Modul 4. Solusi SPAL dengan MATRIK TRI-DIAGONAL

Ukuran: px
Mulai penontonan dengan halaman:

Download "Modul 4. Solusi SPAL dengan MATRIK TRI-DIAGONAL"

Transkripsi

1 Seri Kulih Metoe Numerik (Moul 4: Solusi SPAL eg Mtriks Tri-Digol) (/) Moul 4 Solusi SPAL eg MATRIK TRI-DIAGNAL A. Pehulu Solusi SPAL yg eretuk mtriks tri-igol serigkli ijumpi p prolem-prolem yg eretuk PDP (persm iferesil prsil) yg omi ser igol (efiit positif). Segim solusi-solusi yg is ilkuk eg metoe komputsi umerik, ihrpk moul ii pt memtu pr pesert jr yg mejumpi mslh-mslh yg erkit eg etuk mtriks serup, kre etuky yg sgt khusus, seemiki rup sehigg pemeh mslhy meji leih terti, efisie, terstruktur. B. Betuk umum Mtrik Tri-Digol Ser spesifik, etuk SPAL yg memiliki mtriks tri-igol pt isjik segi erikut: = M M tu [A] [] = [] C. Teorem Solusi mtriks Tri-Digol Jik mtriks ujur-sgkr [A] i ts merupk mtriks yg omi ser igol (tu efiit :positif) memetuk

2 Seri Kulih Metoe Numerik (Moul 4: Solusi SPAL eg Mtriks Tri-Digol) (/) mtriks tri-igol, mk [A] memiliki sutu metuk fktorissi LU yg uik, lm hl ii ik L mupu U hy memiliki uigol: L lh mtriks wh eg struktur igol utm (itulisk lm lmg [ l ]) igol wh (itulisk lm lmg [ l ]); segk mtriks U lh mtriks ts yg erisi igol utm [ u ] igol ts [ u ]. Lgkh solusi yg iguk lh logi eg metoe ELIMINASI GAUSS. Dlm hl ii jik peulis SPAL i ts isusuulg meji: = M Dpt iliht eg jels, seli ketig igol i ts mtriks [A] hy iisi oleh eleme 0 (ol), yg errti hw mtriks [A] i ts, tik perlu isimp lm sutu vriel eretuk mtriks, melik ukup hy lm uh vetor eg pjg msig-msig (mksimum) seesr eleme. Jumlh memori utuk peyimp meji semki sgt errti p st hrg meji sgt esr. Hl li yg perlu itt lh, hw p setip kolom, hy iperluk uh eleme tk-ol (uk 0) yg ielimisi, yg errti jug segi peghemt ush y komputsi umerik yg reltif sgt esr, il iigk eg peghitug mellui mtriks peuh. Seljuty, lgkh lgoritm peyelesiy lh segi erikut: (). Jik 0, mk pt ielimisi ri persm keu

3 eg meghitug fktor pegli erikut: m = ihsilk persm ru segi erikut: eg, + = = m = m (). Deg r yg sm, jik 0, pt ielimisi ri persm ketig sehigg ihsilk persm ketig yg ru, segi erikut: eg, + 4 = m = = m = m (). Terusk r perhitug i ts, sehigg pt isimpulk p thp-i, i pt ielimisi ri persm i+ (eg sumsi i 0) memerik persm ru erikut: i+ i+ + i+ i+ = i + Seri Kulih Metoe Numerik (Moul 4: Solusi SPAL eg Mtriks Tri-Digol) (/)

4 eg, i m i = + i i+ = i+ m i i+ = i + mi i i (). Sekues-sekues lm utir () i ts seery merupk sesutu yg ertur, yitu keerulg ri i =,,, -, sehigg sistem wly tertrsformsi meji mtriks segitig ts (e). Segi solusi khiry, yitu sustitusi lik yg jug mirip eg metoe elimisi Guss, yitu eg megggp hw 0, k iperoleh: = kemui, utuk i = -, -,,, pt iguk: i i i = + i Cotoh Listig Progrm Mtriks Tri-Digol: C C PRGRAM Solusi Sistem Persm Aljr Liier (SPAL) tu tu Persm Aljr Liier Simult eg tekik TRIDIAGNAL C Deklrsi Jeis Vriel: C IMPLICIT NNE INTEGER irg PARAMETER (irg = 7) INTEGER i,eq REAL*8 (irg),(irg),(irg),(irg),(irg) Seri Kulih Metoe Numerik (Moul 4: Solusi SPAL eg Mtriks Tri-Digol) (4/4)

5 CALL system(ler) PEN (0,FILE=sig.t) C Proses Pemsuk Hrg Vriel: C READ(0,*) eq WRITE(*,*) Jumlh Persm :,eq READ(0,*) (),(),() D i =,eq- READ(0,*) (i),(i),(i),(i) ENDD READ(0,*) (eq),(eq),(eq) C Proses Pemggil Suprogrm Elimisi Guss-Jor: C CALL SDIAG(eq,,,,,) C Pempr/peyji Hsil Perhitug: C WRITE(*,*) HASIL D i =,eq WRITE(*,40) (,i,) =,(i) ENDD CLSE(0) 0 FRMAT (X,A,I,A,I,A,G5.7) 0 FRMAT (5X,A,I,A,G5.7) 40 FRMAT (5X,A,I,A,G5.7) STP END INCLUDE sig.su SUBRUTINE SDIAG(,,,,,) C C SUBPRGRAM SLUSI MATRIKS TRI-DIAGNAL eg ELIMINASI GAUSS : C Merupk solusi Sistem Persm Aljr Liier (SPAL) eg C formt persm mtriks: [A].[] = [], eg rii s C = jumlh persm ljr liier (imesi SPAL) C = vektor koefisie p igol wh eg imesi -, C = vektor koefisie p igol utm eg imesi, C = vektor koefisie p igol ts eg imesi -, C = vektor vriel persm yg k iri hrg-hrgy C = vektor rus k yg erisi hrg-hrg persm tuggl C C Deklrsi Vriel: C INTEGER REAL*8 (),(),(),(),() INTEGER i REAL*8 PIVT,MULT C Proses solusi: () Sustitusi Elimisi C D i =,- PIVT = (i) MULT = (i+)/pivt (i+) = MULT (i+) = (i+) - MULT*(i) (i+) = (i+) - MULT*(i) ENDD Seri Kulih Metoe Numerik (Moul 4: Solusi SPAL eg Mtriks Tri-Digol) (5/5)

6 C Proses solusi: () Sustitusi Blik C () = ()/() D i = -,,- (i) = ((i) - (i)*(i+))/(i) ENDD RETURN END D. Dftr Pustk Atkiso, Kel E., A Itroutio to Numeril Alysis, Joh Wiley & Sos, Toroto, pp. 5-44, 978. Atkiso, L.V., Hrley, P.J., A Itroutio to Numeril Methos with Psl, Aiso-Wesley Pulishig Co., Tokyo, pp. 49-6, 98. Bismo, Setijo, Kumpul Bh Kulih Metoe Numerik, Jurus TGP-FTUI, 999. Seri Kulih Metoe Numerik (Moul 4: Solusi SPAL eg Mtriks Tri-Digol) (6/6)

Bab 3 SISTEM PERSAMAAN LINIER

Bab 3 SISTEM PERSAMAAN LINIER Alis Numerik Bh Mtrikulsi B SISTEM PERSAMAAN LINIER Pedhulu Pd kulih ii k dipeljri eerp metode utuk meelesik sistem persm liier Peelesi sistem persm deg jumlh vriel g tidk dikethui serig ditemui didlm

Lebih terperinci

METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom

METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom METODE NUMERIK Pertemu ke 5 Sistem Persm Liier (SPL) () Rici Kemg Hpsri, S.Si, M.Kom www.rkhcdemy.com/wp Represetsi SPL Betuk umum persm lier deg peuh Dim :,, : koefisie dri persm, d,,..., merupk peuh.

Lebih terperinci

Persamaan Linier Simultan

Persamaan Linier Simultan Persm Liier Simult Elimisi Guss Guss Jord Elimisi_GussJord Persm Liier Simult Persm liier simult dlh sutu etuk persm-persm yg ser ersm-sm meyjik yk vriel es. etuk persm liier simult deg m persm d vriel

Lebih terperinci

METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN.

METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN. METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN http://mul.lecture.u.c.id/lecture/metode-umerik/ Sistem Persm Liier Misl terdpt SPL deg uh vriel es Mtriks: m m m m Peyelesi Sistem Persm Liier

Lebih terperinci

Eliminasi Gauss Gauss Jordan

Eliminasi Gauss Gauss Jordan Persm Liier Simult Elimisi Guss Guss Jor Persm Liier Simult Persm liier simult lh sutu betuk persm-persm p yg secr bersm-sm meyjik byk vribel bebs. Betuk persm liier simult eg m persm vribel bebs pt itulisk

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige

Lebih terperinci

MA SKS Silabus :

MA SKS Silabus : Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7

Lebih terperinci

Bentuk umum persamaan aljabar linear serentak :

Bentuk umum persamaan aljabar linear serentak : BAB III Pers Aljr Lier Seretk Betuk umum persm ljr lier seretk : x + x + + x = x + x + + x = x + x + + x = dim dlh koefisie-koefisie kost t, dlh kosttkostt d dlh yky persm Peyelesi persm lier seretk dpt

Lebih terperinci

Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon

Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon Pertemu : 3 Mteri : Sistem Persm Lier : - Teorem Eksistesi - Reduksi ke Betuk Echelo Stdr Kompetesi : Setelh megikuti perkulih ii mhsisw dihrpk dpt. memhmi kemli pegerti mtriks d trsformsi lier. memhmi

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 967 Tekik Numerik Sistem Lier Trihstuti gustih Big Stui Tekik Sistem Pegtur Jurus Tekik Elektro - FTI Istitut Tekologi Sepuluh Nopember O U T L I N E OBJEKTIF CONTOH SIMPULN 5 LTIHN OBJEKTIF Teori Cotoh

Lebih terperinci

1. SISTEM PERSAMAAN LINEAR DAN MATRIKS

1. SISTEM PERSAMAAN LINEAR DAN MATRIKS Diktt Aljr Lier Sistem Persm Lier d Mtriks. SISTEM PERSAMAAN LINEAR DAN MATRIKS.. PENGANTAR DEFINISI. : PERSAMAAN LINEAR Sutu persm lier deg peuh x, x 2,, x dpt diytk dlm etuk : x + 2 x 2 + + x = (.) dim,

Lebih terperinci

CATATAN KULIAH Pertemuan III: Model-model linier dan Aljabar Matriks (1)

CATATAN KULIAH Pertemuan III: Model-model linier dan Aljabar Matriks (1) CTTN KULIH Pertemu III: Moel-moel liier ljr Mtriks () Tuju mempeljri ljr Mtriks : Memerik sutu r peulis sistem persm yg sigkt wlupu persmy lus sekli Memerik sutu r peguji sutu pemeh eg peekt etermi Meptk

Lebih terperinci

METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1

METODE NUMERIK PERTEMUAN : 5 & 6 M O H A M A D S I D I Q 3 S K S - T E K N I K I N F O R M A T I K A - S1 METODE NUMERIK S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : 5 & 6 PENYELESAIAN PERSAMAAN LINIER SIMULTAN S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D

Lebih terperinci

BAB I SISTEM PERSAMAAN LINEAR

BAB I SISTEM PERSAMAAN LINEAR BAB I SISTEM PERSAMAAN LINEAR Sistem persm ditemuk hmpir di semu cg ilmu pegethu Dlm idg ilmu ukur sistem persm diperluk utuk mecri titik potog eerp gris yg seidg, di idg ekoomi tu model regresi sttistik

Lebih terperinci

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.

Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx. Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f

Lebih terperinci

Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Pertemuan ke-5 Persamaan Linier Simultan. 11 Oktober Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-5 Persm Liier Simult Oktober Metode Elimisi Guss (Gussi Elimitio) Metode Elimisi Gus Sutu metode utuk meyelesik persm liier simult dri [A][X][C] Du lgkh peyelesi peyelesi:: Elimisi mju (Forwrd

Lebih terperinci

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL

III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j

Lebih terperinci

Pertemuan 7 Persamaan Linier

Pertemuan 7 Persamaan Linier Perteu 7 Pers Liier Ojektif:. Prktik ehi teori dsr Pers Liier. Prktik dpt eyelesik Pers Liier. Prktik dpt eut progr erkisr tetg Pers Liier Pers Liier P7. Teori Pers lier dlh seuh pers ljr, yg tip sukuy

Lebih terperinci

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)

SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT) SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki

Lebih terperinci

SOLUSI SOAL ESSAY. No. 1 s.d 15. Jadi, uang tabungan Laila akan menjadi $6 kurang dari pada tabungan Tina setelah 13 minggu.

SOLUSI SOAL ESSAY. No. 1 s.d 15. Jadi, uang tabungan Laila akan menjadi $6 kurang dari pada tabungan Tina setelah 13 minggu. SOUSI SO ESSY No. s.. Solusi: Misly umur yh sy, iu sy, ik lki-lki sy sekrg lh x, y, z, mk x : y : z : 9 : x : z : x z. ( x 4 x 4 Jik : c :, mk c c x 36. ( ri ( (, kit memperoleh: x 36 x 36 z 3 Ji, ik lki-lki

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR http://istirto.stff.ugm..id SISTEM PERSAMAAN LINEAR Systems of Lier Algebri Equtios Sistem Persm Lier http://istirto.stff.ugm..id Au Chpr, S.C., Cle R.P., 99, Numeril Methods for Egieers, d Ed., MGrw-Hill

Lebih terperinci

Penyelesaian Persamaan Linier Simultan

Penyelesaian Persamaan Linier Simultan Peyelesi Persm Liier Simult Persm Liier Simult Persm liier simult dlh sutu betuk persm-persm yg ser bersm-sm meyjik byk vribel bebs Betuk persm liier simult deg m persm d vribel bebs ij utuk i= s/d m d

Lebih terperinci

SISTIM PERSAMAAN LINIER. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

SISTIM PERSAMAAN LINIER. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ SISTIM PERSAMAAN LINIER Agusti Prdjigsih, M.Si. Jurus Mtemtik FMIPA UNEJ gusti.fmip@uej.c.id DEFINISI : Persm Liier Persm Liier dlm peubh,, ditk dlm betuk b dim,,, b R Pemech persm liier dits dlh urut

Lebih terperinci

DETERMINAN MATRIKS dan

DETERMINAN MATRIKS dan DETERMINN MTRIKS d TRNSFORMSI ELEMENTER gusti Prdjigsih, M.Si. Jurus Mtemtik FMIP UNEJ tiprdj.mth@gmil.com DEFINISI Utuk setip mtriks bujursgkr berordo x dpt dikitk deg tuggl sutu bilg rel yg dimk determi.

Lebih terperinci

MetodeLelaranUntukMenyelesaikanSPL

MetodeLelaranUntukMenyelesaikanSPL MetodeLelrUtukMeyelesikSPL Metode elimisi Guss melitk yk glt pemult. Glt pemult yg terjdi pd elimisi Guss dpt meyek solusiyg diperoleh juh drisolusiseery. Ggs metod lelr pd pecri kr persm irljr dptjugditerpkutukmeyelesikspl.

Lebih terperinci

INTEGRASI NUMERIS Numerical Differentiation and Integration

INTEGRASI NUMERIS Numerical Differentiation and Integration http://istirto.st.ugm..ci INTEGRASI NUMERIS Numericl Dieretitio Itegrtio Itegrsi Numeris http://istirto.st.ugm.c.i q Acu q Chpr, S.C., Cle R.P., 99, Numericl Methos or Egieers, E., McGrw-Hill Book Co.,

Lebih terperinci

SISTEM PERSAMAAN LINEAR. Systems of Linear Algebraic Equations

SISTEM PERSAMAAN LINEAR. Systems of Linear Algebraic Equations SISTEM PERSAMAAN LINEAR Systems of Lier Algebri Equtios Sistem Persm Lier Au Chpr, S.C., Cle R.P., 99, Numeril Methods for Egieers, d Ed., MGrw-Hill Book Co., New York. Chpter 7, 8, d 9, hlm. -9. Sistem

Lebih terperinci

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks

Catatan Kuliah 1 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks Ctt Kulih Mtemtik Ekoomi Memhmi d Meglis ljbr Mtriks. Mtriks d Vektor Mtriks Mtriks dlh kumpul bilg, prmeter tu vribel tersusu dlm bris d kolom sehigg terbetuk segi empt. Susu ii bisy diletkk dlm td kurug

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci

Metode Iterasi Gauss Seidell

Metode Iterasi Gauss Seidell Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier

Lebih terperinci

BAB 2 SISTEM BILANGAN DAN KESALAHAN

BAB 2 SISTEM BILANGAN DAN KESALAHAN Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg

Lebih terperinci

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN

BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x

Lebih terperinci

1. Bilangan Berpangkat Bulat Positif

1. Bilangan Berpangkat Bulat Positif N : Zui Ek Sri Kels : NPM : 800 BILANGAN BERPANGKAT DAN BENTUK AKAR A. Pgkt Bilg Bult. Bilg Berpgkt Bult Positif Dl kehidup sehri-hri kit serig eeui perkli ilg-ilg deg fktor-fktor yg s. Mislk kit teui

Lebih terperinci

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang

BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ. Definisi 3.1 Matriks Toeplitz adalah suatu matriks., dengan nilai,, dan indeks yang BAB III NORM MATRIKS PADA HIMPUNAN DARI MATRIKS-MATRIKS TOEPLITZ 3. Mtriks Toeplitz Defiisi 3. Mtriks Toeplitz dlh sutu mtriks [ t ; k, j = 0,,..., ] : T =, k j, deg ili,, d ideks yg diguk setip etriy

Lebih terperinci

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)

III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11) III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg

Lebih terperinci

FAKTORISASI BENTUK ALJABAR

FAKTORISASI BENTUK ALJABAR Mtetik Kels VIII Seester Fktorissi Betuk Aljr FAKTORISASI BENTUK ALJABAR A. Pegerti Suku pd Betuk Aljr. Suku Tuggl d Suku Bk Betuk-etuk seperti,,, p 9p, 9, d diseut Betuk Aljr. Betuk ljr terdiri ts eerp

Lebih terperinci

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ...

1. bentuk eksplisit suku ke-n 2. ditulis barisannya sejumlah berhingga suku awalnya. 3. bentuk rekursi ... Bris d Deret Defiisi Bris bilg didefiisik sebgi fugsi deg derh sl merupk bilg sli. Notsi: f: N R f( ) = Fugsi tersebut dikel sebgi bris bilg Rel { } deg dlh suku ke-. Betuk peulis dri bris :. betuk eksplisit

Lebih terperinci

PENYELESAIAN INTEGRAL RANGKAP DUA DENGAN METODE SIMPSON DAN KUADRAATUR GAUSS

PENYELESAIAN INTEGRAL RANGKAP DUA DENGAN METODE SIMPSON DAN KUADRAATUR GAUSS PENYELESAIAN INTEGRAL RANGKAP DUA DENGAN METODE SIMPSON DAN KUADRAATUR GAUSS IRWAN Jurus Mtemtik, Fkults Sis Tekologi, UINAM e-mil:iw.ui@gmil.om ABSTRAK Ifo: Jurl MSA Vol. 2 No. 1 Eisi: Juri Jui 2014 Artikel

Lebih terperinci

RENCANA PELAKSANAAN PERKULIAHAN

RENCANA PELAKSANAAN PERKULIAHAN Lesso Study FMIPA UNY RENCANA PELAKSANAAN PERKULIAHAN MATA KULIAH : ALJABAR LINEAR II SEMESTER : III TOPIK : NILAI EIGEN DAN VEKTOR EIGEN SUB TOPIK : NILAI EIGEN DAN VEKTOR EIGEN WAKTU : X 5 A. Stdr Kompetesi:

Lebih terperinci

Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0

Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0 LJBR MTRIKS Bil kit mempui sutu sistem persm liier + + z = + + z = + z = Mk koefisie tersebut di ts disebut MTRIKS, d secr umum dpt ditulisk sbb : Jjr bilg tersebut di ts disebut MTRIKS, d secr umum dpt

Lebih terperinci

BAB II LANDASAN TEORI. pengambilan keputusan baik yang maha penting maupun yang sepele.

BAB II LANDASAN TEORI. pengambilan keputusan baik yang maha penting maupun yang sepele. 5 BAB II LANDASAN TEORI. Musi d Pegmil Keputus Setip detik, setip st, musi sellu dihdpk deg mslh pegmil keputus ik yg mh petig mupu yg sepele. Bgimpu sepeley sutu mslh pegmil keputus, otk musi tetp melkuk

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo

SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI. Prasetyo Budi Darmono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo SOLUSI SISTEM PERSAMAAN LINEAR DENGAN METODE JACOBI Prsetyo Budi Drmoo Jurus Pedidik Mtemtik FKIP Uiversits Muhmmdiyh Purworejo Abstrk Persm lier dlm vribel 1, 2, 3,.. sebgi sebuh persm yg dpt diytk dlm

Lebih terperinci

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1

Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1 Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*

Lebih terperinci

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit

Lebih terperinci

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P

dan mempunyai vektor normal n =(a b c). Misal P(x,y,z) suatu titik berada pada bidang. 1. Persamaan bidangnya adalah n P P Rug Vektor Tuju:. Megigt kembli persm gris d bidg di rug.. Memhmi ksiom rug vektor, kombisi liier d rug bgi.. Megigt kembli pegerti bebs d bergtug liier, bsis d dimesi. Arti geometris dri determi Jik A

Lebih terperinci

BAB V INTEGRAL DARBOUX

BAB V INTEGRAL DARBOUX Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower

Lebih terperinci

Pendahuluan Pengantar Metode Simpleks. Fitriani Agustina, Math, UPI

Pendahuluan Pengantar Metode Simpleks. Fitriani Agustina, Math, UPI Pedhulu Pegtr Metode Sipleks Fitrii Agusti, Mth, METODE SIMPLEKS (PRIMAL) Mslh Progr Lier Mslh Progr Lier dl Betuk Mtriks Ketetu dl Betuk Stdr Mslh PL Betuk Stdr Mslh Progr Lier Betuk Stdr Pets Lier Betuk

Lebih terperinci

Modul 3: Regresi Linier dengan Metode Kuadrat Terkecil

Modul 3: Regresi Linier dengan Metode Kuadrat Terkecil eri Mtemtik Terp utuk Moul : Regresi Liier eg Metoe Kurt Terkeil A. Pehulu Metoe Kurt Terkeil Metoe kurt terkeil, g lebih ikel eg m Lest-qures Metho, lh slh stu metoe peekt g plig petig lm ui ketekik utuk:

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedr Guw Semester II, 2016/2017 24 Februri 2017 9.6 Deret Pgkt Kulih yg Llu Meetuk selg kekoverge deret pgkt 9.7 Opersi pd Deret Pgkt Melkuk opersi pd deret pgkt yg dikethui jumlhy

Lebih terperinci

1. HIMPUNAN. Kadang-kadang suatu himpunan hanya dapat dinyatakan dengan salah satu cara, tetapi kadang-kadang juga dapat dinyatakan dengan keduanya.

1. HIMPUNAN. Kadang-kadang suatu himpunan hanya dapat dinyatakan dengan salah satu cara, tetapi kadang-kadang juga dapat dinyatakan dengan keduanya. 1. HIMUNN Himpu iefiisik segi kumpul ojek-ojek yg ere Liu 1986. tu himpu ojek eg syrt keggot tertetu. otoh : { 12345} { x ult 1 x 5 } Jik sutu ojek x merupk ggot ri himpu mk itulisk x i : x lh ggot tu

Lebih terperinci

syarat atau nilai awal a, , dengan solusi umum pola barisan aritmetika dan a, solusi umum pola barisan aritmetika tingkat tiga

syarat atau nilai awal a, , dengan solusi umum pola barisan aritmetika dan a, solusi umum pola barisan aritmetika tingkat tiga SUKU KE- BARISAN ARITMETIKA TINGKAT DUA, TIGA DAN EMPAT DENGAN PENDEKATAN AKAR KARAKTERISTIK Drs Sumro Imil, MP ABSTRAK Utu memeuhi eutuh lm pegemg pemhm terhp sustsi mteri ris ritmeti, ji ii memeri uri

Lebih terperinci

Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER

Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER Modul 8. (Pertemu s/d 6) DERET FOURIER 8. FUNGSI PERIODIK DAN FUNGSI KONTINU TERPOTONG Defiisi Fugsi f diseut fugsi periodik il terdpt p > sedemiki sehigg utuk setip erlku f ( p) f ( ). Nili p > terkecil

Lebih terperinci

Sistem Bilangan dan Kesalahan. Metode Numerik

Sistem Bilangan dan Kesalahan. Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c

Lebih terperinci

TEOREMA DERET PANGKAT

TEOREMA DERET PANGKAT TEOEMA DEET PANGKAT Kosep Dsr Deret pgkt erupk sutu etuk deret tk higg 3 + ( + + 3( +... ( disusik,, d koefisie i erupk ilg rel. Julh prsil utuk suku pert etuk di ts dlh s yg dpt ditulisk segi s ( + (

Lebih terperinci

Hendra Gunawan. 19 Februari 2014

Hendra Gunawan. 19 Februari 2014 MA0 MATEMATIKA A Hedr Guw Semester II, 03/0 9 Februri 0 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kk kekoverge

Lebih terperinci

Pendahuluan Aljabar Vektor Matrik

Pendahuluan Aljabar Vektor Matrik Pedhulu Aljr Vektor trik Defiisi: trik A erukur x ilh sutu susu gk dl ersegi et ukur x, segi erikut: = A tu A = ( ij ) Utuk eytk elee trik A yg ke (i,j), yitu ij, diguk otsi (A) ij. Ii errti ij = (A) ij.

Lebih terperinci

Modul 3: Regresi Linier dengan Metode Kuadrat Terkecil

Modul 3: Regresi Linier dengan Metode Kuadrat Terkecil eri Mtemtik Terp utuk Moul : Regresi Liier eg Metoe Kurt Terkeil A. Pehulu Metoe Kurt Terkeil Metoe kurt terkeil, g lebih ikel eg m Lest-qures Metho, lh slh stu metoe peekt g plig petig lm ui ketekik utuk:

Lebih terperinci

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs Diijik memperyk demi kepetig pedidik deg tetp mectumk lmt situs LATIH UN IPA. 00-00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik

Lebih terperinci

DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA

DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA DEFINISI INTEGRAL RIEMANN MELALUI PENDEKATAN BARISAN FUNGSI TANGGA Muslih 1), Sutrim 2) d Supriydi Wiowo 3) 1,2,3) Jurus Mtemtik FMIPA UNS, muslih_mus@yhoo.om, zutrim@yhoo.om, supriydi_w@yhoo.o.id Astrk

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds

Lebih terperinci

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs

Diijinkan memperbanyak demi kepentingan pendidikan dengan tetap mencantumkan alamat situs Diijik memperyk demi kepetig pedidik deg tetp metumk lmt situs LATIH UN IPS. 008 00 KATA PENGANTAR Alhmdulillh peulis pjtk kehdirt Allh SWT., Ats limph rhmt, erkh, d hidyh-ny sehigg peulis dpt meyelesik

Lebih terperinci

BAB III LIMIT FUNGSI DAN KEKONTINUAN

BAB III LIMIT FUNGSI DAN KEKONTINUAN BAB III LIMIT FUNGSI DAN KEKONTINUAN 3. Pedhulu Seelu hs liit fugsi di sutu titik terleih dhulu kit k egti perilku sutu fugsi f il peuh edekti sutu ilg ril tertetu. Misl terdpt sutu fugsi f() = + 4. Utuk

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA0 MATEMATIKA A Hedr Guw Semester II, 06/07 0 Februri 07 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kekoverge deret

Lebih terperinci

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh TE946 Dr Sitem Pegtur Kriteri Ketil Routh Ir. Jo Prmudijto, M.Eg. Juru Tekik Elektro FTI ITS Telp. 5947 Fx.597 Emil: jo@ee.it.c.id Dr Sitem Pegtur - 7 Ojektif: Koep Ketil Ketil Routh Proedur Ketil Routh

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008

Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008 Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+

Lebih terperinci

BAB IV INTEGRAL RIEMANN

BAB IV INTEGRAL RIEMANN Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x

Lebih terperinci

PENGANTAR ANALISIS REAL. Untuk Memenuhi Tugas Mata Kuliah Pengantar Analisi Real

PENGANTAR ANALISIS REAL. Untuk Memenuhi Tugas Mata Kuliah Pengantar Analisi Real Resume PENGANTAR ANALISIS REAL Utuk Memeuhi Tugs Mt Kulih Pegtr Alisi Rel Disusu Oleh: M. ADIB JAUHARI D. P (0860009) MUHTAR SAFI I (086003) BOWO KRISTANTO (086004) ANA MARDIATUS S (086005) OKTA ARFIYANTA

Lebih terperinci

LATIHAN UN MATEMATIKA IPA

LATIHAN UN MATEMATIKA IPA LATIHAN UN MATEMATIKA IPA LATIH UN IPA. 00-00 DAFTAR ISI KATA PENGANTAR... DAFTAR ISI.... Pgkt Rsiol, Betuk Akr d Logritm.... Persm Kudrt...0. Sistem Persm Lier... 4. Trigoometri I...8 5. Trigoometri II...7

Lebih terperinci

Catatan Kecil Untuk MMC

Catatan Kecil Untuk MMC Ctt Keil Utuk MMC Judul : MMC (Metode Meghitug Cept), Tekik ept d uik dlm megerjk sol mtemtik utuk tigkt SMA. Peulis : It Puspit. Peerit : PT NIR JAYA Bdug. Thu :. Tel : 8 + 5 hlm. Berikut dlh tt keil

Lebih terperinci

Modul II Limit Limit Fungsi

Modul II Limit Limit Fungsi Modul II Limit Kosep it merupk sutu kosep dsr yg petig utuk memhmi klkulus dieresil d itegrl Oleh kre itu seelum kit mempeljri leih ljut tetg klkulus diresil d itegrl, mk kit terleih dhulu hrus mempeljri

Lebih terperinci

PERSAMAAN LINIER. b a dimana : a, b, c, d adalah

PERSAMAAN LINIER. b a dimana : a, b, c, d adalah PERSAMAAN LINIER ). Persmn Linier Stu Vriel Bentuk umum : x, imn n konstnt Penyelesin : x Contoh : ). 5x x x 5 8 ). x 8 x x 8 ). Persmn Linier Vriel Bentuk umum : ). Persmn Linier Tig Vriel Bentuk umum

Lebih terperinci

Rangkuman Materi dan Soal-soal

Rangkuman Materi dan Soal-soal Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy

Lebih terperinci

Rangkuman Materi dan Soal-soal

Rangkuman Materi dan Soal-soal Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy

Lebih terperinci

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real

BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES. 3.1 Integral Riemann-Stieltjes dari Fungsi Bernilai Real BAB III SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES 3.1 Itegrl Riem-Stieltjes dri Fugsi Berili Rel Pd seelumy telh dihs megei eerp kosep dsr, dim kosep-kosep ii merupk slh stu teori pedukug yg tiy k erper segi

Lebih terperinci

MATRIKS. Create by Luke

MATRIKS. Create by Luke Defiisi Mtris MTRIS Crete y Lue Seuh mtri dlh sergi eleme dlm etu persegi pg Eleme e-(i,) i dri mtris erd diris e-i d olom e- dri rgi terseut Order (uur) dri seuh mtri dit seesr (m x ) i mtris terseut

Lebih terperinci

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam

SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 (A & B) Dosen: Dr. Asep Juarna Jumlah Soal: 3 Uraian Tanggal Ujian: 02/03/12 Waktu Ujian: 2 jam SOAL UJIAN AKHIR MATEMATIKA INFORMATIKA 4 A & B Dose: Dr. Asep Jur Jumlh Sol: Uri Tggl Uji: // Wktu Uji: jm jik. Solusi t dlh: t + log, yg dpt dibuktik sbb: t jik t t + [t/ + ] + t/ + t/4 + t/8 + 4 t/

Lebih terperinci

Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan

Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan Ali Ketil 4 Ali Ketil.. Pedhulu Hl yg mt petig dlm dei item kotrol dlh mlh tilit item. Buk hl yg rhi lgi hw pokok tuju terpetig dlm li d dei kotrol dlh meiptk utu item yg til. Sutu item diktk til pil teript

Lebih terperinci

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY Oleh : Yusup Fkults Ilmu Komputer, Uversts AKI Semrg Astrt The frto of No Homoge Lerty Ajustmet System towr Cholesky Doule

Lebih terperinci

Bab 3 SISTEM PERSAMAAN LINEAR

Bab 3 SISTEM PERSAMAAN LINEAR B SISTEM PERSAMAAN LINEAR Sejuh ii, hy diperlkuk sistem persm lier yg terdiri dri persm yg yky sm deg vriel, d hy mempuyi mtriks koefisie tk sigulr. Tepty, ii dlh sistem yg sellu mempuyi sutu peyelesi

Lebih terperinci

Untuk matriks diperoleh bahwa ú

Untuk matriks diperoleh bahwa ú B DETERMINAN Ekspsi Lple Bris Pertm Determi (determit) dri sutu mtriks persegi ts field F dlh sutu eleme dri field F Terleih dhulu k ditujukk gim meghitug determi dri mtriks erukur d DEFINISI Dierik mtriks

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 97 Penulisn Moul e Lerning ini iii oleh n DIPA BLU UNY TA Sesui engn Surt Perjnjin Pelksnn e Lerning Nomor 99.9/H4./PL/ Tnggl

Lebih terperinci

MATA KULIAH : MATEMATIKA II POKOK BAHASAN :

MATA KULIAH : MATEMATIKA II POKOK BAHASAN : MT KULIH : MTEMTIK II POKOK HSN :. INTEGRL TK TENTU. INTEGRL TERTENTU SEGI LIMIT JUMLH. SIFT-SIFT INTEGRL TERTENTU. TEOREM-TEOREM DSR DLM KLKULUS. EERP TERPN DLM INTEGRL TERTENTU. INTEGRL NUMERIK UKU PEGNGN

Lebih terperinci

DERET PANGKAT TAK HINGGA

DERET PANGKAT TAK HINGGA DERET PANGKAT TAK HINGGA TEOREMA-TEOREMA PENTING TERKAIT DERET PANGKAT TEOREMA-TEOREMA PENTING. Itegrsi d diferesisi deret pgkt dpt dilkuk per suku, yitu: ( ) d p q d d ( ) q p d d ( ) ( ) d, d p, q Selg

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metoe Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metoe Elms Guss Tuju : smult Mempeljr metoe Elms Guss utuk peyeles persm ler Dsr Teor : Metoe Elms Guss merupk metoe

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOLUSI REDIKSI UJIAN NASIONAL MATEMATIKA IS TAHUN AKET ilih Gd: ilihlh stu jw g plig tept.. Sit: p q p q Jdi, igkr dri pert dlh emerith meghpusk keijk susidi h kr mik tetpi d org g hidup tidk sejhter.

Lebih terperinci

BILANGAN BERPANGKAT DAN BENTUK AKAR

BILANGAN BERPANGKAT DAN BENTUK AKAR BILANGAN BERPANGKAT DAN BENTUK AKAR. Sift Opersi Bilg Bult Berpgkt Defiisi Pgkt Bult Positif Jik dlh ilg rel (yt) d dlh ilg sli (ilg ult positif), k... seyk fktor deg = pgkt tu ekspoe = ilg pokok/dsr/sis

Lebih terperinci

BAB 12 METODE SIMPLEX

BAB 12 METODE SIMPLEX METODE ANAISIS PERENCANAAN Mteri 9 : TP 3 SKS Oleh : Ke Mrti Ksikoe BAB METODE SIMPE Metode Simplex dlh metode pemrogrm liier yg mempuyi peubh (vrible) byk, sehigg dimesiy lebih dri 3. Metode simplex dpt

Lebih terperinci

Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah

Pada Bab 12 kita mengasumsikan bahwa f kontinu pada [a, b] dan mendefinisikan f(x) dx sebagai supremum dari himpunan semua jumlah luas daerah 13. INTEGRAL RIEMANN 13.1 Jumlh Riem Ats d Jumlh Riem Bwh Pd Bb 12 kit megsumsik bhw f kotiu pd [, b] d medefiisik itegrl b f(x) dx sebgi supremum dri himpu semu jumlh lus derh persegi-pjg kecil di bwh

Lebih terperinci

Bentuk Kanonik Persamaan Ruang Keadaan. Institut Teknologi Sepuluh Nopember

Bentuk Kanonik Persamaan Ruang Keadaan. Institut Teknologi Sepuluh Nopember Betuk Koik Persm Rug Ked Istitut Tekologi Sepuluh Nopember Pegtr Mteri Betuk Koik Observble Betuk Koik Jord Cotoh Sol Rigks Ltih Asesme Pegtr Mteri Cotoh Sol Ltih Rigks Pd bgi ii k dibhs megei Persm Ked

Lebih terperinci

24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain.

24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain. // Alj Lie Elemete MUGE SKS Silus : B I Mtiks d Oesi B II Detemi Mtiks B III Sistem Pesm Lie B IV Vekto di Bidg d di Rug B V Rug Vekto B VI Rug Hsil Kli Dlm B VII Tsfomsi Lie B VIII Rug Eige // :8 MUGE

Lebih terperinci

Sifat-sifat Super Matriks dan Super Ruang Vektor

Sifat-sifat Super Matriks dan Super Ruang Vektor Sift-sift Super Mtriks d Super Rug Vektor Cturiyti Jurus Pedidik Mtetik FMIPA UNY wcturiyti@yhoo.co Abstrk Sutu triks yg elee-eleey erupk bilg disebut deg triks sederh tu lebih dikel deg triks. Sedgk supertriks

Lebih terperinci

4. SISTEM PERSAMAAN LINEAR

4. SISTEM PERSAMAAN LINEAR Persipn UN / Beh SKL http://vigt.worpress.om SMA Negeri Mlng Pge. SISTEM PERSAMAAN LINEAR A. Sistem Persmn Liner Du Vriel (SPLDV). Bentuk umum :. Dpt iselesikn engn metoe grfik, sustitusi, eliminsi, n

Lebih terperinci

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.

Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc. Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh

Lebih terperinci

juga dinyatakan sebagai a n atau a n n n 0,1, 2, 3,... Pada barisan dibagi menjadi barisan konvergen dan barisan divergen.

juga dinyatakan sebagai a n atau a n n n 0,1, 2, 3,... Pada barisan dibagi menjadi barisan konvergen dan barisan divergen. MATERI: ) Perbed bris d deret b) Defiisi d teorem tetg deret c) Deret suku positif d uji kovergesiy d) Deret hiperhrmois e) Deret ukur f) Deret ltertig d uji kovergesiy g) Deret kus d opersiy h) Deret

Lebih terperinci

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ

( ) τ k τ HASIL DAN PEMBAHASAN. Perumusan Penduga Bagi θ HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Mislk N dlh proses Poisso pd itervl [, deg rt µ yg kotiu mutlk, d fugsi itesits λ yg teritegrlk lokl Sehigg, utuk setip himpu Borel terbts B mk: µ ( B Ε N( B λ(

Lebih terperinci

EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen.

EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen. EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA theresivei.wordpress.o A. BENTUK PANGKAT BULAT. Pgkt Bult Positif Igt: 5 5 = (-) = -() = Defiisi Bilg erpgkt ult positif : Mislk ilg ult positif d ilg Rel,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bmbg Irwto Jurus Mtemtik FMIPA UNDIP Abstct I this er, it ws lered of the ecessry d sufficiet coditio for

Lebih terperinci

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua ) A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu

Lebih terperinci

APLIKASI PROGRAM MATLAB DALAM MEMECAHKAN KASUS FISIKA: DINAMIKA SISTEM MASSA DAN PEGAS (PRINSIP NILAI DAN VEKTOR EIGEN)

APLIKASI PROGRAM MATLAB DALAM MEMECAHKAN KASUS FISIKA: DINAMIKA SISTEM MASSA DAN PEGAS (PRINSIP NILAI DAN VEKTOR EIGEN) Jurl Pedidik Fisik Vol No, Mret 5 ISSN 55-5785 http://jourlui-luddicid/ideksphp/pedidikfisik APLIKASI PROGRAM MATLAB DALAM MEMECAHKAN KASUS FISIKA: DINAMIKA SISTEM MASSA DAN PEGAS (PRINSIP NILAI DAN VEKTOR

Lebih terperinci