGMA dengan Kontrol Logika Fuzzy Alfany Hardiyanty ), Aulia S.A

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Logika Fuzzy Logika fuzzy merupakan suatu metode pengambilan keputusan berbasis aturan yang digunakan untuk memecahkan keabu-abuan masalah pada sistem yang sulit dimodelkan

Lebih terperinci

PERANCANGAN SISTEM KOMUNIKASI PADA KAPAL (MCST-1 SHIP AUTOPILOT) DENGAN MEDIA KOMUNIKASI RF RADIO UNTUK MENDUKUNG SISTEM AUTOPILOT

PERANCANGAN SISTEM KOMUNIKASI PADA KAPAL (MCST-1 SHIP AUTOPILOT) DENGAN MEDIA KOMUNIKASI RF RADIO UNTUK MENDUKUNG SISTEM AUTOPILOT PERANCANGAN SISTEM KOMUNIKASI PADA KAPAL (MCST-1 SHIP AUTOPILOT) DENGAN MEDIA KOMUNIKASI RF RADIO UNTUK MENDUKUNG SISTEM AUTOPILOT Disusun Oleh : ARIF MUSA KUSUMA WARDHANA NRP. 2409 105 035 Dosen Pembimbing

Lebih terperinci

Perancangan dan Implementasi Embedded Fuzzy Logic Controller Untuk Pengaturan Kestabilan Gerak Robot Segway Mini. Helmi Wiratran

Perancangan dan Implementasi Embedded Fuzzy Logic Controller Untuk Pengaturan Kestabilan Gerak Robot Segway Mini. Helmi Wiratran Perancangan dan Implementasi Embedded Fuzzy Logic Controller Untuk Pengaturan Kestabilan Gerak Robot Segway Mini 1 Helmi Wiratran 2209105020 2 Latarbelakang (1) Segway PT: Transportasi alternatif dengan

Lebih terperinci

EKO TRI WASISTO Dosen Pembimbing 1 Dosen Pembimbing 2

EKO TRI WASISTO Dosen Pembimbing 1 Dosen Pembimbing 2 RANCANG BANGUN SISTEM KONTROL ATTITUDE PADA UAV (UNMANNED AERIAL VEHICLE) QUADROTOR DF- UAV01 DENGAN MENGGUNAKAN SENSOR ACCELEROMETER 3-AXIS DENGAN METODE FUZZY LOGIC EKO TRI WASISTO 2407.100.065 Dosen

Lebih terperinci

LAMPIRAN A PEMODELAN DINAMIKA KAPAL

LAMPIRAN A PEMODELAN DINAMIKA KAPAL LAMPIRAN A PEMODELAN DINAMIKA KAPAL Dinamika kapal dimodelkan berdasar dari spesifikasi kapal. Kapal yang digunakan adalah kapal PKR KRI Diponegoro Kelas SIGMA. Berikut spesifikasi umum dari kapal PKR

Lebih terperinci

Jurusan Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih Sukolilo, Surabaya 60111

Jurusan Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih Sukolilo, Surabaya 60111 PERANCANGAN KENDALI OTOMATIS HALUAN DAN KECEPATAN KAPAL PADA JALUR PELAYARAN KARANG JAMUANG TANJUNG PERAK BERBASIS LOGIKA FUZZY UNTUK PENINGKATAN EFFISIENSI TRANSPORTASI LAUT (Moh Aries Efendi, Dr.Ir.Hj.Aulia

Lebih terperinci

JURUSAN TEKNIK FISIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

JURUSAN TEKNIK FISIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER Rancang Bangun Kontrol Logika Fuzzy-PID Pada Plant Pengendalian ph (Studi Kasus : Asam Lemah dan Basa Kuat) Oleh : Fista Rachma Danianta 24 08 100 068 Dosen Pembimbing Hendra Cordova ST, MT. JURUSAN TEKNIK

Lebih terperinci

Lima metode defuzzifikasi ini dibandingkan dengan mengimplementasikan pada pengaturan kecepatan motor DC.

Lima metode defuzzifikasi ini dibandingkan dengan mengimplementasikan pada pengaturan kecepatan motor DC. Sutikno, Indra Waspada PERBANDINGAN METODE DEFUZZIFIKASI SISTEM KENDALI LOGIKA FUZZY MODEL MAMDANI PADA MOTOR DC Sutikno, Indra Waspada Program Studi Teknik Informatika Universitas Diponegoro tik@undip.ac.id,

Lebih terperinci

SIMULASI PENGENDALIAN KECEPATAN MOBIL OTOMATIS MENGGUNAKAN LOGIKA FUZZY DAN ALGORITMA GENETIKA

SIMULASI PENGENDALIAN KECEPATAN MOBIL OTOMATIS MENGGUNAKAN LOGIKA FUZZY DAN ALGORITMA GENETIKA SIMULASI PENGENDALIAN KECEPATAN MOBIL OTOMATIS MENGGUNAKAN LOGIKA FUZZY DAN ALGORITMA GENETIKA Helmy Thendean, M.Kom 1) Albert, S.Kom 2) Dra.Chairisni Lubis, M.Kom 3) 1) Program Studi Teknik Informatika,Universitas

Lebih terperinci

Implementasi Sistem Navigasi Behavior Based Robotic dan Kontroler Fuzzy pada Manuver Robot Cerdas Pemadam Api

Implementasi Sistem Navigasi Behavior Based Robotic dan Kontroler Fuzzy pada Manuver Robot Cerdas Pemadam Api Implementasi Sistem Navigasi Behavior Based Robotic dan Kontroler Fuzzy pada Manuver Robot Cerdas Pemadam Api Rully Muhammad Iqbal NRP 2210105011 Dosen Pembimbing: Rudy Dikairono, ST., MT Dr. Tri Arief

Lebih terperinci

Teknik Sistem. terpadat di. menganggu. yang dapat

Teknik Sistem. terpadat di. menganggu. yang dapat PERANCANGAN DECISION SUPPORT SYSTEM ALUR PELAYARAN MERAK- -BAKAUHENI DALAM KONDISI EKSTREM UNTUK MENINGKATKAN FAKTOR KESELAMATAN KAPAL Prasetyo Dwi Putranto 1) Dr. Ir. A.A. Masroeri, M. Eng 2) Ir. Sardono

Lebih terperinci

DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC)

DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC) PROSEDING DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC) Teguh Herlambang, Hendro Nurhadi Program Studi Sistem Informasi Universitas

Lebih terperinci

INCREASING INDONESIA SEA ENDURANCE BY DESIGNING FAST PATROL BOAT MANEUVERING CONTROL, SERIE 1 : NON ADAPTIF FUZZY

INCREASING INDONESIA SEA ENDURANCE BY DESIGNING FAST PATROL BOAT MANEUVERING CONTROL, SERIE 1 : NON ADAPTIF FUZZY INCREASING INDONESIA SEA ENDURANCE BY DESIGNING FAST PATROL BOAT MANEUVERING CONTROL, SERIE 1 : NON ADAPTIF FUZZY Aulia Siti Aisjah, Syamsul Arifin Engineering Physics Department Faculty Of Industrial

Lebih terperinci

IMPLEMENTASI LOGIKA FUZZY UNTUK MENGENDALIKAN PH DAN LEVEL AIR KOLAM RENANG

IMPLEMENTASI LOGIKA FUZZY UNTUK MENGENDALIKAN PH DAN LEVEL AIR KOLAM RENANG IMPLEMENTASI LOGIKA FUZZY UNTUK MENGENDALIKAN PH DAN LEVEL AIR KOLAM RENANG Nazrul Effendy, M. Heikal Hasan dan Febry Wikatmono Jurusan Teknik Fisika, Fakultas Teknik, Universitas Gadjah Mada Jln. Grafika

Lebih terperinci

STUDY SIMULASI AUTOPILOT KAPAL DENGAN LAB VIEW

STUDY SIMULASI AUTOPILOT KAPAL DENGAN LAB VIEW + PRO S ID IN G 20 1 1 HASIL PENELITIAN FAKULTAS TEKNIK STUDY SIMULASI AUTOPILOT KAPAL DENGAN LAB VIEW Jurusan Perkapalan Fakultas Teknik Universitas Hasanuddin Jl. Perintis Kemerdekaan Km. 10 Tamalanrea

Lebih terperinci

PERANCANGAN SISTEM AUTOPILOT UNTUK KONTROL KEMUDI MODEL KAPAL MENGUNAKAN PROGRAMABLE AUTOMATIC CONTROLLER NI CompactRIO

PERANCANGAN SISTEM AUTOPILOT UNTUK KONTROL KEMUDI MODEL KAPAL MENGUNAKAN PROGRAMABLE AUTOMATIC CONTROLLER NI CompactRIO Perancangan Sistem Autopilot Untuk Kontrol Kemudi Model Kapal Mengunakan Programable Automatic Controller Ni Compactrio ( Yuniati dan Chandra Permana ) PERANCANGAN SISTEM AUTOPILOT UNTUK KONTROL KEMUDI

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Selat Madura merupakan jalur pelayaran paling padat di wilayah Indonesia timur. Tahun 2010 lalu alur selat Madura dilintasi 30.000 kapal per tahun, sementara pada tahun

Lebih terperinci

BAB III PERANCANGAN SIMULASI. 3.1 Perancangan Sistem Parkir Mobil Seri Otomatis

BAB III PERANCANGAN SIMULASI. 3.1 Perancangan Sistem Parkir Mobil Seri Otomatis BAB III PERANCANGAN SIMULASI Pada bab ini dijelaskan perancangan untuk mengetahui alur kerja dari sistem yang akan dibuat. Pada perancangan ini dibuat 2 kontrol logika fuzzy untuk mobil parkir secara otomatis

Lebih terperinci

BAB III PERANCANGAN Sistem Kontrol Robot. Gambar 3.1. Blok Diagram Sistem

BAB III PERANCANGAN Sistem Kontrol Robot. Gambar 3.1. Blok Diagram Sistem BAB III PERANCANGAN Pada bab ini akan dijelaskan mengenai perancangan sistem yang meliputi sistem kontrol logika fuzzy, perancangan perangkat keras robot, dan perancangan perangkat lunak dalam pengimplementasian

Lebih terperinci

GPENELITIAN MANDIRI RANCANG BANGUN SISTEM KENDALI MOTOR DC MENGGUNAKAN FUZZY LOGIC BERBASIS MIKROKONTROLER

GPENELITIAN MANDIRI RANCANG BANGUN SISTEM KENDALI MOTOR DC MENGGUNAKAN FUZZY LOGIC BERBASIS MIKROKONTROLER GPENELITIAN MANDIRI RANCANG BANGUN SISTEM KENDALI MOTOR DC MENGGUNAKAN FUZZY LOGIC BERBASIS MIKROKONTROLER Hendra Kusdarwanto Jurusan Fisika Unibraw Universitas Brawijaya Malang nra_kus@yahoo.com ABSTRAK

Lebih terperinci

PENGEMBANGAN SISTEM MONITORING DAN PENGENDALIAN UNTUK SIMULASI AUTOPILOT PADA KAPAL DI PELABUHAN TANJUNG PERAK

PENGEMBANGAN SISTEM MONITORING DAN PENGENDALIAN UNTUK SIMULASI AUTOPILOT PADA KAPAL DI PELABUHAN TANJUNG PERAK PENGEMBANGAN SISTEM MONITORING DAN PENGENDALIAN UNTUK SIMULASI AUTOPILOT PADA KAPAL DI PELABUHAN TANJUNG PERAK (Arief Rakhmad Fajri 1), Dr. Ir. Aulia Siti Aisyah, MT. 1), Dr. Ir. A. A. Masroeri, M.Eng.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini penulis akan menjelaskan mengenai landasan teori yang digunakan pada penelitian ini. Penjabaran ini bertujuan untuk memberikan pemahaman lebih mendalam kepada penulis

Lebih terperinci

DESAIN SISTEM KENDALI TEMPERATUR UAP SUPERHEATER DENGAN METODE FUZZY SLIDING MODE CONTROL

DESAIN SISTEM KENDALI TEMPERATUR UAP SUPERHEATER DENGAN METODE FUZZY SLIDING MODE CONTROL J. Math. and Its Appl. ISSN: 1829-605X Vol. 13, No. 1, Mei 2016, 37-48 DESAIN SISTEM KENDALI TEMPERATUR UAP SUPERHEATER DENGAN METODE FUZZY SLIDING MODE CONTROL Mardlijah 1, Mardiana Septiani 2,Titik Mudjiati

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN SISTEM. Gambar 3. 1 Diagram Blok Sistem Kecepatan Motor DC

BAB III PERANCANGAN DAN PEMBUATAN SISTEM. Gambar 3. 1 Diagram Blok Sistem Kecepatan Motor DC BAB III PERANCANGAN DAN PEMBUATAN SISTEM Bab ini menjelaskan tentang perancangan dan pembuatan sistem kontrol, baik secara software dan hardware yang akan digunakan untuk mendukung keseluruhan sistem yang

Lebih terperinci

BAB III METODOLOGI 3.1. PENDAHULUAN

BAB III METODOLOGI 3.1. PENDAHULUAN BAB III METODOLOGI 3.1. PENDAHULUAN Dalam melakukan studi Tugas Akhir diperlukan metodologi yang akan digunakan agar studi ini dapat berjalan sesuai dengan koridor yang telah direncanakan di awal. Dalam

Lebih terperinci

Ahmadi *1), Richa Watiasih a), Ferry Wimbanu A a)

Ahmadi *1), Richa Watiasih a), Ferry Wimbanu A a) Prosiding Seminar Nasional Teknologi Elektro Terapan 2017 Vol.01 No.01, ISSN: 2581-0049 Ahmadi *1), Richa Watiasih a), Ferry Wimbanu A a) Abstrak: Pada penelitian ini metode Fuzzy Logic diterapkan untuk

Lebih terperinci

Rancang Bangun Prototipe Sistem Kontrol Penjejak Lintasan Pada Kapal Tanpa Awak Menggunakan Fuzzy Logic

Rancang Bangun Prototipe Sistem Kontrol Penjejak Lintasan Pada Kapal Tanpa Awak Menggunakan Fuzzy Logic 1 Rancang Bangun Prototipe Sistem Kontrol Penjejak Lintasan Pada Kapal Tanpa Awak Menggunakan Fuzzy Logic Mohamad Ridwan, Suwito (1), Tasripan (2), Aulia Siti Aisjah (3) Jurusan Teknik Elektro, Fakultas

Lebih terperinci

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Zulfikar Sembiring Jurusan Teknik Informatika, Fakultas Teknik, Universitas Medan Area zoelsembiring@gmail.com Abstrak Logika Fuzzy telah banyak

Lebih terperinci

Pengendalian Kapal-kapal Di Pelabuhan Tanjung Perak Berbasis Logika Fuzzy

Pengendalian Kapal-kapal Di Pelabuhan Tanjung Perak Berbasis Logika Fuzzy Studi Perancangan Monitoring i Dan Pengendalian Kapal-kapal Di Pelabuhan Tanjung Perak Berbasis Logika Fuzzy Agus Setyo Budi 4207 100 011 Jurusan Teknik Sistem Perkapalan Fakultas Teknologi Kelautan Institut

Lebih terperinci

ANALISIS RULE INFERENSI SUGENO DALAM SISTEM PENDUKUNG PENGAMBILAN KEPUTUSAN

ANALISIS RULE INFERENSI SUGENO DALAM SISTEM PENDUKUNG PENGAMBILAN KEPUTUSAN ANALISIS RULE INFERENSI SUGENO DALAM SISTEM PENDUKUNG PENGAMBILAN KEPUTUSAN Khairul Saleh Teknik Informatika, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera Utara Jalan Universitas

Lebih terperinci

Desain dan Implementasi Kendali Cerdas untuk Robot Quadpod (Berkaki Empat) Studi Kasus Robot Pemadam Api (RPA)

Desain dan Implementasi Kendali Cerdas untuk Robot Quadpod (Berkaki Empat) Studi Kasus Robot Pemadam Api (RPA) Received : September 2017 Accepted : September 2017 Published : Oktober 2017 Desain dan Implementasi Kendali Cerdas untuk Robot Quadpod (Berkaki Empat) Studi Kasus Robot Pemadam Api (RPA) Muhammad Bagus

Lebih terperinci

Jurnal MIPA 39 (1)(2016): Jurnal MIPA.

Jurnal MIPA 39 (1)(2016): Jurnal MIPA. Jurnal MIPA 39 (1)(2016): 40-44 Jurnal MIPA http://journal.unnes.ac.id/nju/index.php/jm PENGENDALIAN KELAJUAN KENDARAAN MENGGUNAKAN FUZZY LOGIC CONTROLLER (FLC) PADA SISTEM CRUISE KONTROL Susanto, Sunarno

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Logika Fuzzy Logika Fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh pada tahun1965. Teori ini banyak diterapkan di berbagai bidang, antara lain representasipikiran manusia

Lebih terperinci

Penerapan Logika Fuzzy Pada Sistem Parkir Truk

Penerapan Logika Fuzzy Pada Sistem Parkir Truk Penerapan Logika Fuzzy Pada Sistem Parkir Truk Kuswara Setiawan Program Studi Sistem Informasi Universitas Pelita Harapan Surabaya, Indonesia Abstrak Suatu sistem dinamis dalam kehidupan sehari-hari seringkali

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas

BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas BAB II LANDASAN TEORI Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas dalam pembuatan tugas akhir ini. Secara garis besar teori penjelasan akan dimulai dari definisi logika fuzzy,

Lebih terperinci

Stabilisasi Robot Pendulum Terbalik Beroda Dua Menggunakan Kontrol Fuzzy Hybrid

Stabilisasi Robot Pendulum Terbalik Beroda Dua Menggunakan Kontrol Fuzzy Hybrid Stabilisasi Robot Pendulum Terbalik Beroda Dua Menggunakan Kontrol Fuzzy Hybrid Made Rahmawaty, Trihastuti Agustinah Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS)

Lebih terperinci

Kontrol Kecepatan Motor DC Berbasis Logika Fuzzy (DC Motor Speed Control Based on Fuzzy Logic)

Kontrol Kecepatan Motor DC Berbasis Logika Fuzzy (DC Motor Speed Control Based on Fuzzy Logic) Terry Intan Nugroho., et al., Kontrol Kecepatan Motor DC Berbasis Logika 1 Kontrol Kecepatan Motor DC Berbasis Logika (DC Motor Speed Control Based on Logic) Terry Intan Nugroho, Bambang Sujanarko, Widyono

Lebih terperinci

PENERAPAN FUZZY LOGIC CONTROLLER UNTUK MEMPERTAHANKAN KESETABILAN SISTEM AKIBAT PERUBAHAN DEADTIME PADA SISTEM KONTROL PROSES DENGAN DEADTIME

PENERAPAN FUZZY LOGIC CONTROLLER UNTUK MEMPERTAHANKAN KESETABILAN SISTEM AKIBAT PERUBAHAN DEADTIME PADA SISTEM KONTROL PROSES DENGAN DEADTIME PENERAPAN FUZZY LOGIC CONTROLLER UNTUK MEMPERTAHANKAN KESETABILAN SISTEM AKIBAT PERUBAHAN DEADTIME PADA SISTEM KONTROL PROSES DENGAN DEADTIME Mukhtar Hanafi Program Studi Teknik Informatika Fakultas Teknik

Lebih terperinci

K : DIMAS CRISNALDI ERNAND DIMAS

K : DIMAS CRISNALDI ERNAND DIMAS Perancangan Sistem Monitoring di Pelabuhan Tanjung Perak Dalam Rangka Meningkatkan Faktor Keamanan Presented By : DIMAS CRISNALDI ERNANDA 4203 109 019 Latar Belakang Kecelakaan yang terjadi pada kapal

Lebih terperinci

MODUL 8 APLIKASI NEURAL NETWORK DAN FUZZY LOGIC PADA PERKIRAAN CUACA

MODUL 8 APLIKASI NEURAL NETWORK DAN FUZZY LOGIC PADA PERKIRAAN CUACA MODUL 8 APLIKASI NEURAL NETWORK DAN FUZZY LOGIC PADA PERKIRAAN CUACA Muhammad Ilham 10211078 Program Studi Fisika, Institut Teknologi Bandung, Indonesia Email: muhammad_ilham@students.itb.ac.id Asisten:

Lebih terperinci

Fuzzy Logic. Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic.

Fuzzy Logic. Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic. Fuzzy Systems Fuzzy Logic Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic. Masalah: Pemberian beasiswa Misalkan

Lebih terperinci

Logika Fuzzy. Farah Zakiyah Rahmanti 2016

Logika Fuzzy. Farah Zakiyah Rahmanti 2016 Logika Fuzzy Farah Zakiyah Rahmanti 2016 Topik Bahasa Alami Crisp Logic VS Fuzzy Logic Fungsi Keanggotaan (Membership Function) Fuzzifikasi (Fuzzyfication) Inferensi (Inference) Komposisi (Composition)

Lebih terperinci

Bab III Perancangan Sistem

Bab III Perancangan Sistem Bab III Perancangan Sistem Dalam perancangan sistem kendali motor DC ini, terlebih dahulu dilakukan analisis bagian-bagian apa saja yang diperlukan baik hardware maupun software kemudian dirancang bagian-perbagian,

Lebih terperinci

Implementasi Metode Fuzzy Logic Controller Pada Kontrol Posisi Lengan Robot 1 DOF

Implementasi Metode Fuzzy Logic Controller Pada Kontrol Posisi Lengan Robot 1 DOF Implementasi Metode Fuzzy Logic Controller Pada Kontrol Posisi Lengan Robot 1 DOF ndik Yulianto 1), gus Salim 2), Erwin Sukma Bukardi 3) Prodi Teknik Elektro, Fakultas Teknologi Industri, Universitas Internasional

Lebih terperinci

DESAIN KONTROL INVERTED PENDULUM DENGAN METODE KONTROL ROBUST FUZZY

DESAIN KONTROL INVERTED PENDULUM DENGAN METODE KONTROL ROBUST FUZZY DESAIN KONTROL INVERTED PENDULUM DENGAN METODE KONTROL ROBUST FUZZY Reza Dwi Imami *), Aris Triwiyatno, and Sumardi Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, Kampus

Lebih terperinci

STUDI PENETAPAN DAERAH BAHAYA (DANGEROUS AREA) DI PELABUHAN TANJUNG PERAK SURABAYA BERDASARKAN AIS DATA

STUDI PENETAPAN DAERAH BAHAYA (DANGEROUS AREA) DI PELABUHAN TANJUNG PERAK SURABAYA BERDASARKAN AIS DATA STUDI PENETAPAN DAERAH BAHAYA (DANGEROUS AREA) DI PELABUHAN TANJUNG PERAK SURABAYA BERDASARKAN AIS DATA Abstrak (Sangkya Yuda Yudistira/4205100077) Pelabuhan Tanjung Perak Surabaya merupakan salah satu

Lebih terperinci

KENDALI LOGIKA FUZZY PADA PENGATURAN LAMPU LALU LINTAS BERDASARKAN URGENCY DAN STOP DEGREE

KENDALI LOGIKA FUZZY PADA PENGATURAN LAMPU LALU LINTAS BERDASARKAN URGENCY DAN STOP DEGREE KENDALI LOGIKA FUZZY PADA PENGATURAN LAMPU LALU LINTAS BERDASARKAN URGENCY DAN STOP DEGREE Fitria Suryatini Program Studi Teknik Elektro Fakultas Teknik Universitas Islam 45 (UNISMA) E-mail: fitriasuryatini88@gmail.com

Lebih terperinci

IMPLEMENTASI FUZZY LOGIC CONTROLLER PADA ROBOT LINE FOLLOWER

IMPLEMENTASI FUZZY LOGIC CONTROLLER PADA ROBOT LINE FOLLOWER PROSIDING SEMINAR NASIONAL TEKNOLOGI IV Samarinda, November IMPLEMENTASI FUZZY LOGIC CONTROLLER PADA ROBOT LINE FOLLOWER Supriadi, Ansar Rizal Prodi Teknik Komputer, Jurusan Teknologi Informasi, Politeknik

Lebih terperinci

BAB II: TINJAUAN PUSTAKA

BAB II: TINJAUAN PUSTAKA BAB II: TINJAUAN PUSTAKA Bab ini akan memberikan penjelasan awal mengenai konsep logika fuzzy beserta pengenalan sistem inferensi fuzzy secara umum. 2.1 LOGIKA FUZZY Konsep mengenai logika fuzzy diawali

Lebih terperinci

Pengaturan Kecepatan Motor Induksi Tiga Fasa dengan Metode PID Self Tuning Berdasarkan Fuzzy pada Rancangan Mobil Hybrid

Pengaturan Kecepatan Motor Induksi Tiga Fasa dengan Metode PID Self Tuning Berdasarkan Fuzzy pada Rancangan Mobil Hybrid Pengaturan Kecepatan Motor Induksi Tiga Fasa dengan Metode PID Self Tuning Berdasarkan Fuzzy pada Rancangan Mobil Hybrid Septian Ekavandy #, Dedid Cahya Happyanto #2 # Jurusan Teknik Elektronika, Politeknik

Lebih terperinci

Rancang Bangun Prototype Alat Sistem Pengontrol Kemudi Kapal Berbasis Mikrokontroler

Rancang Bangun Prototype Alat Sistem Pengontrol Kemudi Kapal Berbasis Mikrokontroler Rancang Bangun Prototype Alat Sistem Pengontrol Kemudi Kapal Berbasis Mikrokontroler Muhammad Taufiqurrohman Jurusan Teknik Elektro, Fakultas Teknik dan Ilmu Kelautan Universitas Hang Tuah Jl. Arif Rahman

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Logika Fuzzy Zadeh (1965) memperkenalkan konsep fuzzy sebagai sarana untuk menggambarkan sistem yang kompleks tanpa persyaratan untuk presisi. Dalam jurnalnya Hoseeinzadeh et

Lebih terperinci

APLIKASI METODE STATE FEEDBACK LINEARIZATION PADA SISTEM KENDALI GERAK KAPAL

APLIKASI METODE STATE FEEDBACK LINEARIZATION PADA SISTEM KENDALI GERAK KAPAL APLIKASI METODE STATE FEEDBACK LINEARIZATION PADA SISTEM KENDALI GERAK KAPAL Dosen Pembimbing: DR. Erna Apriliani M.Si DWI ARIYANI K 1209100044 JURUSAN MATEMATIKA ITS FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

JOBSHEET SISTEM CERDAS REASONING 2. Fuzzifikasi

JOBSHEET SISTEM CERDAS REASONING 2. Fuzzifikasi JOBSHEET SISTEM CERDAS REASONING 2 Fuzzifikasi S1 PENDIDIKAN TEKNIK ELEKTRO JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI MALANG 2016 PRAKTIKUM SISTEM CERDAS - REASONING JOBSHEET 2 - FUZZIFIKASI

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan negara kepulauan dengan luas wilayah daratan Indonesia lebih dari 2.012.402 km 2 dan luas perairannya lebih dari 5.877.879 km 2 yang menjadikan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Sekarang ini hampir semua perusahaan yang bergerak di bidang industri dihadapkan pada suatu masalah yaitu adanya tingkat persaingan yang semakin kompetitif. Hal ini

Lebih terperinci

Desain Sistem Kontrol Functional Electrical Stimulation menggunakan Fuzzy orde 2

Desain Sistem Kontrol Functional Electrical Stimulation menggunakan Fuzzy orde 2 Desain Sistem Kontrol Functional Electrical Stimulation menggunakan Fuzzy orde 2 Hendi Wicaksono Agung D 1,3, Achmad Arifin, Ph.D 2. (1) Program Pasca Sarjana Jurusan Teknik Elektro Bidang Studi Elektronika

Lebih terperinci

Implementasi Fuzzy Logic Untuk Mengatur Banyak Air Pada Tanaman Mawar Berdasarkan Suhu Dan Kelembaban

Implementasi Fuzzy Logic Untuk Mengatur Banyak Air Pada Tanaman Mawar Berdasarkan Suhu Dan Kelembaban Implementasi Fuzzy Logic Untuk Mengatur Banyak Air Pada Tanaman Mawar Berdasarkan Suhu Dan Kelembaban Lingga Dwi Putra 1, Joke Pratilastiarso 2, Endro Wahjono 3 1. Mahasiswa Jurusan Teknik Elektro Industri

Lebih terperinci

2.4. Sistem Kendali Logika Fuzzy 11

2.4. Sistem Kendali Logika Fuzzy 11 DAFTAR ISI HALAMANJUDUL i LEMBAR PENGESAHAN PEMBIMBING ii LEMBAR PENGESAHAN DOSEN PENGUJI iii HALAMAN PERSEMBAHAN iv HALAMAN MOTTO v KATAPENGANTAR vi ABSTRAKSI x DAFTAR ISI xi DAFTAR TABEL DAFTAR GAMBAR

Lebih terperinci

pengendali Konvensional Time invariant P Proportional Kp

pengendali Konvensional Time invariant P Proportional Kp Strategi Dalam Teknik Pengendalian Otomatis Dalam merancang sistem pengendalian ada berbagai macam strategi. Strategi tersebut dikatakan sebagai strategi konvensional, strategi modern dan strategi berbasis

Lebih terperinci

Estimasi Variabel Dinamik Kapal Menggunakan Metode Kalman Filter

Estimasi Variabel Dinamik Kapal Menggunakan Metode Kalman Filter JURNAL TEKNIK POMITS Vol., No., () ISSN: 79 (-97 Print) E-8 Estimasi Variabel Dinamik Kapal Menggunakan Metode Kalman Filter Nathanael Leon Gozali ), Aulia Siti Aisjah ), dan Erna Apriliani ) ) Jurusan

Lebih terperinci

Penggunaan Metode Logika Fuzzy Untuk Memprediksi Jumlah Kendaraan Bermotor Berdasarkan Tingkat Kebisingan Lalu Lintas, Lebar Jalan Dan Faktor Koreksi

Penggunaan Metode Logika Fuzzy Untuk Memprediksi Jumlah Kendaraan Bermotor Berdasarkan Tingkat Kebisingan Lalu Lintas, Lebar Jalan Dan Faktor Koreksi Jurnal Gradien Vol.3 No.2 Juli 2007 : 247-251 Penggunaan Metode Logika Fuzzy Untuk Memprediksi Jumlah Kendaraan Bermotor Berdasarkan Tingkat Kebisingan Lalu Lintas, Lebar Jalan Dan Faktor Koreksi Syamsul

Lebih terperinci

DISAIN DAN IMPLEMENTASI PENGENDALI FUZZY BERBASIS DIAGRAM LADDER PLC MITSUBISHI Q02HCPU PADA SISTEM MOTOR INDUKSI

DISAIN DAN IMPLEMENTASI PENGENDALI FUZZY BERBASIS DIAGRAM LADDER PLC MITSUBISHI Q02HCPU PADA SISTEM MOTOR INDUKSI DISAIN DAN IMPLEMENTASI PENGENDALI FUZZY BERBASIS DIAGRAM LADDER PLC MITSUBISHI Q02HCPU PADA SISTEM MOTOR INDUKSI Syarif Jamaluddin a, Ir. Aries Subiantoro, M.Sc. b a,b) Departemen Elektro Fakultas Teknik,

Lebih terperinci

PENGGUNAAN FUZZY INFERENCE SYSTEM MODEL SUGENO PADA PENGENDALIAN SUHU RUANGAN

PENGGUNAAN FUZZY INFERENCE SYSTEM MODEL SUGENO PADA PENGENDALIAN SUHU RUANGAN P P P P PENGGUNAAN FUZZY INFERENCE SYSTEM MODEL SUGENO PADA PENGENDALIAN SUHU RUANGAN Wahyu Herman Susila 1, Wahyudi 2, Iwan Setiawan 2 Abstrak - Teknik kendali dengan menggunakan Fuzzy telah banyak diaplikasikan.

Lebih terperinci

PERANCANGAN DAN IMPLEMENTASI KONTROLER FUZZY PREDIKTIF UNTUK TRACKING KETINGGIAN AKTUAL PADA UAV (UNMANNED AERIAL VEHICLE)

PERANCANGAN DAN IMPLEMENTASI KONTROLER FUZZY PREDIKTIF UNTUK TRACKING KETINGGIAN AKTUAL PADA UAV (UNMANNED AERIAL VEHICLE) PERANCANGAN DAN IMPLEMENTASI KONTROLER FUZZY PREDIKTIF UNTUK TRACKING KETINGGIAN AKTUAL PADA UAV (UNMANNED AERIAL VEHICLE) THORIKUL HUDA 2209106030 Dosen Pembimbing Ir. Rusdhianto Effendie A.K, M.T. 1

Lebih terperinci

Fuzzy Associative Memory (FAM) Logika Fuzzy

Fuzzy Associative Memory (FAM) Logika Fuzzy Fuzzy Associative Memory (FAM) Logika Fuzzy 1 Misalkan suatu sistem fuzzy dengan n input dan satu output. Setiap input X 1, X 2,, X n dipartisi menjadi k partisi fuzzy. Maka menggunakan aturan fuzzy IF

Lebih terperinci

Sistem Pengemudian Otomatis pada Kendaraan Berroda dengan Model Pembelajaran On-line Menggunakan NN

Sistem Pengemudian Otomatis pada Kendaraan Berroda dengan Model Pembelajaran On-line Menggunakan NN Sistem Pengemudian Otomatis pada Kendaraan Berroda dengan Model Pembelajaran On-line Menggunakan Eru Puspita Politeknik Elektronika Negeri Surabaya Institut Teknologi Sepuluh Nopember Kampus ITS Keputih

Lebih terperinci

IMPLEMENTASI ADAPTIVE SWITCHING FUZZY LOGIC CONTROLER SEBAGAI PENGENDALI LEVEL AIR PADA TIGA BEJANA BERINTERAKSI

IMPLEMENTASI ADAPTIVE SWITCHING FUZZY LOGIC CONTROLER SEBAGAI PENGENDALI LEVEL AIR PADA TIGA BEJANA BERINTERAKSI IMPLEMENTASI ADAPTIVE SWITCHING FUZZY LOGIC CONTROLER SEBAGAI PENGENDALI LEVEL AIR PADA TIGA BEJANA BERINTERAKSI Satryo Budi Utomo ), Rusdhianto ), Katjuk Astrowulan ) ) Fakultas Teknik,Jurusan Teknik

Lebih terperinci

5/12/2014. Plant PLANT

5/12/2014. Plant PLANT Matakuliah : Teknik Kendali Tahun : 2014 Versi : Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : menjelaskan gambaran umum dan aplikasi sistem pengaturan di industri menunjukkan kegunaan dasar-dasar

Lebih terperinci