BAB 2 TINJAUAN PUSTAKA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1 Logika Fuzzy Zadeh (1965) memperkenalkan konsep fuzzy sebagai sarana untuk menggambarkan sistem yang kompleks tanpa persyaratan untuk presisi. Dalam jurnalnya Hoseeinzadeh et al. (2011) mengatakan bahwa logika fuzzy adalah konsep yang kuat untuk penanganan nonlinear, waktu yang berbeda-beda, dan sistem adaptif. Hal ini memungkinkan penggunaan nilai-nilai linguistik dari variabel dan hubungan tidak tepat untuk perilaku pemodelan sistem. Zadeh (1973) menyatakan prinsip yang disebut "prinsip ketidakcocokan", yang menyatakan bahwa kompleksitas dan presisi tidak kompatibel karena ketidakmampuan pikiran manusia untuk memahami sistem yang kompleks dengan cara yang rinci. Dengan mengurangi kebutuhan untuk presisi ini memungkinkan untuk lebih mudah mengekspresikan hubungan kualitatif tentang sistem yang diketahui lebih kompleks. Fuzzy logic ditujukan sebagai formalisasi mode penalaran atau perkiraan dari nilai yang sebernarnya (Zadeh, 2004). Zadeh (1973) mencatat bahwa metode ini dapat menghadapi ketidakpastian dan dapat diterapkan dalam sistem perangkat lunak seperti psikologi, sosiologi, dan ekonomi. Dalam bukunya Klir & Yuan (1995) mengatakan logika adalah studi tentang metode dan prinsip-prinsip penalaran dalam segala bentuk yang mungkin. logika klasik berkaitan dengan proposisi yang diperlukan untuk menjadi benar atau salah. masing-masing proposisi memiliki lawannya, yang biasanya disebut negasi dari proposisi. Sebuah proposisi dan negasi diharuskan untuk mengasumsikan nilai kebenaran yang berlawanan. Pada dasarnya, Fuzzy Logic (FL) adalah logika multi valued, yang memungkinkan nilai-nilai menengah untuk didefinisikan antara evaluasi konvensional seperti benar atau salah, ya atau tidak, tinggi atau rendah, dll. Pendapat seperti agak tinggi atau sangat cepat dapat dirumuskan secara matematis dan diproses oleh

2 6 komputer, untuk menerapkan cara yang lebih mirip manusia berpikir dalam pemrograman komputer.(poonam, et al. 2012) Dalam banyak hal, logika fuzzy digunakan sebagai suatu cara untuk memetakan permasalahan dari input menuju ke output yang diharapkan. Termasuk dalam hal prediksi yang merupakan suatu gambaran masa depan yang akan diketahui kejadiannya dengan tingkat akurasi yang tinggi. Alasan mengapa logika fuzzy digunakan dalam penyelesaian masalah prediksi. Logika Fuzzy adalah konsep yang kuat untuk menangani masalah nonlinear, waktu yang bervariasi, dan sistem adaptif. Ini memungkinkan penggunaan nilai-nilai linguistik dari variabel dan hubungan yang tidak tepat untuk perilaku pemodelan sistem. Sistem cerdas berdasarkan logika fuzzy sering digunakan dalam memilah proses untuk mendeteksi cacat dalam implementasinya.( Hosseinzadeh, et al. 2011) Logika fuzzy dapat meningkatkan proses penilaian dengan menggunakan himpunan fuzzy untuk menentukan derajat yang tumpang tindih. Selain itu, aplikasi logika "If-Then" dapat meningkatkan interpretasi dan penjelasan hasil dan memberikan pandangan umum dalam pembangunan proses pengambilan keputusan (Roubus et al, 2003). Logika Fuzzy merupakan suatu logika yang memiliki nilai kekaburan atau kesamaran (fuzzyness) antara benar atau salah. Dalam teori logika fuzzy suatu nilai bisa bernilai benar atau salah secara bersama. Namun berapa besar keberadaan dan kesalahan suatu tergantung pada bobot keanggotaan yang dimilikinya. Jadi logika fuzzy secara bahasa diartikan sebagai kabur atau samar samar (Nasution, 2012). 2.2 Teori Himpunan Fuzzy Fuzzy logic dimulai dengan konsep himpunan fuzzy. Sebuah himpunan fuzzy didefinisikan sebagai suatu sistem tanpa anggota tertentu yang memiliki batas yang jelas. Himpunan fuzzy dapat mencakup semua elemen dari semesta pembicaraan hanya dengan satu derajat relatif keanggotaan. (Zadeh, 1965). Dengan kata lain, satu himpunan didefinisikan sebagai satu himpunan pasangan terurut dan dapat dibentuk dalam persamaan berikut: D={(x, µ D (x))} xϵx, µ D (x)ϵ[0.1]...(1)

3 Konsep Dasar Himpunan Fuzzy Dalam bukunya Klir & Yuan (1995) menulis ada beberapa konsep dasar dan terminologi himpunan fuzzy, memisalkan 2 set fuzzy yang mewakili konsep inflasi tinggi dan rendah. Ekspresi dari konsep-konsep ini, berdasarkan fungsi keanggotaan A1, dan A2. 1 A 1 (x)= (10 x)/15 0 Ketika x Ketika 13.30< x < 10.8 Ketika x A 3 (x)= (x 12)/15 0 Ketika x 12 Ketika 12 < x < 18 Ketika x 18 Pada dasarnya, teori himpunan fuzzy merupakan perluasan dari teori himpunan klasik. Pada teori himpunan klasik (crisp), keberadaan suatu elemen pada himpunan A, hanya akan memiliki dua kemungkinan keanggotaan, yaitu menjadi anggota A atau tidak menjadi anggota A, Suatu nilai yang menunjukkan seberapa besar tingkat keanggotaan suatu elemen (x) dalam suatu himpunan (A), sering dikenal dengan nama nilai keanggotaan atau derajat keanggotaan, dinotasikan dengan µa(x). Pada himpunan klasik, hanya ada dua nilai keanggotaan, yaitu µa(x) = 1 untuk x menjadi anggota A; dan µa(x) = 0 untuk x bukan anggota dari A. (Nezhad, et al. 2013) Operasional Himpunan Fuzzy Zadeh (1965) mengemukakan model operator fuzzy terdiri yang atas dua operator, yaitu operator-operator (AND, OR) dan operator-operator alternatif yang dikembangkan dengan menggunakan konsep transformasi tertentu. 2.3 Fugsi Keanggotaan Dalam jurnalnya Batra & Trivedi (2013) menulis bahwa gagasan keanggotaan dalam fuzzy melingkupi masalah derajat keanggotaan, yang merupakan angka antara 0 dan 1. Derajat keanggotaan 0 merupakan keanggotaan tidak lengkap, sementara derajat keanggotaan 1 mewakili keanggotaan lengkap. Hal ini ditandai dengan pemetaan dari

4 8 input data ke nilai keanggotaanya [0,1]. Pemetaan ini dikenal sebagai fungsi keanggotaan yang dilambangkan dengan(μ) Representasi Kurva Bahu Kurva bahu terdiri dari bahu kanan dan bahu kiri. Kurva bahu kiri mereprensentasikan kondisi konstan dari kiri dengan nilai keanggotaan 1 kemudian turun dengan nilai keanggotaan menuju ke 0. Sedangkan kurva bahu kanan mereprentasikan keadaan yang linier naik menuju nilai keanggotaan 1 secara konstan kekanan. (Suwandi, et al. 2011) µ(x) 1 rendah tinggi derajat keanggotaan 0 a domain b Gambar 2.1 Karakteristik Kurva Bahu Bentuk karakteristik kurva bahu ditunjukkan seperti persamaan dibawah ini : Fungsi keanggotaan : 1; [ x] rendah b - x/c; 0; 0; [ x] tinggi x - a/c; 1; x a a x b x b x a a x b x b

5 9 2.4 Fuzzifikasi Fuzzifikasi adalah tahap pemetaan nilai masukan dan kedalam bentuk himpunan fuzzy. Data masukan berupa bilangan tegas (crisp) yang akan diubah menjadi himpunan fuzzy berdasarkan range untuk setiap variabel masukannya. Pada proses fuzzifikasi ini terdapat dua hal yang harus diperhatikan yaitu nilai masukan dan keluaran serta fungsi keanggotaan (membership function) yang akan digunakan untuk menentukan nilai fuzzy dari data nilai crisp masukan dan keluaran. Pada proses fuzzifikasi ini digunakan bentuk fungsi keanggotaan dengan menggunakan kurva bahu sebagai variabel masukan.(mahaswari & Asthana, 2013) Dalam tahap ini akan dimodelkan data yang menjadi bahan proses pembentukan fungsi keanggotaaan, yaitu tinggi dan rendah. Semua himpunan Fuzzy setiap varabel Fuzzy pada data masukan akan direpresentasikan dengan menggunakan fungsi keanggotaan yang sama. Tahap pertama yaitu melakukan fuzzifikasi. Fuzzifikasi merupakan tahap pembentukan himpunan Fuzzy pada variabel Fuzzy dan penentuan derajat keanggotaan dengan menggunakan fungsi keanggotaan kurva bahu. Fungsi keanggotaan (membership function) adalah suatu kurva yang menunjukkan pemetaan titik-titik input data ke dalam nilai keanggotaannya yang memiliki interval antara 0 sampai Aturan IF - THEN Dalam jurnalnya Mayilvaganan & Rajeswari (2014) mengatakan aturan adalah sebuah struktur knowledge yang menghubungkan beberapa informasi yang sudah diketahui ke informasi lain, sehingga dapat disimpulkan, sebuah rule adalah sebuah bentuk knowledge yang procedural. Dengan demikian yang dimaksud dengan aturan adalah sebuah program komputer untuk memproses masalah dari informasi spesifik yang terdapat dalam knowledge base, dengan menggunakan inference engine untuk menghasilkan informasi baru.

6 Inferensi Inferensi adalah proses transformasi dari suatu input dalam domain fuzzy ke suatu output dalam domain fuzzy. Proses transformasi pada bagian inferensi membutuhkan aturan aturan fuzzy yang terdapat didalam basis-basis aturan. Blok inferensi mengunakan teknik penalaran untuk menyeleksi basis-basis aturan dan rule dari blok knowledge base. Teknik penalaran yang digunakan adalah teknik penalaran MAX MIN yang berfungsi sebagai logika pengambil keputusan.(sofwan, 2005) Fuzzy Inferensi Sistem Logika fuzzy diimplementasikan dalam tiga tahap, yaitu 1. Tahap Fuzzyfikasi (Fuzzyfication), yaitu pemetaan dari nilai masukan tegas ke dalam himpunan fuzzy. 2. Tahap Inferensi, yaitu pembangkitan aturan fuzzy. 3. Tahap Defuzzyfikasi (Defuzzyfication), yaitu transformasi keluaran dari nilai fuzzy kenilai tegas (crisp). Input (Crips) Fuzzyfikasi Fuzzy Rule Base Output (Crips) Defuzzyfikasi Fuzzy Infernsi Gambar 2.2 Tahapan Proses Logika Fuzzy (Mahmood & Taha 2013) Metode Fuzzy Inference System (FIS) Sugeno Dalam pemodelan fuzzy Sugeno, dinamika sistem dibuat oleh aturan implikasi fuzzy dengan model sistem linear yang menjadi ciri dari suatu permasalahan yang belum jelas (kabur).(siji & Rajes 2013). Sistem inferensi fuzzy menerima input berupa nilai tegas (crisp). Input ini kemudian dikirim ke basis pengetahuan yang berisi aturan fuzzy dalam bentuk IF- THEN. Nilai keanggotaan anteseden atau (α) akan dicari pada setiap aturan. Apabila

7 11 aturan lebih dari satu, maka akan dilakukan agregasi semua aturan. Selanjutnya pada hasil agregasi akan dilakukan defuzzifikasi untuk mendapatkan nilai crisp kembali sebagai outputnya Metode Fuzzy Inference System (FIS) Tsukamoto Bandyopadhyay et al. (2013) dalam jurnalnya mengatakan pada metode Tsukamoto, setiap konsekuen pada aturan yang berbentuk IF-THEN harus direpresentasikan dengan suatu himpunan fuzzy dengan fungsi keanggotaan yang monoton. Sebagai hasilnya, output hasil inferensi dari tiap-tiap aturan diberikan dengan tegas (crisp) berdasarkan predikat ( ). 2.7 Defuzzifikasi Dalam jurnalnya Mashhadan & Lobaty (2013) menulis defuzifikasi adalah cara mengubah informasi kabur (fuzzy) menjadi informasi yang bernilai tegas, defuzifikasi merupakan transformasi yang menyatakan kembali keluaran dari domain fuzzy ke dalam domain crisp. Proses defuzzifikasi ini dilakukan dengan mencari nilai rataratanya. Proses defuzifikasi dapat dilakukan dengan persamaan berikut......(2)

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini penulis akan menjelaskan mengenai landasan teori yang digunakan pada penelitian ini. Penjabaran ini bertujuan untuk memberikan pemahaman lebih mendalam kepada penulis

Lebih terperinci

ANALISIS RULE INFERENSI SUGENO DALAM SISTEM PENDUKUNG PENGAMBILAN KEPUTUSAN

ANALISIS RULE INFERENSI SUGENO DALAM SISTEM PENDUKUNG PENGAMBILAN KEPUTUSAN ANALISIS RULE INFERENSI SUGENO DALAM SISTEM PENDUKUNG PENGAMBILAN KEPUTUSAN Khairul Saleh Teknik Informatika, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera Utara Jalan Universitas

Lebih terperinci

BAB II LANDASAN TEORI. Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya

BAB II LANDASAN TEORI. Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya BAB II LANDASAN TEORI A. Logika Fuzzy Dalam kondisi yang nyata, beberapa aspek dalam dunia nyata selalu atau biasanya berada di luar model matematis dan bersifat inexact. Konsep ketidakpastian inilah yang

Lebih terperinci

FUZZY LOGIC CONTROL 1. LOGIKA FUZZY

FUZZY LOGIC CONTROL 1. LOGIKA FUZZY 1. LOGIKA FUZZY Logika fuzzy adalah suatu cara tepat untuk memetakan suatu ruang input ke dalam suatu ruang output. Teknik ini menggunakan teori matematis himpunan fuzzy. Logika fuzzy berhubungan dengan

Lebih terperinci

APLIKASI PENGAMBILAN KEPUTUSAN DENGAN METODE TSUKAMOTO PADA PENENTUAN TINGKAT KEPUASAN PELANGGAN (STUDI KASUS DI TOKO KENCANA KEDIRI)

APLIKASI PENGAMBILAN KEPUTUSAN DENGAN METODE TSUKAMOTO PADA PENENTUAN TINGKAT KEPUASAN PELANGGAN (STUDI KASUS DI TOKO KENCANA KEDIRI) APLIKASI PENGAMBILAN KEPUTUSAN DENGAN METODE TSUKAMOTO PADA PENENTUAN TINGKAT KEPUASAN PELANGGAN (STUDI KASUS DI TOKO KENCANA KEDIRI) 1Venny Riana Agustin, 2 Wahyu H. Irawan 1 Jurusan Matematika, Universitas

Lebih terperinci

BAB II LANDASAN TEORI. papernya yang monumental Fuzzy Set (Nasution, 2012). Dengan

BAB II LANDASAN TEORI. papernya yang monumental Fuzzy Set (Nasution, 2012). Dengan BAB II LANDASAN TEORI 2.. Logika Fuzzy Fuzzy set pertama kali diperkenalkan oleh Prof. Lotfi Zadeh, 965 orang Iran yang menjadi guru besar di University of California at Berkeley dalam papernya yang monumental

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Permintaan, Persediaan dan Produksi 2.1.1 Permintaan Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Logika Fuzzy Logika fuzzy merupakan suatu metode pengambilan keputusan berbasis aturan yang digunakan untuk memecahkan keabu-abuan masalah pada sistem yang sulit dimodelkan

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY

SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA BIDIK MISI DI POLITEKNIK NEGERI JEMBER MENGGUNAKAN LOGIKA FUZZY oleh: 1 I Putu Dody Lesmana, 2 Arfian Siswo Bintoro 1,2 Jurusan Teknologi Informasi, Politeknik

Lebih terperinci

Erwien Tjipta Wijaya, ST.,M.Kom

Erwien Tjipta Wijaya, ST.,M.Kom Erwien Tjipta Wijaya, ST.,M.Kom PENDAHULUAN Logika Fuzzy pertama kali dikenalkan oleh Prof. Lotfi A. Zadeh tahun 1965 Dasar Logika Fuzzy adalah teori himpunan fuzzy. Teori himpunan fuzzy adalah peranan

Lebih terperinci

SISTEM INFERENSI FUZZY (METODE TSUKAMOTO) UNTUK PENENTUAN KEBUTUHAN KALORI HARIAN OLEH

SISTEM INFERENSI FUZZY (METODE TSUKAMOTO) UNTUK PENENTUAN KEBUTUHAN KALORI HARIAN OLEH KECERDASAN BUATAN SISTEM INFERENSI FUZZY (METODE TSUKAMOTO) UNTUK PENENTUAN KEBUTUHAN KALORI HARIAN OLEH AMARILIS ARI SADELA (E1E1 10 086) SITI MUTHMAINNAH (E1E1 10 082) SAMSUL (E1E1 10 091) NUR IMRAN

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) REPRESENTASI EMOSI MENGGUNAKAN LOGIKA FUZZY PADA PERMAINAN BONNY S TOOTH BOOTH

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) REPRESENTASI EMOSI MENGGUNAKAN LOGIKA FUZZY PADA PERMAINAN BONNY S TOOTH BOOTH 68 REPRESENTASI EMOSI MENGGUNAKAN LOGIKA FUZZY PADA PERMAINAN BONNY S TOOTH BOOTH Septiani Nur Hasanah 1, Nelly Indriani Widiastuti 2 Program Studi Teknik Informatika. Universitas Komputer Indonesia. Jl.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Himpunan adalah kata benda yang berasal dari kata himpun. Kata kerjanya adalah menghimpun. Menghimpun adalah kegiatan yang berhubungan dengan berbagai objek apa saja.

Lebih terperinci

Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi

Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi Penerapan FuzzyTsukamotodalam Menentukan Jumlah Produksi Berdasarkan Data Persediaan dan Jumlah Permintaan Ria Rahmadita Surbakti 1), Marlina Setia Sinaga 2) Jurusan Matematika FMIPA UNIMED riarahmadita@gmail.com

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 4 BAB 2 TINJAUAN PUSTAKA 2.1. Pengertian Fuzzy Logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input kedalam suatu ruang output. Titik awal dari konsep modern

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Logika Fuzzy Fuzzy secara bahasa diartikan sebagai kabur atau samar yang artinya suatu nilai dapat bernilai benar atau salah secara bersamaan. Dalam fuzzy dikenal derajat keanggotan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Sekarang ini hampir semua perusahaan yang bergerak di bidang industri dihadapkan pada suatu masalah yaitu adanya tingkat persaingan yang semakin kompetitif. Hal ini

Lebih terperinci

Kata kunci: Sistem pendukung keputusan metode Sugeno, tingkat kepribadian siswa

Kata kunci: Sistem pendukung keputusan metode Sugeno, tingkat kepribadian siswa SISTEM PENDUKUNG KEPUTUSAN METODE SUGENO DALAM MENENTUKAN TINGKAT KEPRIBADIAN SISWA BERDASARKAN PENDIDIKAN (STUDI KASUS DI MI MIFTAHUL ULUM GONDANGLEGI MALANG) Wildan Hakim, 2 Turmudi, 3 Wahyu H. Irawan

Lebih terperinci

PENDAPATAN MASYARAKAT DENGAN ADANYA KAMPUS MENGGUNAKAN FUZZY TSUKAMOTO

PENDAPATAN MASYARAKAT DENGAN ADANYA KAMPUS MENGGUNAKAN FUZZY TSUKAMOTO PENDAPATAN MASYARAKAT DENGAN ADANYA KAMPUS MENGGUNAKAN FUZZY TSUKAMOTO Asrianda 1 asrianda@unimal.ac.id Abstrak Bertambahnya permintaan mahasiswa atas kebutuhan makan seharihari, berkembangnya usaha warung

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Himpunan Himpunan adalah setiap daftar, kumpulan atau kelas objek-objek yang didefenisikan secara jelas, objek-objek dalam himpunan-himpunan yang dapat berupa apa saja: bilangan, orang,

Lebih terperinci

manusia diantaranya penyakit mata konjungtivitis, keratitis, dan glaukoma.

manusia diantaranya penyakit mata konjungtivitis, keratitis, dan glaukoma. 6 BAB II TINJAUAN PUSTAKA 2.1 Gambaran Tentang Mata Mata merupakan organ tubuh manusia yang paling sensitif apabila terkena benda asing misal asap dan debu. Debu akan membuat mata kita terasa perih atau

Lebih terperinci

BAB II: TINJAUAN PUSTAKA

BAB II: TINJAUAN PUSTAKA BAB II: TINJAUAN PUSTAKA Bab ini akan memberikan penjelasan awal mengenai konsep logika fuzzy beserta pengenalan sistem inferensi fuzzy secara umum. 2.1 LOGIKA FUZZY Konsep mengenai logika fuzzy diawali

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Bab ini berisi tentang pemahaman dari logika fuzzy dan data mining. Pada bab ini juga akan dijelaskan bagian-bagian yang perlu diketahui dalam logika fuzzy dan data mining, sehingga

Lebih terperinci

SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ

SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ P.A Teknik Informatika Universitas Ahmad Dahlan Yogyakarta Kampus 3 UAD, Jl. Prof. Soepomo rochmahdyah@yahoo.com Abstrak Perkembangan teknologi

Lebih terperinci

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Zulfikar Sembiring Jurusan Teknik Informatika, Fakultas Teknik, Universitas Medan Area zoelsembiring@gmail.com Abstrak Logika Fuzzy telah banyak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA A. Penjurusan di SMA Sepanjang perkembangan Pendidikan formal di Indonesia teramati bahwa penjurusan di SMA telah dilaksanakan sejak awal kemerdekaan yaitu tahun 1945 sampai sekarang,

Lebih terperinci

LOGIKA FUZZY. Kelompok Rhio Bagus P Ishak Yusuf Martinus N Cendra Rossa Rahmat Adhi Chipty Zaimima

LOGIKA FUZZY. Kelompok Rhio Bagus P Ishak Yusuf Martinus N Cendra Rossa Rahmat Adhi Chipty Zaimima Sistem Berbasis Pengetahuan LOGIKA FUZZY Kelompok Rhio Bagus P 1308010 Ishak Yusuf 1308011 Martinus N 1308012 Cendra Rossa 1308013 Rahmat Adhi 1308014 Chipty Zaimima 1308069 Sekolah Tinggi Manajemen Industri

Lebih terperinci

REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA

REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA Seminar Nasional Sistem Informasi Indonesia, 6 November 2017 REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA Anisa Citra Mutia, Aria Fajar Sundoro,

Lebih terperinci

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy

Pengantar Kecerdasan Buatan (AK045218) Logika Fuzzy Logika Fuzzy Pendahuluan Alasan digunakannya Logika Fuzzy Aplikasi Himpunan Fuzzy Fungsi keanggotaan Operator Dasar Zadeh Penalaran Monoton Fungsi Impilkasi Sistem Inferensi Fuzzy Basis Data Fuzzy Referensi

Lebih terperinci

BAB 2 2. LANDASAN TEORI

BAB 2 2. LANDASAN TEORI BAB 2 2. LANDASAN TEORI Bab ini akan menjelaskan mengenai logika fuzzy yang digunakan, himpunan fuzzy, penalaran fuzzy dengan metode Sugeno, dan stereo vision. 2.1 Logika Fuzzy Logika fuzzy adalah suatu

Lebih terperinci

JOBSHEET SISTEM CERDAS REASONING 2. Fuzzifikasi

JOBSHEET SISTEM CERDAS REASONING 2. Fuzzifikasi JOBSHEET SISTEM CERDAS REASONING 2 Fuzzifikasi S1 PENDIDIKAN TEKNIK ELEKTRO JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI MALANG 2016 PRAKTIKUM SISTEM CERDAS - REASONING JOBSHEET 2 - FUZZIFIKASI

Lebih terperinci

PENENTUAN JUMLAH PRODUKSI DENGAN APLIKASI METODE FUZZY MAMDANI

PENENTUAN JUMLAH PRODUKSI DENGAN APLIKASI METODE FUZZY MAMDANI PENENTUAN JUMLAH PRODUKSI DENGAN APLIKASI METODE FUZZY MAMDANI Much. Djunaidi Jurusan Teknik Industri Universitas Muhammadiyah Surakarta Jl. Ahmad Yani Tromol Pos 1 Pabelan Surakarta email: joned72@yahoo.com

Lebih terperinci

DENIA FADILA RUSMAN

DENIA FADILA RUSMAN Sidang Tugas Akhir INVENTORY CONTROL SYSTEM UNTUK MENENTUKAN ORDER QUANTITY DAN REORDER POINT BAHAN BAKU POKOK TRANSFORMER MENGGUNAKAN METODE FUZZY (STUDI KASUS : PT BAMBANG DJAJA SURABAYA) DENIA FADILA

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Beras merupakan salah satu kebutuhan pokok manusia yang sangat penting dalam kelangsungan hidupnya. Untuk memenuhi kebutuhan beras, setiap manusia mempunyai cara-cara

Lebih terperinci

Menentukan Jumlah Produksi Berdasarkan Permintaan dan Persediaan Dengan Logika Fuzzy Menggunakan Metode Mamdani

Menentukan Jumlah Produksi Berdasarkan Permintaan dan Persediaan Dengan Logika Fuzzy Menggunakan Metode Mamdani Menentukan Jumlah Produksi Berdasarkan Permintaan dan Persediaan Dengan Logika Fuzzy Menggunakan Metode Mamdani Anitaria Simanullang 1), Marlina Setia Sinaga 2) Jurusan Matematika FMIPA UNIMED anitaria.simanullang@gmail.com

Lebih terperinci

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA Rima Liana Gema, Devia Kartika, Mutiana Pratiwi Universitas Putra Indonesia YPTK Padang email: rimalianagema@upiyptk.ac.id ABSTRAK

Lebih terperinci

FUZZY MULTI-CRITERIA DECISION MAKING

FUZZY MULTI-CRITERIA DECISION MAKING Media Informatika, Vol. 3 No. 1, Juni 2005, 25-38 ISSN: 0854-4743 FUZZY MULTI-CRITERIA DECISION MAKING Sri Kusumadewi, Idham Guswaludin Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas

Lebih terperinci

NURAIDA, IRYANTO, DJAKARIA SEBAYANG

NURAIDA, IRYANTO, DJAKARIA SEBAYANG Saintia Matematika Vol. 1, No. 6 (2013), pp. 543 555. ANALISIS TINGKAT KEPUASAN KONSUMEN BERDASARKAN PELAYANAN, HARGA DAN KUALITAS MAKANAN MENGGUNAKAN FUZZY MAMDANI (Studi Kasus pada Restoran Cepat Saji

Lebih terperinci

Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha. Menggunakan Fuzzy Logic

Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha. Menggunakan Fuzzy Logic Aplikasi Prediksi Harga Bekas Sepeda Motor Yamaha Menggunakan Fuzzy Logic 1. Pendahuluan Jual beli motor merupakan suatu kegiatan transaksi yang mungkin sering kita temukan di kehidupan sehari-hari. Untuk

Lebih terperinci

Pendapatan Masyarakat Disekitar Kampus dengan Adanya Mahasiswa Menggunakan Fuzzy

Pendapatan Masyarakat Disekitar Kampus dengan Adanya Mahasiswa Menggunakan Fuzzy Pendapatan Masyarakat Disekitar Kampus dengan Adanya Mahasiswa Menggunakan Fuzzy Asrianda 1 Teknik Informatika Kampus Bukit Indah Lhokseumawe email : asrianda@unimal.ac.id ABSTRAK Bertambahnya permintaan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan perekonomian yang terjadi saat ini menjadikan persaingan bisnis semakin kompetitif, konsumen semakin kritis dalam memilih produk berkualitas tinggi sehingga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1. Logika Fuzzy Logika fuzzy merupakan suatu metode pengambilan keputusan berbasis aturan yang digunakan untuk memecahkan keabu-abuan masalah pada sistem yang sulit dimodelkan

Lebih terperinci

BAB II LANDASAN TEORI. 2.1 Penelusuran Minat dan Kemampuan (PMDK) diselenggarakan oleh suatu perguruan tinggi secara mandiri.

BAB II LANDASAN TEORI. 2.1 Penelusuran Minat dan Kemampuan (PMDK) diselenggarakan oleh suatu perguruan tinggi secara mandiri. BAB II LANDASAN TEORI 2.1 Penelusuran Minat dan Kemampuan (PMDK) PMDK adalah salah satu program penerimaan mahasiswa baru yang diselenggarakan oleh suatu perguruan tinggi secara mandiri. Sesuai dengan

Lebih terperinci

Penentuan Jumlah Produksi Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno

Penentuan Jumlah Produksi Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno Penentuan Kue Bolu pada Nella Cake Padang dengan Sistem Inferensi Fuzzy Metode Sugeno Shenna Miranda #1, Minora Longgom Nasution *2, Muhammad Subhan #3 #1 Student of Mathematics department State University

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Permintaan 2.1.1 Pengertian Permintaan Permintaan adalah banyaknya jumlah barang yang diminta pada suatu pasar tertentu dengan tingkat harga tertentu pada tingkat pendapatan tertentu

Lebih terperinci

Praktikum sistem Pakar Fuzzy Expert System

Praktikum sistem Pakar Fuzzy Expert System Praktikum sistem Pakar Fuzzy Expert System Ketentuan Praktikum 1. Lembar Kerja Praktikum ini dibuat sebagai panduan bagi mahasiswa untuk praktikum pertemuan ke - 8 2. Mahasiswa akan mendapatkan penjelasan

Lebih terperinci

LOGIKA FUZZY FUNGSI KEANGGOTAAN

LOGIKA FUZZY FUNGSI KEANGGOTAAN LOGIKA FUZZY FUNGSI KEANGGOTAAN FUNGSI KEANGGOTAAN (Membership function) adalah suatu kurva yang menunjukkan pemetaan titik-titik input data ke dalam nilai/derajat keanggotaannya yang memiliki interval

Lebih terperinci

PENENTUAN JUMLAH PRODUKSI TELEVISI MERK X MENGGUNAKAN METODE FUZZY MAMDANI

PENENTUAN JUMLAH PRODUKSI TELEVISI MERK X MENGGUNAKAN METODE FUZZY MAMDANI PENENTUAN JUMLAH PRODUKSI TELEVISI MERK X MENGGUNAKAN METODE FUZZY MAMDANI Ahmad Mufid Program Studi Sistem Komputer Fakultas Teknik Universitas Sultan Fatah (UNISFAT) Jl. Sultan Fatah No. 83 Demak Telpon

Lebih terperinci

4-5-FUZZY INFERENCE SYSTEMS

4-5-FUZZY INFERENCE SYSTEMS 4-5-FUZZY INFERENCE SYSTEMS Shofwatul Uyun Mekanisme FIS Fuzzy Inference Systems (FIS) INPUT (CRISP) FUZZYFIKASI RULES AGREGASI DEFUZZY OUTPUT (CRISP) 2 Metode Inferensi Fuzzy Metode Tsukamoto Metode Mamdani

Lebih terperinci

SISTEM PENENTUAN KANDIDAT KETUA KARANG TARUNA DENGAN MENGGUNAKAN FUZZY LOGIC

SISTEM PENENTUAN KANDIDAT KETUA KARANG TARUNA DENGAN MENGGUNAKAN FUZZY LOGIC SISTEM PENENTUAN KANDIDAT KETUA KARANG TARUNA DENGAN MENGGUNAKAN FUZZY LOGIC ( STUDY KASUS : KARANG TARUNA DESA PUHJARAK ) SKRIPSI Diajukan Untuk Memenuhi Sebagai Syarat Guna Memperoleh Gelar Sarjana Komputer

Lebih terperinci

SISTEM INFERENSI FUZZY MAMDANI BERBASIS WEB

SISTEM INFERENSI FUZZY MAMDANI BERBASIS WEB JURNAL MATRIX VOL. 3, NO. 1, MARET 2013 39 SISTEM INFERENSI FUZZY MAMDANI BERBASIS WEB I Ketut Suwintana Jurusan Akuntansi Politeknik Negeri Bali Kampus Bukit Jimbaran Bali Telp. +62 361 701981 Abstrak:.Logika

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 4 BAB 2 TINJAUAN PUSTAKA 2.1. Pengertian Fuzzy Logika fuzzy adalah suatu cara yang tepat untuk memetakan suatu ruang input kedalam suatu ruang output. Titik awal dari konsep modern mengenai ketidakpastian

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas

BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas BAB II LANDASAN TEORI Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas dalam pembuatan tugas akhir ini. Secara garis besar teori penjelasan akan dimulai dari definisi logika fuzzy,

Lebih terperinci

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana

KECERDASAN BUATAN (Artificial Intelligence) Materi 8. Entin Martiana Logika Fuzzy KECERDASAN BUATAN (Artificial Intelligence) Materi 8 Entin Martiana 1 Kasus fuzzy dalam kehidupan sehari-hari Tinggi badan saya: Andi menilai bahwa tinggi badan saya termasuk tinggi Nina menilai

Lebih terperinci

BAB IV KONSEP FUZZY LOGIC DAN PENERAPAN PADA SISTEM KONTROL. asing. Dalam pengalaman keseharian kita, permasalahan yang berkaitan dengan fuzzy

BAB IV KONSEP FUZZY LOGIC DAN PENERAPAN PADA SISTEM KONTROL. asing. Dalam pengalaman keseharian kita, permasalahan yang berkaitan dengan fuzzy BAB IV KONSEP FUZZY LOGIC DAN PENERAPAN PADA SISTEM KONTROL 4.1 Pengenalan konsep fuzzy logic Konsep mengenai fuzzy logic bukanlah merupakan sesuatu yang baru dan asing. Dalam pengalaman keseharian kita,

Lebih terperinci

PENGGUNAAN SISTEM INFERENSI FUZZY UNTUK PENENTUAN JURUSAN DI SMA NEGERI 1 BIREUEN

PENGGUNAAN SISTEM INFERENSI FUZZY UNTUK PENENTUAN JURUSAN DI SMA NEGERI 1 BIREUEN Saintia Matematika Vol. 1, No. 3 (2013), pp. 233 247. PENGGUNAAN SISTEM INFERENSI FUZZY UNTUK PENENTUAN JURUSAN DI SMA NEGERI 1 BIREUEN Zati Azmiana, Faigiziduhu Bu ulolo, dan Partano Siagian Abstrak.

Lebih terperinci

: Sistem Pendukung Keputusan, Siswa berprestasi, Tsukamoto

: Sistem Pendukung Keputusan, Siswa berprestasi, Tsukamoto SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SISWA BERPRESTASI BERBASIS WEB DENGAN METODE TSUKAMOTO PADA SMA INSTITUT INDONESIA Eko Purwanto Program Studi Teknik Informatika, Fakultas Ilmu Komputer Universitas

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya

Institut Teknologi Sepuluh Nopember Surabaya Aplikasi Sistem Inferensi Fuzzy Metode Sugeno dalam Memperkirakan Produksi Air Mineral dalam Kemasan Oleh Suwandi NRP 1209201724 Dosen Pembimbing 1. Prof. Dr M. Isa Irawan, MT 2. Dr Imam Mukhlash, MT Institut

Lebih terperinci

Analisis Pengaruh Pemilihan Fuzzy Membership Function Terhadap Output Sebuah Sistem Fuzzy Logic

Analisis Pengaruh Pemilihan Fuzzy Membership Function Terhadap Output Sebuah Sistem Fuzzy Logic Analisis Pengaruh Pemilihan Fuzzy Membership Function Terhadap Output Sebuah Sistem Fuzzy Logic Luh Kesuma Wardhani, Elin Haerani Jurusan Teknik Informatika Fakultas Sains dan Teknologi UIN SUSKA Riau

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Himpunan adalah suatu kumpulan atau koleksi objek-objek yang mempunyai kesamaan sifat tertentu. Objek ini disebut elemen-elemen atau anggota-anggota dari himpunan (Frans

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Logika Fuzzy Logika Fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh pada tahun1965. Teori ini banyak diterapkan di berbagai bidang, antara lain representasipikiran manusia

Lebih terperinci

( ) ( ;,, ) Π(,, ) ( ;, ) ( ;, ) ( ) BAB I PENDAHULUAN A. Latar Belakang Masalah Provinsi Daerah Istimewa Yogyakarta merupakan salah satu kota tujuan wisata yang cukup menarik minat para wisatawan baik

Lebih terperinci

MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO

MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO MENENTUKAN HARGA MOBIL BEKAS TOYOTA AVANZA MENGGUNAKAN METODE TSUKAMOTO Ganjar Ramadhan Jurusan Teknik Informatika, Universitas Islam Negeri Syarif Hidayatullah Jakarta Email : ganjar.ramadhan05@yahoo.com

Lebih terperinci

Menentukan Harga Beras Sesuai Mutu Kualitas Beras dengan Logika Fuzzy Mamdani

Menentukan Harga Beras Sesuai Mutu Kualitas Beras dengan Logika Fuzzy Mamdani SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 T - 13 Menentukan Harga Beras Sesuai Mutu Kualitas Beras dengan Logika Fuzzy Mamdani Ghulam Abdul Malik, Agus Maman Abadi Prodi Matematika, Universitas

Lebih terperinci

Metode Mamdani Untuk Klasifikasi Dalam Prediksi Indeks Pembangunan Manusia Di Kota Banda Aceh

Metode Mamdani Untuk Klasifikasi Dalam Prediksi Indeks Pembangunan Manusia Di Kota Banda Aceh SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 Metode Mamdani Untuk Klasifikasi Dalam Prediksi Indeks Pembangunan Manusia Di Kota Banda Aceh T - 42 Yudha Al Afis, Agus Maman Abadi Prodi Matematika,

Lebih terperinci

IMPLEMENTASI FUZZY LOGIC DALAM MENENTUKAN PENDUDUK MISKIN (STUDI KASUS PADA BADAN PUSAT STATISTIK KOTA PAGARALAM)

IMPLEMENTASI FUZZY LOGIC DALAM MENENTUKAN PENDUDUK MISKIN (STUDI KASUS PADA BADAN PUSAT STATISTIK KOTA PAGARALAM) IMPLEMENTASI FUZZY LOGIC DALAM MENENTUKAN PENDUDUK MISKIN (STUDI KASUS PADA BADAN PUSAT STATISTIK KOTA PAGARALAM) Junius_Effendi* Email : Cyberpga@ymail.com ABSTRAK Penelitian ini dilakukan untuk memperlajari

Lebih terperinci

Analisis Rule Inferensi Mamdani dalam Menentukan Beasiswa Peningkatan Prestasi Akademik ( PPA)

Analisis Rule Inferensi Mamdani dalam Menentukan Beasiswa Peningkatan Prestasi Akademik ( PPA) Analisis Rule Inferensi Mamdani dalam Menentukan Beasiswa Peningkatan Prestasi Akademik ( PPA) Khairul Saleh, M. Kom, Universitas Asahan; address, telp/fax of institution/affiliation Jurusan Teknik Informatika,

Lebih terperinci

PENERAPAN METODE FUZZY TSUKAMOTO UNTUK MEMPREDIKSI HASIL PRODUKSI KELAPA SAWIT (STUDI KASUS : PT. AMAL TANI PERKEBUNAN TANJUNG PUTRI BAHOROK)

PENERAPAN METODE FUZZY TSUKAMOTO UNTUK MEMPREDIKSI HASIL PRODUKSI KELAPA SAWIT (STUDI KASUS : PT. AMAL TANI PERKEBUNAN TANJUNG PUTRI BAHOROK) PENERAPAN METODE FUZZY TSUKAMOTO UNTUK MEMPREDIKSI HASIL PRODUKSI KELAPA SAWIT (STUDI KASUS : PT. AMAL TANI PERKEBUNAN TANJUNG PUTRI BAHOROK) Andrian Juliansyah ( 1011287) Mahasiswa Program Studi Teknik

Lebih terperinci

LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN

LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN Agung Saputra 1), Wisnu Broto 2), Ainil Syafitri 3) Prodi Elektro Fakultas Teknik Univ. Pancasila, Srengseng Sawah Jagakarsa, Jakarta, 12640 Email: 1) agungsap2002@yahoo.com

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN 7 terboboti dari daerah output fuzzy. Metode ini paling dikenal dan sangat luas dipergunakan. First of Maxima (FoM) dan Last of Maxima (LoM) Pada First of Maxima (FoM), defuzzifikasi B( y) didefinisikan

Lebih terperinci

BAB II. KAJIAN PUSTAKA. A. Kinerja Pegawai di Universitas Muhammadiyah Purwokerto

BAB II. KAJIAN PUSTAKA. A. Kinerja Pegawai di Universitas Muhammadiyah Purwokerto BAB II. KAJIAN PUSTAKA A. Kinerja Pegawai di Universitas Muhammadiyah Purwokerto Masalah kinerja pegawai di Universitas Muhammadiyah Purwokerto sangat mendapat perhatian. Hal ini dibuktikan dengan diadakannya

Lebih terperinci

EVALUASI KINERJA GURU DENGAN MENGGUNAKAN FUZZY INFERENCE SYSTEM (FIS) MAMDANI

EVALUASI KINERJA GURU DENGAN MENGGUNAKAN FUZZY INFERENCE SYSTEM (FIS) MAMDANI EVALUASI KINERJA GURU DENGAN MENGGUNAKAN FUZZY INFERENCE SYSTEM (FIS) MAMDANI Karmila Suryani 1), Khairudin 2) 1) FKIP Universitas Bung Hatta Padang 2) FKIP Universitas Bung Hatta Padang e-mail: karmilasuryani.ptik@gmail.com,khaihatta@yahoo.com

Lebih terperinci

Optimalisasi Jumlah Produksi Jamu Jaya Asli Dengan Metode Fuzzy Tsukamoto

Optimalisasi Jumlah Produksi Jamu Jaya Asli Dengan Metode Fuzzy Tsukamoto Optimalisasi Jumlah Produksi Jamu Jaya Asli Dengan Metode Fuzzy Tsukamoto SKRIPSI Diajukan Untuk Memenuhi Salah Satu Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.) Pada Program Studi Sistem Informasi

Lebih terperinci

BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan

BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan BAB 1 PENDAHULUAN 1.1. Latar Belakang Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan sistem yang kompleks. Logika fuzzy memberikan rangka kerja yang kuat dalam memecahkan masalah

Lebih terperinci

Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI

Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI III.1 Teori Logika fuzzi III.1.1 Logika fuzzi Secara Umum Logika fuzzi adalah teori yang memetakan ruangan input ke ruang output dengan menggunakan aturan-aturan

Lebih terperinci

Fuzzy Inference System untuk Mengurangi Kemacetan di Perempatan Jalan

Fuzzy Inference System untuk Mengurangi Kemacetan di Perempatan Jalan Fuzzy Inference System untuk Mengurangi Kemacetan di Perempatan Jalan Edwin Romelta / 13508052 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

IMPLEMENTASI LOGIKA FUZZY MAMDANI UNTUK MENENTUKAN HARGA GABAH

IMPLEMENTASI LOGIKA FUZZY MAMDANI UNTUK MENENTUKAN HARGA GABAH IMPLEMENTASI LOGIKA FUZZY MAMDANI UNTUK MENENTUKAN HARGA GABAH Reino Adi Septiawan Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas Dian Nuswantoro Semarang Email : a11.2009.04948@gmail.com

Lebih terperinci

MATERI KULIAH (PERTEMUAN 12,13) Lecturer : M. Miftakul Amin, M. Eng. Logika Fuzzy. Politeknik Negeri Sriwijaya Palembang

MATERI KULIAH (PERTEMUAN 12,13) Lecturer : M. Miftakul Amin, M. Eng. Logika Fuzzy. Politeknik Negeri Sriwijaya Palembang HIMPUNAN FUZZY MATERI KULIAH (PERTEMUAN 2,3) Lecturer : M. Miftakul Amin, M. Eng. Logika Fuzzy Jurusan Teknik Komputer Politeknik Negeri Sriwijaya Palembang Pokok Bahasan Sistem fuzzy Logika fuzzy Aplikasi

Lebih terperinci

PREDIKSI PERMINTAAN PRODUK MIE INSTAN DENGAN METODE FUZZY TAKAGI-SUGENO

PREDIKSI PERMINTAAN PRODUK MIE INSTAN DENGAN METODE FUZZY TAKAGI-SUGENO PREDIKSI PERMINTAAN PRODUK MIE INSTAN DENGAN METODE FUZZY TAKAGI-SUGENO Ahmad Bahroini 1, Andi Farmadi 2, Radityo Adi Nugroho 3 1,2,3Prodi Ilmu Komputer FMIPA UNLAM Jl. A. Yani Km 36 Banjarbaru, Kalimantan

Lebih terperinci

BAB II TEORI PENUNJANG

BAB II TEORI PENUNJANG BAB II TEORI PENUNJANG 2.1 LOGIKA FUZZY Titik awal dari konsep modern mengenai ketidakpastian adalah paper yang dibuat oleh Lofti A Zadeh, dimana Zadeh memperkenalkan teori yang memiliki obyek-obyek dari

Lebih terperinci

PENENTUAN TINGKAT PELUNASAN PEMBAYARAN KREDIT PEMILIKAN MOBIL DI PT AUTO 2000 MENGGUNAKAN FUZZY MAMDANI

PENENTUAN TINGKAT PELUNASAN PEMBAYARAN KREDIT PEMILIKAN MOBIL DI PT AUTO 2000 MENGGUNAKAN FUZZY MAMDANI PENENTUAN TINGKAT PELUNASAN PEMBAYARAN KREDIT PEMILIKAN MOBIL DI PT AUTO 2000 MENGGUNAKAN FUZZY MAMDANI Hilda Lutfiah, Amar Sumarsa 2, dan Sri Setyaningsih 2. Program Studi Matematika Fakultas Matematika

Lebih terperinci

Jurnal Informatika SIMANTIK Vol. 2 No. 2 September 2017 ISSN:

Jurnal Informatika SIMANTIK Vol. 2 No. 2 September 2017 ISSN: PENERAPAN LOGIKA FUZZY UNTUK MENENTUKAN MAHASISWA BERPRESTASI DI STMIK CIKARANG MENGGUNAKAN JAVA NETBEANS DAN MYSQL Ema Dili Giyanti 1), Ali Mulyanto 2) 1) Program Studi Teknik Informatika, STMIK Cikarang

Lebih terperinci

LAPORAN AKHIR PENELITIAN DOSEN PEMULA USULAN PENELITIAN DOSEN PEMULA

LAPORAN AKHIR PENELITIAN DOSEN PEMULA USULAN PENELITIAN DOSEN PEMULA LAPORAN AKHIR PENELITIAN DOSEN PEMULA USULAN PENELITIAN DOSEN PEMULA PENERAPAN LOGIKA FUZZY PADA PENILAIAN KINERJA PEGAWAI: PENERAPAN LOGIKA FUZZY PADA PENILAIAN KINERJA PEGAWAI: STUDI KASUS UNIVERSITAS

Lebih terperinci

Tahap Sistem Pakar Berbasis Fuzzy

Tahap Sistem Pakar Berbasis Fuzzy Company LOGO Penalaran Mamdani dan Tsukamoto Pada pendekatan Fuzzy Inference System Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2011 www.company.com

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Fuzzy set pertama kali diperkenalkan oleh Prof. Lotfi Zadeh pada tahun 1965 yang merupakan guru besar di University of California Berkeley pada papernya yang berjudul

Lebih terperinci

SIMULASI SISTEM UNTUK PENGONTROLAN LAMPU DAN AIR CONDITIONER DENGAN MENGGUNAKAN LOGIKA FUZZY

SIMULASI SISTEM UNTUK PENGONTROLAN LAMPU DAN AIR CONDITIONER DENGAN MENGGUNAKAN LOGIKA FUZZY SIMULASI SISTEM UNTUK PENGONTROLAN LAMPU DAN AIR CONDITIONER DENGAN MENGGUNAKAN LOGIKA FUZZY Nesi Syafitri. N Teknik Informatika, Fakultas Teknik Universitas Islam Riau, Jalan Kaharuddin Nasution No. 3,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Tingkat kesehatan bank dapat diketahui dengan melihat peringkat

BAB IV HASIL DAN PEMBAHASAN. Tingkat kesehatan bank dapat diketahui dengan melihat peringkat BAB IV HASIL DAN PEMBAHASAN A. Analisis Tingkat Kesehatan Bank Tingkat kesehatan bank dapat diketahui dengan melihat peringkat komposit bank tersebut. Menurut peraturan Bank Indonesia No. 13/1/PBI/2011

Lebih terperinci

adalahkelompok profesi terbesar dan berperan vital dalam sistem tersebut yang menyebabkan ABSTRAK

adalahkelompok profesi terbesar dan berperan vital dalam sistem tersebut yang menyebabkan ABSTRAK 1 Evaluasi Kinerja Pelayanan Perawat Menggunakan Fuzzy Inference System (FIS) Mamdani ( Studi Kasus : Puskesmas Bonang 1 Demak) ARIS MUTHOHAR Program Studi Teknik Informatika S1, Fakultas Ilmu Komputer,

Lebih terperinci

REVIEW JURNAL LOGIKA FUZZY

REVIEW JURNAL LOGIKA FUZZY REVIEW JURNAL LOGIKA FUZZY Disusun oleh : Gita Adinda Permata 1341177004309 PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UNIVERSITAS NEGERI SINGAPERBANGSA KARAWANG KATA PENGANTAR Assalamualaikum

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 4 BAB 2 TINJAUAN PUSTAKA 2. 1. Fuzzy Logic Fuzzy logic pertama kali dikembangkan oleh Lotfi A. Zadeh pada tahun 1965. Teori ini banyak diterapkan di berbagai bidang, antara lain representasi pikiran manusia

Lebih terperinci

Penerapan Logika Fuzzy

Penerapan Logika Fuzzy 1 Penerapan Logika Fuzzy M. Faisal Baehaki - 13506108 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia 1 m_faisal_b@yahoo.com

Lebih terperinci

Metode Fuzzy Inference System untuk Penilaian Kinerja Pegawai Perpustakaan dan Pustakawan

Metode Fuzzy Inference System untuk Penilaian Kinerja Pegawai Perpustakaan dan Pustakawan Scientific Journal of Informatics Vol., No. 1, Mei 2016 p-issn 2407-7658 http://journal.unnes.ac.id/nju/inde.php/sji e-issn 2460-0040 Metode Fuzzy Inference System untuk Penilaian Kinerja Pegawai Perpustakaan

Lebih terperinci

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi

Himpunan Fuzzy. Sistem Pakar Program Studi : S1 sistem Informasi Himpunan Fuzzy Sistem Pakar Program Studi : S1 sistem Informasi Outline Himpunan CRISP Himpunan Fuzzy Himpunan CRISP Pada himpunan tegas (crisp), nilai keanggotaan suatu item dalam suatu himpunan A, yang

Lebih terperinci

Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy.

Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy. LOGIKA FUZZY UTHIE Intro Pendahuluan Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh melalui tulisannya pada tahun 1965 tentang teori himpunan fuzzy. Lotfi Asker Zadeh adalah seorang ilmuwan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka Penelitian dengan judul Pemodelan Untuk Menentukan Kecukupan Angka Gizi Ibu Hamil. Penentuan status kecukupan angka gizi ibu hamil dilakukan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 8 BAB 2 LANDASAN TEORI 2.1 Pengertiaan Persediaan Persediaan adalah bahan atau barang yang disimpan yang akan digunakan untuk digunakan memenuhi tujuan tertentu, misalnya untuk proses produksi atau perakitan,

Lebih terperinci

Himpunan Tegas (Crisp)

Himpunan Tegas (Crisp) Logika Fuzzy Logika Fuzzy Suatu cara untuk merepresentasikan dan menangani masalah ketidakpastian (keraguan, ketidaktepatan, kekuranglengkapan informasi, dan kebenaran yang bersifat sebagian). Fuzzy System

Lebih terperinci

LOGIKA FUZZY. By: Intan Cahyanti K, ST

LOGIKA FUZZY. By: Intan Cahyanti K, ST LOGIKA FUZZY By: Intan Cahyanti K, ST Pengertian Adalah suatu cara untuk memetakan suatu ruang input kedalam suatu ruang output. Skema Logika Fuzzy Antara input dan output terdapat suatu kotak hitam yang

Lebih terperinci

LOGIKA SAMAR (FUZZY LOGIC)

LOGIKA SAMAR (FUZZY LOGIC) LOGIKA SAMAR (FUZZY LOGIC) 2. Himpunan Samar 2.. Himpunan Klasik dan Himpunan Samar Himpunan klasik merupakan himpunan dengan batasan yang tegas (crisp) (Jang, Sun, dan Mizutani, 24). Sebagai contoh :

Lebih terperinci

Rima Ayuningtyas NIM Jurusan Teknik Informatika, Universitas Maritim Raja Ali Haji. Jl. Politeknik Senggarang, Tanjungpinang

Rima Ayuningtyas NIM Jurusan Teknik Informatika, Universitas Maritim Raja Ali Haji. Jl. Politeknik Senggarang, Tanjungpinang Sistem Pendukung Keputusan Dalam Menentukan Jenis Budidaya Ikan Dengan Mengukur Kualitas Air Menggunakan Metode Fuzzy Tsukamoto (Studi Kasus : Balai Benih Ikan di Pengujan Kabupaten Bintan) Rima Ayuningtyas

Lebih terperinci