MODUL 8 APLIKASI NEURAL NETWORK DAN FUZZY LOGIC PADA PERKIRAAN CUACA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MODUL 8 APLIKASI NEURAL NETWORK DAN FUZZY LOGIC PADA PERKIRAAN CUACA"

Transkripsi

1 MODUL 8 APLIKASI NEURAL NETWORK DAN FUZZY LOGIC PADA PERKIRAAN CUACA Muhammad Ilham Program Studi Fisika, Institut Teknologi Bandung, Indonesia Asisten: Fauzia P. Lestari / Ulin Nuha / Andromeda / Tanggal Praktikum: ( ) Abstrak Logika fuzzy biasa digunakan untuk memodelkan suatu sistem yang memiliki ketidakjelasan dan ambiguitas yang tinggi, contohnya dalam hal ini adalah perkiraan cuaca. Hal utama yang perlu diperhatikan dalam logika fuzzy ini adalah diantaranya fuzzifikasi, rule base, penalaran, dan defuzzifiaksi Berdasarkan hasil yang didapat pemodelan perkiraan cuaca di Kabupaten Majalengka ini kurang baik dengan error yang didapat begitu besar sehingga tidak bisa digunakan. Kata kunci: Fuzzifikasi, Defuzzifikasi, Fuzzy Logic I. Pendahuluan 1.1 Tujuan Tujuan dari praktikum ini ialah mengaplikasikan metode Fuzzy Logic pada MATLAB dalam pemodelan perkiraan cuaca. 1.2 Teori Dasar Logika Fuzzy adalah suatu proses pengambilan keputusan berbasis aturan yang bertujuan untuk memecahkan masalah, dimana sistem tersebut sulit untuk dimodelkan atau terdapat ambiguitas dan ketidakjelasan yang berlimpah. Logika Fuzzy ditentukan oleh persamaan logika bukan dari persamaan diferensial kompleks dan berasal dari pemikiran yang mengidentifikasi serta mengambil keuntungan dari grayness antara dua ekstrem. Gambar 1. Struktur dasar fuzzy logic Fuzzifikasi adalah proses mengubah variabel nyata menjadi variabel fuzzy, ini ditujukan agar masukan kontroler fuzzy bisa dipetakan menuju jenis yang sesuai dengan himpunan fuzzy. Rule base ini terdiri dari kumpulan aturan yang berbasis logika fuzzy untuk menyatakan suatu kondisi. Penalaran (inferensi) fuzzy adalah sebuah proses formulasi pemetaan masukan terhadap keluaran dengan menggunakan logika fuzzy. Proses dari inferensi fuzzy melibatkan fungsi keanggotaan operator logika fuzzy, dan aturan IF-THEN. Metode penalaran yang paling sering digunakan adalah metode Takagi- Sugeno dan metode Mamdani. Dengan metode yang digunakan dalam praktikum ini adalah metode Takagi-Sugeno. Defuzzifikasi adalah proses yang digunakan untuk mengubah kembali variabel fuzzy menjadi variabel nyata, atau dangan kata lain aksi kontrol fuzzy yang masih berupa himpunan, dirubah menjadi nilai nyata yang berupa nilai tunggal. II. Metode percobaan 2.1 Metode Percobaan Dalam praktikum kali ini, akan dilakukan percobaan dalam memperkirakan cuaca dalam suatu daerah menngunakan fungsi fuzzy logic pada program MATLAB.

2 Langkah awalnya yakni dimasukkan data-data pada matlab yang akan digunakan dalam perkiraan cuaca berupa data suhu, kecepatan angin, kelembapan dan tekanan, serta hasil perkiraan cuacanya. Data tersebut dapat diperoleh dalam website perkiraan cuaca. Jalankan fungsi fuzzy logic pada Toolbox matlab. Dilakukan pengelompokan data menggunakan teknik Fuzzy Clustering Means (FCM). Algoritma yang digunakan adalah C (jumlah cluster yang dibentuk) = 3 (suhu tinggi, sedang, rendah); W (Pangkat/Pembobot)= 2; Maksimum Iterasi = 100; Kriteria Penghentian Gunakan FIS Editor untuk perancangannya. Lakukan hal yang sama untuk kecepatan angin kelembaban dan tekanan udara. Buat Fungsi keanggotan hingga bernilai dalam fungsi gaussian. Dapatkan derajat keanggotaan untuk masingmasing cluster. Masukkan data yang telah dibuat pada bagian input dan output berupa range data, standard deviasinya dan nilai center data tersebut dengan fungsi fcm tiap datanya. Masukkan logika perkiraan pada Rule Editor. Dilihat hasil data tiap perkiraan cuaca pada Rule Viewer dan gambar grafiknya pada Surface Viewer. 2.2 Hipotesis Digunakan fungsi fuzzy logic pada matlab dalam memperkiraan cuaca dalam suatu tempat dengan hasil perkiraannya mempunyai error yang kecil. III. Data dan Pengolahan No. Kecepatan angin Hasil Sedang salah Sedang salah Sedang benar Sedang benar Sedang benar Sedang salah Sedang salah Sedang benar Sedang benar Sedang salah Sedang Benar Sedang Salah Sedang Benar Sedang Benar Sedang Benar Sedang Benar Sedang Salah Sedang Benar Sedang Benar Sedang Salah Sedang Salah Sedang Salah Sedang Benar Sedang Benar Sedang Salah Sedang Salah Sedang Benar Sedang Benar Sedang Salah Sedang Salah Sedang Salah Sedang Benar Sedang Benar Sedang Benar Sedang Benar Sedang Benar Sedang Benar Sedang Salah Sedang Benar Sedang Benar Sedang Benar Sedang Salah Sedang Benar Sedang Benar Sedang Benar Sedang Salah Sedang Benar Sedang Benar Sedang Benar Sedang Salah Sedang Salah Sedang benar Tabel 1. Perbandingan hasil perkiraan Kecepatan angin dengan yang sebenarnya.

3 Jumlah Benar 32 Jumlah Salah 20 Error (%) No. Cuaca Hasil Cerah Benar Cerah Salah Cerah Salah Cerah Benar Cerah Benar Cerah Salah Cerah Salah Cerah Salah Cerah Salah Cerah Salah Cerah Salah Hujan Salah Cerah Salah Cerah Salah Cerah Salah Cerah Benar Hujan Salah Cerah Salah Cerah Salah Hujan Benar Hujan Salah Cerah Salah Cerah Salah Cerah Benar Cerah Benar Cerah Benar Cerah Salah Cerah Salah Cerah Salah Cerah Salah Cerah Salah Cerah Salah Cerah Salah Cerah Salah Cerah Salah Cerah Benar Cerah Benar Cerah Salah Cerah Salah Cerah Salah Cerah Benar Cerah Salah Cerah Salah Cerah Salah Cerah Salah Cerah Salah Cerah Salah Cerah Salah Cerah Benar Cerah Salah Cerah Salah Cerah Salah Tabel 2. Perbandingan hasil perkiraan cuaca dengan cuaca yang sebenarnya. Jumlah Benar 15 Jumlah Salah 37 Error (%) Gambar 2. Grafik 3D angin terhadap tekanan dan suhu Gambar 3. Grafik 3D cuaca terhadap kelembapan dan angin

4 Gambar 4. Grafik 3D cuaca terhadap kelembapan dan suhu Gambar 5. Grafik 3D cuaca terhadap angin dan suhu Gambar 8. Grafik cuaca terhadap angin Gambar 6. Grafik angin terhadap suhu Gambar 9. Grafik cuaca terhadap kelembapan Gambar 7. Grafik angin terhadap tekanan Gambar 10. Grafik cuaca terhadap suhu IV. Pembahasan Aspek yang berpengaruh dalam pemodelan perkiraan cuaca ini adalah diantaranya suhu, kelembapan, tekanan, dan kecepatan angin. Sedangkan untuk perkiraan kecepatan angin aspek yang berpengaruh adalah tekanan dan suhunya saja.

5 Hasil pemodelan perkiraan cuaca dan kecepatan angin di Kota Cirebon - Jawa Barat, Indonesia terlihat sangat berbeda dari yang sebenarnya dengan error berturut-turut sebesar % dan % perbedaan ini disebabkan oleh kurangnya variabel pendukung lain yang bisa mempengaruhi cuaca seperti arah dari angin, awan, dan lain-lain, bisa juga dikarenakan range waktu yang digunakan terlalu pendek dan datanya terlalu sedikit sehingga tidak bisa menggambarkan kondisi cuaca yang sebenarnya. Dari data yang dihasilkan bisa disimpulkan bahwa pemodelan perkiraan cuaca dengan logika fuzzy ini kurang cocok digunakan pada cuaca Indonesia. V. Simpulan Hasil pemodelan perkiraan cuaca dengan logika fuzzy di Kabupaten Majalengka kurang bisa digunakan karena memiliki error yang sangat besar. Aspek-aspek yang lain yang dapat memepengaruhi cuaca perlu ditambahkan untuk mendapatkan pemmodelan yang lebih baik. VI. Daftar Pustaka [1] diakses pada :06 [2]http://www.mathworks.com/products/fuzz y-logic/code-examples.html, diakses pada :15 [3] diakses pada :15

6 LAMPIRAN Data cuaca Kota Cirebon tanggal april suhu kelembapan tekanan ( o C) kecepatan angin (mph) (%) (mb) cuaca tinggi cerah tinggi hujan sedang hujan sedang cerah sedang cerah tinggi hujan tinggi hujan sedang hujan sedang hujan tinggi hujan sedang hujan lebat tinggi hujan lebat sedang hujan sedang hujan sedang hujan lebat sedang cerah sangat tinggi cerah sedang hujan sedang hujan tinggi hujan tinggi cerah tinggi hujan sedang hujan sedang cerah tinggi cerah tinggi cerah sedang hujan sedang cerah tinggi cerah tinggi hujan lebat tinggi hujan lebat sedang hujan lebat sedang ceraah sedang hujan lebat \

7 sedang hujan sedang cerah sedang cerah sangat tinggi hujan lebat sedang hujan lebat sedang hujan sedang cerah tinggi hujan lebat sedang hujan lebat sedang hujan sedang cerah tinggi hujan lebat sedang hujan lebat sedang hujan sedang cerah sangat tinggi hujan lebat tinggi hujan lebat sedang hujan lebat

relatif sempit pada jangka waktu yang singkat. Cuaca terbentuk dari gabungan unsure cuaca dan jangka waktu cuaca bisa hanya beberapa jam saja. Misalny

relatif sempit pada jangka waktu yang singkat. Cuaca terbentuk dari gabungan unsure cuaca dan jangka waktu cuaca bisa hanya beberapa jam saja. Misalny PREDIKSI CUACA BERBASIS LOGIKA FUZZY UNTUK REKOMENDASI PENERBANGAN DI BANDAR UDARA RAJA HAJI FISABILILLAH (Nur Endah Sari, Dr. Edi Sukirman, S.Si., MM.) Fakultas Teknologi Industri - Jurusan Teknik Informatika

Lebih terperinci

BAB V IMPLEMENTASI SISTEM

BAB V IMPLEMENTASI SISTEM 51 BAB V IMPLEMENTASI SISTEM Implementasi merupakan tahap peletakan sistem sehingga sistem siap dioperasikan. Tahap ini meliputi implementasi datamining untuk mencari aturan aturan sebagai dasar inferensi,

Lebih terperinci

PREDIKSI CUACA MARITIM UNTUK MENDETEKSI KEBERADAAN SUMBER DAYA LAUT IKAN DI PERAIRAN JAWA TIMUR

PREDIKSI CUACA MARITIM UNTUK MENDETEKSI KEBERADAAN SUMBER DAYA LAUT IKAN DI PERAIRAN JAWA TIMUR PREDIKSI CUACA MARITIM UNTUK MENDETEKSI KEBERADAAN SUMBER DAYA LAUT IKAN DI PERAIRAN JAWA TIMUR OLEH : Bagusranu Wahyudi Putra 2410100044 DOSEN PEMBIMBING : Dr. Ir. Aulia Siti Aisjah, MT. Ir. Syamsul Arifin,

Lebih terperinci

REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA

REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA Seminar Nasional Sistem Informasi Indonesia, 6 November 2017 REVIEW PENERAPAN FUZZY LOGIC SUGENO DAN MAMDANI PADA SISTEM PENDUKUNG KEPUTUSAN PRAKIRAAN CUACA DI INDONESIA Anisa Citra Mutia, Aria Fajar Sundoro,

Lebih terperinci

DENIA FADILA RUSMAN

DENIA FADILA RUSMAN Sidang Tugas Akhir INVENTORY CONTROL SYSTEM UNTUK MENENTUKAN ORDER QUANTITY DAN REORDER POINT BAHAN BAKU POKOK TRANSFORMER MENGGUNAKAN METODE FUZZY (STUDI KASUS : PT BAMBANG DJAJA SURABAYA) DENIA FADILA

Lebih terperinci

Tahap Sistem Pakar Berbasis Fuzzy

Tahap Sistem Pakar Berbasis Fuzzy Company LOGO Penalaran Mamdani dan Tsukamoto Pada pendekatan Fuzzy Inference System Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2011 www.company.com

Lebih terperinci

BAB II: TINJAUAN PUSTAKA

BAB II: TINJAUAN PUSTAKA BAB II: TINJAUAN PUSTAKA Bab ini akan memberikan penjelasan awal mengenai konsep logika fuzzy beserta pengenalan sistem inferensi fuzzy secara umum. 2.1 LOGIKA FUZZY Konsep mengenai logika fuzzy diawali

Lebih terperinci

Fuzzy Expert Sistem. Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2015

Fuzzy Expert Sistem. Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2015 Fuzzy Expert Sistem Departemen Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor 2015 Ketentuan Praktikum Lembar Kerja Praktikum ini dibuat sebagai panduan bagi mahasiswa

Lebih terperinci

PENERAPAN FUZZY INFERENCE SYSTEM PADA PREDIKSI CURAH HUJAN DI SURABAYA UTARA

PENERAPAN FUZZY INFERENCE SYSTEM PADA PREDIKSI CURAH HUJAN DI SURABAYA UTARA LOGO PENERAPAN FUZZY INFERENCE SYSTEM PADA PREDIKSI CURAH HUJAN DI SURABAYA UTARA Oleh: DYNES RIZKY NAVIANTI (1208100017) JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI

Lebih terperinci

PERANCANGAN PERANGKAT LUNAK PREDIKTOR CUACA BERBASIS LOGIKA FUZZY

PERANCANGAN PERANGKAT LUNAK PREDIKTOR CUACA BERBASIS LOGIKA FUZZY PERANCANGAN PERANGKAT LUNAK PREDIKTOR CUACA BERBASIS LOGIKA FUZZY Oleh Ilham Bangun Asmoro 2407 100 030 Dosen Pembimbing : Ir. Syamsul Arifin, MT Fitri Adi I., ST, MT Jurusan Teknik Fisika Fakultas Teknologi

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR i. DAFTAR ISI. iv. DAFTAR GAMBAR. viii. DAFTAR TABEL. x. DAFTAR LAMPIRAN.. xi. 1.1 Latar Belakang dan Rumusan Masalah..

DAFTAR ISI. KATA PENGANTAR i. DAFTAR ISI. iv. DAFTAR GAMBAR. viii. DAFTAR TABEL. x. DAFTAR LAMPIRAN.. xi. 1.1 Latar Belakang dan Rumusan Masalah.. DAFTAR ISI Halaman ABSTRAK ABSTRACT KATA PENGANTAR i DAFTAR ISI. iv DAFTAR GAMBAR. viii DAFTAR TABEL. x DAFTAR LAMPIRAN.. xi BAB I PENDAHULUAN 1.1 Latar Belakang dan Rumusan Masalah.. 1 1.1.1 Latar Belakang

Lebih terperinci

BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan

BAB 1 PENDAHULUAN. Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan BAB 1 PENDAHULUAN 1.1. Latar Belakang Logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan sistem yang kompleks. Logika fuzzy memberikan rangka kerja yang kuat dalam memecahkan masalah

Lebih terperinci

JOBSHEET SISTEM CERDAS REASONING 2. Fuzzifikasi

JOBSHEET SISTEM CERDAS REASONING 2. Fuzzifikasi JOBSHEET SISTEM CERDAS REASONING 2 Fuzzifikasi S1 PENDIDIKAN TEKNIK ELEKTRO JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI MALANG 2016 PRAKTIKUM SISTEM CERDAS - REASONING JOBSHEET 2 - FUZZIFIKASI

Lebih terperinci

BAB I PENDAHULUAN. perekonomian ke arah yang lebih terbuka antar negara. Perekonomian terbuka

BAB I PENDAHULUAN. perekonomian ke arah yang lebih terbuka antar negara. Perekonomian terbuka BAB I PENDAHULUAN 1.1 Latar Belakang Globalisasi dalam bidang ekonomi, menyebabkan berkembangnya sistem perekonomian ke arah yang lebih terbuka antar negara. Perekonomian terbuka membawa suatu dampak ekonomis

Lebih terperinci

Praktikum sistem Pakar Fuzzy Expert System

Praktikum sistem Pakar Fuzzy Expert System Praktikum sistem Pakar Fuzzy Expert System Ketentuan Praktikum 1. Lembar Kerja Praktikum ini dibuat sebagai panduan bagi mahasiswa untuk praktikum pertemuan ke - 8 2. Mahasiswa akan mendapatkan penjelasan

Lebih terperinci

Analisis Pengaruh Pemilihan Fuzzy Membership Function Terhadap Output Sebuah Sistem Fuzzy Logic

Analisis Pengaruh Pemilihan Fuzzy Membership Function Terhadap Output Sebuah Sistem Fuzzy Logic Analisis Pengaruh Pemilihan Fuzzy Membership Function Terhadap Output Sebuah Sistem Fuzzy Logic Luh Kesuma Wardhani, Elin Haerani Jurusan Teknik Informatika Fakultas Sains dan Teknologi UIN SUSKA Riau

Lebih terperinci

ANALISIS & DESAIN SISTEM FUZZY. Menggunakan TOOLBOX MATLAB

ANALISIS & DESAIN SISTEM FUZZY. Menggunakan TOOLBOX MATLAB ANALISIS & DESAIN SISTEM FUZZY Menggunakan TOOLBOX MATLAB ANALISIS & DESAIN SISTEM FUZZY Menggunakan TOOLBOX MATLAB Sri Kusumadewi Analisis & Desain Sistem Fuzzy Menggunakan Toolbox Matlab Oleh: Sri Kusumadewi

Lebih terperinci

Penerapan Fuzzy Logic untuk Pembatasan Jumlah Partikel Pada Aplikasi yang Menggunakan Sistem Partikel

Penerapan Fuzzy Logic untuk Pembatasan Jumlah Partikel Pada Aplikasi yang Menggunakan Sistem Partikel Penerapan Fuzzy Logic untuk Pembatasan Jumlah Partikel Pada Aplikasi yang Menggunakan Sistem Partikel Biolardi Yoshogi (13509035) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika

Lebih terperinci

Ada 5 GUI tools yang dapat dipergunakan untuk membangun, mengedit, dan mengobservasi sistem penalaran, yaitu :

Ada 5 GUI tools yang dapat dipergunakan untuk membangun, mengedit, dan mengobservasi sistem penalaran, yaitu : BAB V FUZZY LOGIC MATLAB TOOLBOX Agar dapat mengunakan fungsi-fungsi logika fuzzy yang ada paad Matlab, maka harus diinstallkan terlebih dahulu TOOLBOX FUZZY. Toolbox. Fuzzy Logic Toolbox adalah fasilitas

Lebih terperinci

BAB IV PEMBAHASAN. BAB IV berisi pembahasan tahapan penelitian, yaitu klasifikasi logika. A. Identifikasi Data Cadangan Hidrokarbon

BAB IV PEMBAHASAN. BAB IV berisi pembahasan tahapan penelitian, yaitu klasifikasi logika. A. Identifikasi Data Cadangan Hidrokarbon BAB IV PEMBAHASAN BAB IV berisi pembahasan tahapan penelitian yaitu klasifikasi logika fuzzy hasil pembahasan analisis pengujian model fuzzy dan visualisasi model fuzzy pada perhitungan cadangan hidrokarbon

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan penerapan metode Adaptive Neuro Fuzzy Inference System (ANFIS) untuk prediksi Beban Daya

Lebih terperinci

APLIKASI LOGIKA FUZZY UNTUK PERAMALAN BEBAN LISTRIK JANGKA PENDEK MENGGUNAKAN MATLAB

APLIKASI LOGIKA FUZZY UNTUK PERAMALAN BEBAN LISTRIK JANGKA PENDEK MENGGUNAKAN MATLAB 52 APLIKASI LOGIKA FUZZY UNTUK PERAMALAN BEBAN LISTRIK JANGKA PENDEK MENGGUNAKAN MATLAB (Hansi Effendi) *) ABSTRACT This research is conducted to apply Fuzzy Logic which is implemented in short term load

Lebih terperinci

LOGIKA FUZZY. Dr. Ade Gafar Abdullah JPTE-UPI

LOGIKA FUZZY. Dr. Ade Gafar Abdullah JPTE-UPI LOGIKA FUZZY Dr. Ade Gafar Abdullah JPTE-UPI Introduction Logika fuzzy adalah cabang dari sistem kecerdasan buatan (Artificial Intelegent) yang mengemulasi kemampuan manusia dalam berfikir ke dalam bentuk

Lebih terperinci

Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI

Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI Bab III TEORI DAN PENGONTOR BERBASIS LOGIKA FUZZI III.1 Teori Logika fuzzi III.1.1 Logika fuzzi Secara Umum Logika fuzzi adalah teori yang memetakan ruangan input ke ruang output dengan menggunakan aturan-aturan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Tingkat kesehatan bank dapat diketahui dengan melihat peringkat

BAB IV HASIL DAN PEMBAHASAN. Tingkat kesehatan bank dapat diketahui dengan melihat peringkat BAB IV HASIL DAN PEMBAHASAN A. Analisis Tingkat Kesehatan Bank Tingkat kesehatan bank dapat diketahui dengan melihat peringkat komposit bank tersebut. Menurut peraturan Bank Indonesia No. 13/1/PBI/2011

Lebih terperinci

RANCANG BANGUN APLIKASI PERAMALAN CUACA DENGAN MENGGUNAKAN METODE FUZZY MAMDANI (STUDI KASUS KOTA SURABAYA)

RANCANG BANGUN APLIKASI PERAMALAN CUACA DENGAN MENGGUNAKAN METODE FUZZY MAMDANI (STUDI KASUS KOTA SURABAYA) RANCANG BANGUN APLIKASI PERAMALAN CUACA DENGAN MENGGUNAKAN METODE FUZZY MAMDANI (STUDI KASUS KOTA SURABAYA) Yonatan Widianto 1*, Tamaji 2 1 Program Studi Teknik Informatika, Fakultas Teknik, Universitas

Lebih terperinci

BAB IV PEMBAHASAN. A. Aplikasi Fuzzy Logic untuk Menilai Kolektibilitas Anggota Sebagai. Pertimbangan Pengambilan Keputusan Pemberian Kredit

BAB IV PEMBAHASAN. A. Aplikasi Fuzzy Logic untuk Menilai Kolektibilitas Anggota Sebagai. Pertimbangan Pengambilan Keputusan Pemberian Kredit BAB IV PEMBAHASAN A. Aplikasi Fuzzy Logic untuk Menilai Kolektibilitas Anggota Sebagai Pertimbangan Pengambilan Keputusan Pemberian Kredit Aplikasi fuzzy logic untuk pengambilan keputusan pemberian kredit

Lebih terperinci

BAB 1 1. PENDAHULUAN. 1.1 Latar Belakang

BAB 1 1. PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 1. PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang, perumusan masalah, tujuan penelitian, ruang lingkup penelitian, metodologi penelitian, dan sistematika penulisan laporan dari

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya

Institut Teknologi Sepuluh Nopember Surabaya Aplikasi Sistem Inferensi Fuzzy Metode Sugeno dalam Memperkirakan Produksi Air Mineral dalam Kemasan Oleh Suwandi NRP 1209201724 Dosen Pembimbing 1. Prof. Dr M. Isa Irawan, MT 2. Dr Imam Mukhlash, MT Institut

Lebih terperinci

Fuzzy Logic. Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic.

Fuzzy Logic. Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic. Fuzzy Systems Fuzzy Logic Untuk merepresentasikan masalah yang mengandung ketidakpastian ke dalam suatu bahasa formal yang dipahami komputer digunakan fuzzy logic. Masalah: Pemberian beasiswa Misalkan

Lebih terperinci

BAB IV KONSEP FUZZY LOGIC DAN PENERAPAN PADA SISTEM KONTROL. asing. Dalam pengalaman keseharian kita, permasalahan yang berkaitan dengan fuzzy

BAB IV KONSEP FUZZY LOGIC DAN PENERAPAN PADA SISTEM KONTROL. asing. Dalam pengalaman keseharian kita, permasalahan yang berkaitan dengan fuzzy BAB IV KONSEP FUZZY LOGIC DAN PENERAPAN PADA SISTEM KONTROL 4.1 Pengenalan konsep fuzzy logic Konsep mengenai fuzzy logic bukanlah merupakan sesuatu yang baru dan asing. Dalam pengalaman keseharian kita,

Lebih terperinci

LOGIKA FUZZY MENGGUNAKAN MATLAB

LOGIKA FUZZY MENGGUNAKAN MATLAB LOGIKA FUZZY MENGGUNAKAN MATLAB T.SUTOJO,Ssi,M.Kom 5.10 Fuzzy Logic Toolbox Matlab menyediakan fungsi-fungsi khusus untuk perhitungan logika Fuzzy dimulai dari perhitungan fungsi keanggotaan sampai dengan

Lebih terperinci

Tingginya kasus kecelakaan laut di Indonesia saat ini yang salah satu penyebab utamanya adalah karena faktor alam.

Tingginya kasus kecelakaan laut di Indonesia saat ini yang salah satu penyebab utamanya adalah karena faktor alam. Latar Belakang 2/3 wilayah indonesia adalah lautan yang menjadikan Indonesia sebagai negara maritim yang menjadi faktor utama pendorong terjadinya kegiatan transportasi laut di Indonesia. Tingginya kasus

Lebih terperinci

IMPLEMENTASI FUZZY LOGIC DALAM MENENTUKAN PENDUDUK MISKIN (STUDI KASUS PADA BADAN PUSAT STATISTIK KOTA PAGARALAM)

IMPLEMENTASI FUZZY LOGIC DALAM MENENTUKAN PENDUDUK MISKIN (STUDI KASUS PADA BADAN PUSAT STATISTIK KOTA PAGARALAM) IMPLEMENTASI FUZZY LOGIC DALAM MENENTUKAN PENDUDUK MISKIN (STUDI KASUS PADA BADAN PUSAT STATISTIK KOTA PAGARALAM) Junius_Effendi* Email : Cyberpga@ymail.com ABSTRAK Penelitian ini dilakukan untuk memperlajari

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN 7 terboboti dari daerah output fuzzy. Metode ini paling dikenal dan sangat luas dipergunakan. First of Maxima (FoM) dan Last of Maxima (LoM) Pada First of Maxima (FoM), defuzzifikasi B( y) didefinisikan

Lebih terperinci

Solusi MATLAB. Double Click salah satu kotak input sehingga muncul Membership Function Editor. Pada Membership Function Editor:

Solusi MATLAB. Double Click salah satu kotak input sehingga muncul Membership Function Editor. Pada Membership Function Editor: PRAKTIKUM 2 Studi Kasus 2: Metode Sugeno Suatu perusahaan mampu memproduksi rata-rata 50.000 unit barang per hari, dan dalam 3 bulan terakhir permintaan tertinggi sebesar 75.000 unit. Barang yang tersedia

Lebih terperinci

PERANCANGAN SISTEM PREDIKTOR CUACA MARITIM DENGAN MENGGUNAKAN METODE FUZZY TAKAGI SUGENO

PERANCANGAN SISTEM PREDIKTOR CUACA MARITIM DENGAN MENGGUNAKAN METODE FUZZY TAKAGI SUGENO JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1 PERANCANGAN SISTEM PREDIKTOR CUACA MARITIM DENGAN MENGGUNAKAN METODE FUZZY TAKAGI SUGENO Nur Wakhid Habibullah, dan Syamsul Arifin, Bambang Lelono Widjiantoro

Lebih terperinci

PEMILIHAN PROGRAM STUDI BAGI SISWA LULUSAN SMA DALAM SELEKSI MASUK PTN UNY DENGAN LOGIKA FUZZY MAMDANI

PEMILIHAN PROGRAM STUDI BAGI SISWA LULUSAN SMA DALAM SELEKSI MASUK PTN UNY DENGAN LOGIKA FUZZY MAMDANI PEMILIHAN PROGRAM STUDI BAGI SISWA LULUSAN SMA DALAM SELEKSI MASUK PTN UNY DENGAN LOGIKA FUZZY MAMDANI Niken Lisca Aggyta Ayuningrum Universitas Negeri Yogyakarta liscaniken@gmail.com Abstrak: Seiring

Lebih terperinci

TUGAS PRAKTIKUM SISTEM CERDAS

TUGAS PRAKTIKUM SISTEM CERDAS TUGAS PRAKTIKUM SISTEM CERDAS Modul III Penerapan Logika Fuzzy Dengan Matlab Tanggal 17 November 2015 Disusun Oleh : Fahmi Ahmad Husaeni (201302025) Dosen Pengampu : E. Agung Nugroho S.T, M.T Program Studi

Lebih terperinci

ISSN : STMIK AMIKOM Yogyakarta, 6-8 Februari 2015

ISSN : STMIK AMIKOM Yogyakarta, 6-8 Februari 2015 ISSN : 22-385 PERBANDINGAN HASIL PREDIKSI JUMLAH PESERTA KULIAH MENGGUNAKAN FUZZY LOGIC (MAMDANI DAN SUGENO) Studi Kasus: Pend Matematika Univ Muhammadiyah Surakarta Noto Narwanto Mahasiswa MTI STMIK AMIKOM

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI Bab ini akan memaparkan berbagai teori yang melandasi penulis dalam membangun sistem yang nantinya akan dibuat. 3.1. Pengertian Optimalisasi Secara umum pengertian optimalisasi menurut

Lebih terperinci

PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012

PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012 PENALARAN FUZZY SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR 2012 PENALARAN FUZZY Digunakan untuk menghasilkan suatu keputusan tunggal / crisp saat defuzzifikasi Penggunaan akan bergantung

Lebih terperinci

Praktikum Sistem Pakar Jumat 16 Desember 2013 Pertemuan 12. Tabel 1. Rancangan Variabel fuzzy Fungsi Nama Variabel Rentang Nilai Keterangan

Praktikum Sistem Pakar Jumat 16 Desember 2013 Pertemuan 12. Tabel 1. Rancangan Variabel fuzzy Fungsi Nama Variabel Rentang Nilai Keterangan Praktikum Sistem Pakar Jumat 16 Desember 2013 Pertemuan 12 Studi Kasus : Studi Permasalahan: Suatu Perusahaan akan melakukan perkiraan terhadap produksi suatu barang tiap bulan. Untuk menentukan jumlah

Lebih terperinci

Implementasi Adaptive Neuro-Fuzzy Inference System (Anfis) untuk Peramalan Pemakaian Air di Perusahaan Daerah Air Minum Tirta Moedal Semarang

Implementasi Adaptive Neuro-Fuzzy Inference System (Anfis) untuk Peramalan Pemakaian Air di Perusahaan Daerah Air Minum Tirta Moedal Semarang Scientific Journal of Informatics Vol. 3, No. 1, Mei 2016 p-issn 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-issn 2460-0040 Implementasi Adaptive Neuro-Fuzzy Inference System (Anfis) untuk

Lebih terperinci

APLIKASI MODEL FUZZY UNTUK SISTEM INFORMASI GEOGRAFIS PENENTUAN WILAYAH RAWAN DEMAM BERDARAH DENGUE PROVINSI DAERAH ISTIMEWA YOGYAKARTA SKRIPSI

APLIKASI MODEL FUZZY UNTUK SISTEM INFORMASI GEOGRAFIS PENENTUAN WILAYAH RAWAN DEMAM BERDARAH DENGUE PROVINSI DAERAH ISTIMEWA YOGYAKARTA SKRIPSI APLIKASI MODEL FUZZY UNTUK SISTEM INFORMASI GEOGRAFIS PENENTUAN WILAYAH RAWAN DEMAM BERDARAH DENGUE PROVINSI DAERAH ISTIMEWA YOGYAKARTA SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Penerapan Adaptive Neuro Fuzzy Inference System Dalam Memprediksi Volume Pemakaian Air Bersih

Penerapan Adaptive Neuro Fuzzy Inference System Dalam Memprediksi Volume Pemakaian Air Bersih Penerapan Adaptive Neuro Fuzzy Inference System Dalam Memprediksi Volume Pemakaian Air Bersih Niska Ramadani Dosen Universitas Dehasen Bengkulu niskaramadani@gmail.com ABSTRAK Pertumbuhan penduduk harus

Lebih terperinci

BAB IV RANCANG BANGUN SISTEM

BAB IV RANCANG BANGUN SISTEM 22 BAB IV RANCANG BANGUN SISTEM Pengguna sistem adalah dokter namun sistem dapat juga digunakan oleh praktisi kesehatan lainnya seperti bidan, perawat bahkan masyarakat umum. Dokter dibantu dalam pengambilan

Lebih terperinci

Jurnal String Vol. 1 No. 1 Tahun 2016 ISSN: MODEL EVALUASI KINERJA KARYAWAN DENGAN METODE FUZZY SUGENO PADA RESTO ABTL

Jurnal String Vol. 1 No. 1 Tahun 2016 ISSN: MODEL EVALUASI KINERJA KARYAWAN DENGAN METODE FUZZY SUGENO PADA RESTO ABTL MODEL EVALUASI KINERJA KARYAWAN DENGAN METODE FUZZY SUGENO PADA RESTO ABTL Fanisya Alva Mustika 1, Sutrisno 2 Program Studi Teknik Informatika, Universitas Indraprasta PGRI Jakarta 1,2 E-mail: alva.mustika@gmail.com

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Logika Fuzzy Zadeh (1965) memperkenalkan konsep fuzzy sebagai sarana untuk menggambarkan sistem yang kompleks tanpa persyaratan untuk presisi. Dalam jurnalnya Hoseeinzadeh et

Lebih terperinci

MENDETEKSI KEBERADAAN NYAMUK AEDES AEGIPTY MENGGUNAKAN METODE FUZZY. Ikhlas Ali Syahbana

MENDETEKSI KEBERADAAN NYAMUK AEDES AEGIPTY MENGGUNAKAN METODE FUZZY. Ikhlas Ali Syahbana MENDETEKSI KEBERADAAN NYAMUK AEDES AEGIPTY MENGGUNAKAN METODE FUZZY Ikhlas Ali Syahbana Jurusan Sistem Informasi STMIK Pringsewu Lampung Jl. Wismarini.09 Pringsewu Lampung Website : www.stmikpringsewu.ac.id

Lebih terperinci

FUZZY SYSTEM & FUZZY REASONING DEPARTEMEN ILMU KOMPUTER IPB

FUZZY SYSTEM & FUZZY REASONING DEPARTEMEN ILMU KOMPUTER IPB FUZZY SYSTEM & FUZZY REASONING Workshop on Fundamental Concept and Implementation of Fuzzy Logic March 17 th 2016 Net Centric Computing Lab DEPARTEMEN ILMU KOMPUTER IPB Outline Crips VS Fuzzy Pengembangan

Lebih terperinci

SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ

SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ SPK PENENTUAN TINGKAT KEPUASAN KONSUMEN PADA RESTORAN XYZ P.A Teknik Informatika Universitas Ahmad Dahlan Yogyakarta Kampus 3 UAD, Jl. Prof. Soepomo rochmahdyah@yahoo.com Abstrak Perkembangan teknologi

Lebih terperinci

BAB III METODOLOGI 3.1. PENDAHULUAN

BAB III METODOLOGI 3.1. PENDAHULUAN BAB III METODOLOGI 3.1. PENDAHULUAN Dalam melakukan studi Tugas Akhir diperlukan metodologi yang akan digunakan agar studi ini dapat berjalan sesuai dengan koridor yang telah direncanakan di awal. Dalam

Lebih terperinci

BAB 2 2. LANDASAN TEORI

BAB 2 2. LANDASAN TEORI BAB 2 2. LANDASAN TEORI Bab ini akan menjelaskan mengenai logika fuzzy yang digunakan, himpunan fuzzy, penalaran fuzzy dengan metode Sugeno, dan stereo vision. 2.1 Logika Fuzzy Logika fuzzy adalah suatu

Lebih terperinci

Implementasi Logika Fuzzy Mamdani untuk Mendeteksi Kerentanan Daerah Banjir di Semarang Utara

Implementasi Logika Fuzzy Mamdani untuk Mendeteksi Kerentanan Daerah Banjir di Semarang Utara Scientific Journal of Informatics Vol. 2, No. 2, November 2015 p-issn 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-issn 2460-0040 Implementasi Logika Fuzzy Mamdani untuk Mendeteksi Kerentanan

Lebih terperinci

PENGEMBANGAN SISTEM PAKAR FUZZY

PENGEMBANGAN SISTEM PAKAR FUZZY FUZZY EXPERT SYSTEM FUZZY INFERENCE SYSTEM FUZZY REASONING Toto Haryanto MATA KULIAH SISTEM PAKAR DEPARTEMEN ILMU KOMPUTER INSTITUT PERTANIAN BOGOR PENGEMBANGAN SISTEM PAKAR FUZZY Domain Masalah Fuzzifikasi

Lebih terperinci

PREDIKSI PRODUKTIVITAS TENAGA KERJA KONSTRUKSI MENGGUNAKAN PENDEKATAN FUZZY LOGIC

PREDIKSI PRODUKTIVITAS TENAGA KERJA KONSTRUKSI MENGGUNAKAN PENDEKATAN FUZZY LOGIC PREDIKSI PRODUKTIVITAS TENAGA KERJA KONSTRUKSI MENGGUNAKAN PENDEKATAN FUZZY LOGIC Elizar Program Studi Teknik Sipil, Universitas Islam Riau, Jl.Kaharuddin Nst 113 Pekanbaru Mahasiswa Program Doktor Teknik

Lebih terperinci

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA

ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA ARTIFICIAL INTELLIGENCE MENENTUKAN KUALITAS KEHAMILAN PADA WANITA PEKERJA Rima Liana Gema, Devia Kartika, Mutiana Pratiwi Universitas Putra Indonesia YPTK Padang email: rimalianagema@upiyptk.ac.id ABSTRAK

Lebih terperinci

SISTEM INFERENSI FUZZY MAMDANI BERBASIS WEB

SISTEM INFERENSI FUZZY MAMDANI BERBASIS WEB JURNAL MATRIX VOL. 3, NO. 1, MARET 2013 39 SISTEM INFERENSI FUZZY MAMDANI BERBASIS WEB I Ketut Suwintana Jurusan Akuntansi Politeknik Negeri Bali Kampus Bukit Jimbaran Bali Telp. +62 361 701981 Abstrak:.Logika

Lebih terperinci

ANALISA SISTEM PENDUKUNG KEPUTUSAN PENENTUAN KOSENTRASI JURUSAN TEKNIK MESIN UNP PADANG

ANALISA SISTEM PENDUKUNG KEPUTUSAN PENENTUAN KOSENTRASI JURUSAN TEKNIK MESIN UNP PADANG ANALISA SISTEM PENDUKUNG KEPUTUSAN PENENTUAN KOSENTRASI JURUSAN TEKNIK MESIN UNP PADANG Harison Dosen Jurusan Teknik Informatika Fakultas Teknologi Industri Institut Teknologi Padang Abstrak Keputusan

Lebih terperinci

IMPLEMENTASI METODE LOGIKA FUZZY DALAM PEMBANGUNAN SISTEM OPTIMALISASI LAMPU LALU LINTAS TUGAS AKHIR

IMPLEMENTASI METODE LOGIKA FUZZY DALAM PEMBANGUNAN SISTEM OPTIMALISASI LAMPU LALU LINTAS TUGAS AKHIR IMPLEMENTASI METODE LOGIKA FUZZY DALAM PEMBANGUNAN SISTEM OPTIMALISASI LAMPU LALU LINTAS TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan Mencapai Derajat Sarjana Teknik Informatika Oleh : Nonety

Lebih terperinci

Pengaturan Air Cooler untuk Ruangan menggunakan Logika Fuzzy

Pengaturan Air Cooler untuk Ruangan menggunakan Logika Fuzzy Pengaturan Air Cooler untuk Ruangan menggunakan Logika Fuzzy Willy Setiawan - 13508043 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10

Lebih terperinci

Studi Kasus Fuzzy Logic 2016

Studi Kasus Fuzzy Logic 2016 1. Menentukan Himpunan Fuzzy Menggunakan Formula Di Microsoft Excell 2.1 Representasi Linier Naik Diketahui Persamaan Fungsi Keanggotaan Sebagai berikut : Berapakah µ[40], µ[45], µ[50]? Langkah-langkahnya

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sistem photovoltaic merupakan sumber energi terbarukan yang memanfaatkan energi surya dan mengkonversinya menjadi energi listrik arus searah (DC). Sumber energi terbarukan

Lebih terperinci

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas Zulfikar Sembiring Jurusan Teknik Informatika, Fakultas Teknik, Universitas Medan Area zoelsembiring@gmail.com Abstrak Logika Fuzzy telah banyak

Lebih terperinci

1 Pendahuluan. 1.1 Latar Belakang Masalah

1 Pendahuluan. 1.1 Latar Belakang Masalah 1 Pendahuluan 1.1 Latar Belakang Masalah Kebutuhan masyarakat akan perkiraan cuaca terutama curah hujan ini menjadi sangat penting untuk merencanakan segala aktifivitas mereka. Curah hujan juga memiliki

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini.

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini. BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori-teori yang akan digunakan untuk menunjang dalam proses pembuatan tugas akhir ini. 2.1 CLUSTERING Clustering adalah proses pengelompokkan suatu

Lebih terperinci

IV PENGEMBANGAN FUZZY INFERENSI SISTEM SELEKSI METODE EOR

IV PENGEMBANGAN FUZZY INFERENSI SISTEM SELEKSI METODE EOR IV PENGEMBANGAN FUZZY INFERENSI SISTEM SELEKSI METODE EOR 4.1. Fuzzy Inferensi Sistem Tahapan-tahapan yang dilakukan pada Pengembangan Fuzzy Iinferensi Sistem untuk Seleksi Metode EOR antara lain: mendefinisikan

Lebih terperinci

Sebelumnya... Penalaran pada Sistem Pakar. Ketidakpastian dalam Sistem Pakar. Contoh forward chaining & backward chaining

Sebelumnya... Penalaran pada Sistem Pakar. Ketidakpastian dalam Sistem Pakar. Contoh forward chaining & backward chaining Sebelumnya... Penalaran pada Sistem Pakar Contoh forward chaining & backward chaining Ketidakpastian dalam Sistem Pakar Teori Peluang Teori Bayes Jaringan Bayes Faktor Kepastian Kecerdasan Buatan Pertemuan

Lebih terperinci

Penerapan Metode Fuzzy Sugeno Dalam Pendaftaran Siswa Baru di SDN Sonopatik 1 Nganjuk

Penerapan Metode Fuzzy Sugeno Dalam Pendaftaran Siswa Baru di SDN Sonopatik 1 Nganjuk Nusantara of Enginering/Vol.3/No.1/ISSN: 2355-6684 41 Penerapan Metode Fuzzy Sugeno Dalam Pendaftaran Siswa Baru di SDN Sonopatik 1 Nganjuk Fajar Rohman Hariri Jurusan Teknik Informatika, Fakultas Teknik,

Lebih terperinci

Elin Haerani. Kata Kunci : Defuzzifikasi, COA (center of area), bisektor, MOM (mean of maximum) LOM

Elin Haerani. Kata Kunci : Defuzzifikasi, COA (center of area), bisektor, MOM (mean of maximum) LOM ANALISA KENDALI LOGIKA FUZZY DENGAN METODE DEFUZZIFIKASI COA (CENTER OF AREA), BISEKTOR, MOM (MEAN OF MAXIMUM), LOM (LARGEST OF MAXIMUM), DAN SOM (SMALLEST OF MAXIMUM) Elin Haerani Jurusan Teknik Informatika,

Lebih terperinci

: Pengantar Intelegensi Buatan. Worksheet 2 : Praktikum Fuzzy Logic menggunakan MATLAB

: Pengantar Intelegensi Buatan. Worksheet 2 : Praktikum Fuzzy Logic menggunakan MATLAB Worksheet 2 : Praktikum Fuzzy Logic menggunakan MATLAB Sumber : - Belajar Cepat Fuzzy Logic menggunakan MATLAB oleh Agus Naba, Penerbit ANDI - Slide bahan Kuliah IF4058 Topik Khusus IF oleh Rinaldi Munir,

Lebih terperinci

Metode Mamdani Untuk Klasifikasi Dalam Prediksi Indeks Pembangunan Manusia Di Kota Banda Aceh

Metode Mamdani Untuk Klasifikasi Dalam Prediksi Indeks Pembangunan Manusia Di Kota Banda Aceh SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 Metode Mamdani Untuk Klasifikasi Dalam Prediksi Indeks Pembangunan Manusia Di Kota Banda Aceh T - 42 Yudha Al Afis, Agus Maman Abadi Prodi Matematika,

Lebih terperinci

PENERAPAN LOGIKA FUZZY UNTUK MEMPREDIKSI CUACA HARIAN DI BANJARBARU

PENERAPAN LOGIKA FUZZY UNTUK MEMPREDIKSI CUACA HARIAN DI BANJARBARU PENERAPAN LOGIKA FUZZY UNTUK MEMPREDIKSI CUACA HARIAN DI BANJARBARU Uli Mahanani 1, Arfan Eko Fahrudin 1, dan Nurlina 1 ABSTRACT. Information about the weather is very important because the weather is

Lebih terperinci

Sebelumnya... Penalaran pada Sistem Pakar. Ketidakpastian dalam Sistem Pakar. Contoh forward chaining & backward chaining

Sebelumnya... Penalaran pada Sistem Pakar. Ketidakpastian dalam Sistem Pakar. Contoh forward chaining & backward chaining Sebelumnya... Penalaran pada Sistem Pakar Contoh forward chaining & backward chaining Ketidakpastian dalam Sistem Pakar Teori Peluang Teori Bayes Jaringan Bayes Faktor Kepastian Kecerdasan Buatan Pertemuan

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN Pembahasan pada bab ini menjelaskan gambaran umum nilai tukar mata uang rupiah terhadap dolar amerika, metode penelitian, perancangan program aplikasi, rancangan perangkat lunak

Lebih terperinci

APLIKASI LOGIKA FUZZY UNTUK PREDIKSI KEJADIAN HUJAN (Studi Kasus: Sub DAS Siak Hulu)

APLIKASI LOGIKA FUZZY UNTUK PREDIKSI KEJADIAN HUJAN (Studi Kasus: Sub DAS Siak Hulu) APLIKASI LOGIKA FUZZY UNTUK PREDIKSI KEJADIAN HUJAN (Studi Kasus: Sub DAS Siak Hulu) Hafidzilhaj Harys ) Imam Suprayogi 2) Rinaldi 2) ) Mahasiswa Jurusan Teknik Sipil 2) Dosen Jurusan Teknik Sipil Fakultas

Lebih terperinci

MODEL PENENTUAN GURU BERPRESTASI BERBASIS ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)

MODEL PENENTUAN GURU BERPRESTASI BERBASIS ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) MODEL PENENTUAN GURU BERPRESTASI BERBASIS ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) Wanti Rahayu 1 1 Mahasiswa Universitas Indraprasta PGRI Email : 1 wanti.reiku@gmail.com Abstrak- Guru merupakan aspek

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Logika Fuzzy Logika fuzzy merupakan suatu metode pengambilan keputusan berbasis aturan yang digunakan untuk memecahkan keabu-abuan masalah pada sistem yang sulit dimodelkan

Lebih terperinci

LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN

LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN LOGIKA FUZZY PADA PROSES PELET PAKAN IKAN Agung Saputra 1), Wisnu Broto 2), Ainil Syafitri 3) Prodi Elektro Fakultas Teknik Univ. Pancasila, Srengseng Sawah Jagakarsa, Jakarta, 12640 Email: 1) agungsap2002@yahoo.com

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Logika Fuzzy Fuzzy secara bahasa diartikan sebagai kabur atau samar yang artinya suatu nilai dapat bernilai benar atau salah secara bersamaan. Dalam fuzzy dikenal derajat keanggotan

Lebih terperinci

APLIKASI FUZZY LOGIC UNTUK MENILAI KOLEKTIBILITAS ANGGOTA SEBAGAI PERTIMBANGAN PENGAMBILAN KEPUTUSAN PEMBERIAN KREDIT DI KOPERASI X SKRIPSI

APLIKASI FUZZY LOGIC UNTUK MENILAI KOLEKTIBILITAS ANGGOTA SEBAGAI PERTIMBANGAN PENGAMBILAN KEPUTUSAN PEMBERIAN KREDIT DI KOPERASI X SKRIPSI APLIKASI FUZZY LOGIC UNTUK MENILAI KOLEKTIBILITAS ANGGOTA SEBAGAI PERTIMBANGAN PENGAMBILAN KEPUTUSAN PEMBERIAN KREDIT DI KOPERASI X SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB III. Sub Kompetensi :

BAB III. Sub Kompetensi : BAB III CONTOH APLIKASI LOGIKA FUZZY MENGGUNAKAN MATLAB Kompetensi : 1. Mahasiswa memecahkan masalah rekayasa melalui pendekatan logika fuzzy. Sub Kompetensi : 1. Dapat menggunakan tahapan pemecahan masalah

Lebih terperinci

PERBANDINGAN PENERAPAN METODE FUZZY MAMDANI DAN SUGENO DALAM MEMPREDIKSI TINGGINYA PEMAKAIAN LISTRIK ( STUDI KASUS KELURAHAN XYZ)

PERBANDINGAN PENERAPAN METODE FUZZY MAMDANI DAN SUGENO DALAM MEMPREDIKSI TINGGINYA PEMAKAIAN LISTRIK ( STUDI KASUS KELURAHAN XYZ) PERBANDINGAN PENERAPAN METODE FUZZY MAMDANI DAN SUGENO DALAM MEMPREDIKSI TINGGINYA PEMAKAIAN LISTRIK ( STUDI KASUS KELURAHAN XYZ) Edy Victor Haryanto 1, Fina Nasari 2 1,2 UniversitasPotensiUtama Jl. K.

Lebih terperinci

BAB III METODE FUZZY MAMDANI

BAB III METODE FUZZY MAMDANI 29 BAB III METODE FUZZY MAMDANI Fuzzy Inference System merupakan sebuah kerangka kerja perhitungan berdasarkan konsep teori himpunan fuzzy dan pemikiran fuzzy yang digunakan dalam penarikan kesimpulan

Lebih terperinci

BAB III METODOLOGI 3.1. Kerangka Pemikiran

BAB III METODOLOGI 3.1. Kerangka Pemikiran 31 BAB III METODOLOGI 3.1. Kerangka Pemikiran Penelitian tentang prediksi meledaknya wabah suatu penyakit sudah banyak dilakukan oleh para peneliti. Mereka mencoba mencari pola dan relasi dari data set

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Logika fuzzy pertama kali dikembangkan oleh Zadeh di pertengahan tahun 1960 untuk mewakili nilai yang tidak pasti, namun efektif untuk menggambarkan perilaku sistem

Lebih terperinci

Penilaian Hasil Belajar Matematika pada Kurikulum 2013 dengan Menggunakan Logika Fuzzy Metode Mamdani

Penilaian Hasil Belajar Matematika pada Kurikulum 2013 dengan Menggunakan Logika Fuzzy Metode Mamdani SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017 Penilaian Hasil Belajar Matematika pada Kurikulum 2013 dengan Menggunakan Logika Fuzzy Metode Mamdani M-4 Dewi Mardhiyana Universitas Pekaloangan dewimardhiyana139@gmail.com

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terdahulu Pengkajian dari penelitian terdahulu dilakukan dengan tujuan memperjelas tentang deskripsi variabel variabel yang digunakan dalam penelitian ini, sekaligus

Lebih terperinci

adalahkelompok profesi terbesar dan berperan vital dalam sistem tersebut yang menyebabkan ABSTRAK

adalahkelompok profesi terbesar dan berperan vital dalam sistem tersebut yang menyebabkan ABSTRAK 1 Evaluasi Kinerja Pelayanan Perawat Menggunakan Fuzzy Inference System (FIS) Mamdani ( Studi Kasus : Puskesmas Bonang 1 Demak) ARIS MUTHOHAR Program Studi Teknik Informatika S1, Fakultas Ilmu Komputer,

Lebih terperinci

BAB I PENDAHULUAN. penyakit menular yang terutama menyerang anak-anak (Widoyono, 2008: 59).

BAB I PENDAHULUAN. penyakit menular yang terutama menyerang anak-anak (Widoyono, 2008: 59). A. Latar Belakang BAB I PENDAHULUAN Penyakit demam berdarah dengue (DBD) merupakan salah satu masalah kesehatan masyarakat di Indonesia yang jumlah penderitanya cenderung meningkat dan penyebarannya semakin

Lebih terperinci

1.1. Latar Belakang Masalah

1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Salah satu aplikasi sistem cerdas yang paling sukses dan masih berkembang saat ini yaitu peramalan beban listrik. Peramalan beban listrik adalah suatu ilmu

Lebih terperinci

Penerapan Fuzzy Inference System pada Prediksi Curah Hujan di Surabaya Utara

Penerapan Fuzzy Inference System pada Prediksi Curah Hujan di Surabaya Utara JURNAL SAINS DAN SENI ITS Vol., No., (Sept. 22) ISSN: 23-928X A-23 Penerapan Fuzzy Inference System pada Prediksi Curah Hujan di Surabaya Utara Dynes Rizky Navianti, I Gusti Ngurah Rai Usadha, Farida Agustini

Lebih terperinci

KAJIAN SISTEM PAKAR DAN FUZZY LOGIC DALAM PENENTUAN JURUSAN

KAJIAN SISTEM PAKAR DAN FUZZY LOGIC DALAM PENENTUAN JURUSAN KAJIAN SISTEM PAKAR DAN FUZZY LOGIC DALAM PENENTUAN JURUSAN Firmansyah 1 ), Jusmita Weriza 1 ) Universitas Ekasakti padang, Indonesia f2mamak@gmail.com ABSTRAK SMA (Sekolah Menengah Atas) adalah sebagai

Lebih terperinci

PREDIKSI CURAH HUJAN DENGAN FUZZY LOGIC

PREDIKSI CURAH HUJAN DENGAN FUZZY LOGIC PRO S ID IN G 20 1 2 HASIL PENELITIAN FAKULTAS TEKNIK PREDIKSI CURAH HUJAN DENGAN FUZZY LOGIC Indrabayu 1), Nadjamuddin Harun 2), M. Saleh Pallu 3), Andani Achmad 4), Febi Febriyati 5) 1,2,4,5) Jurusan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Bab ini berisi tentang pemahaman dari logika fuzzy dan data mining. Pada bab ini juga akan dijelaskan bagian-bagian yang perlu diketahui dalam logika fuzzy dan data mining, sehingga

Lebih terperinci

Penentuan Jumlah Permintaan Obat Pada Kantor Kepolisian Resort Kota Menggunakan. Logika Fuzzy Mamdani. Siti Fathimah

Penentuan Jumlah Permintaan Obat Pada Kantor Kepolisian Resort Kota Menggunakan. Logika Fuzzy Mamdani. Siti Fathimah ISSN: 2089-3787 1629 Penentuan Jumlah Permintaan Obat Pada Kantor Kepolisian Resort Kota Menggunakan Logika Fuzzy Mamdani Siti Fathimah Jurusan Sistem Informasi, STMIK Banjarbaru Jl. Ahmad Yani K.M. 33,5,

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN 61 BAB III ANALISIS DAN PERANCANGAN 3.1 Analisis 3.1.1 Analisis Permasalahan Proses Segmentasi citra dapat dilakukan dengan berbagai cara, antara lain dengan metode konvensional secara statistik maupun

Lebih terperinci

KONTRAK PEMBELAJARAN (KP) MATA KULIAH

KONTRAK PEMBELAJARAN (KP) MATA KULIAH KONTRAK PEMBELAJARAN (KP) MATA KULIAH Kode MK: TSK-710 Program Studi Sistem Komputer Fakultas Teknik Universitas Diponegoro Pengajar : Eko Didik Widianto, ST, MT Semester : 7 KONTRAK PEMBELAJARAN Nama

Lebih terperinci

Fuzzy Inference System untuk Mengurangi Kemacetan di Perempatan Jalan

Fuzzy Inference System untuk Mengurangi Kemacetan di Perempatan Jalan Fuzzy Inference System untuk Mengurangi Kemacetan di Perempatan Jalan Edwin Romelta / 13508052 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci