BAB I PENDAHULUAN Latar Belakang Masalah

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN Latar Belakang Masalah"

Transkripsi

1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pembahasan tentang persamaan diferensial parsial terus berkembang baik secara teori maupun aplikasi. Dalam pemodelan matematika pada permasalahan di bidang ilmu lain seperti bidang fisika, bidang teknik dan bidang kimia banyak yang menggunakan persamaan diferensial parsial. Salah satu contoh fenomena alam yang dibuat pemodelan matematika adalah peristiwa transportasi yang terjadi pada fluida yang dimodelkan menjadi persamaan konveksi difusi. Beberapa persamaan diferensial dapat diselesaikan secara analitis. Namun dalam kenyataannya, dalam beberapa kasus untuk mencari penyelesaian persamaan konveksi difusi secara analitis merupakan hal yang cukup rumit. Oleh karena itu digunakan metode-metode numerik untuk membantu penyelesaiannya. Dalam tesis ini yang merupakan kajian ulang dari jurnal yang berjudul "Stabilized Least Squares Finite Element Method for 2D and 3D Convection-Diffusion" yang ditulis oleh V.D. Pireira (2014), akan diuraikan solusi dari persamaan konveksi difusi dengan menggunakan metode elemen hingga Least Squares. Metode elemen hingga merupakan salah satu metode numerik yang umum dipergunakan dalam mencari solusi persamaan diferensial. Di antara beberapa jenis metode elemen hingga yang ada, metode Least Squares lebih sering dipergunakan khususnya dalam bidang fluid mechanics dan electromagnetics. Metode elemen hingga Least Square didasarkan pada meminimalkan residu pangkat dua. Sebagai ilustrasi, diperhatikan persamaan diferensial berikut Au = f, pada Ω, Bu = 0, pada batas Ω, (1.1) dengan A merupakan operator diferensial linier, B merupakan operator batas, u 1

2 2 merupakan vektor tak bebas, f merupakan vektor gaya dan Ω merupakan domain. Pertama misalkan solusi pendekatan dari u u φ j (x)u j, j = 1, 2,..., n, dengan u j merupakan parameter, φ j (x) merupakan fungsi trial (dasar) dan vektor x merupakan variabel bebas. Selanjutnya, mencari peminimal dari I(u) = (Au f) 2 dω. Kemudian solusi Least Square dihitung dari persamaan variasi berikut (Aφ i ) T (Au f)dω. Ω Ω Meskipun formulasi pada metode Least Square sederhana, tapi memberikan manfaat yang signifikan. (1)Universality. Sudah menjadi hal yang umum dalam mengerjakan persamaan diferensial yang berbeda digunakan skema numerik yang berbeda pula. Dalam literatur beda hingga misalnya, untuk mengerjakan persamaan eliptik digunakan beda hingga pusat, untuk mengerjakan persamaan hiperbolik digunakan skema upwind, serta skema khusus lainnya yang dipergunakan pada persamaan diferensial tertentu. Dalam literatur elemen hingga terdapat banyak metode Galerkin yang berbeda seperti Classic Galerkin, Galerkin Mixed, Petrov-Galerkin dan lain sebagainya, yang semuanya ditujukan untuk permasalahan yang berbeda dan masing-masing memiliki struktur yang berbeda pula. Lain halnya dengan metode elemen hingga Least Square yang memiliki formulasi sama untuk menjadi solusi numerik bagi semua tipe persamaan diferensial. (2) Efficiency. Metode elemen hingga Least Square cocok untuk menyelesaikan operator diferensial orde satu. Dalam bidang teknik dan ilmu terapan, persamaan yang diperoleh berdasar pada hukum-hukum fisika merupakan persamaan orde satu atau dapat dirubah menjadi persamaan orde satu. Namun, jika menggunakan metode konvensional sulit untuk menyelesaikan operator diferensial orde satu karena pada umumnya akan mengarah kepada matrik nonsimetris. Di sisi lain, metode least

3 3 Square selalu mengarah pada matrik simetris definit positif yang dapat diselesaikan secara efisien menggunakan metode iterasi matrik bebas seperti metode Preconditioned Conjugate Gradient. (3) Optimality. Menurut Jiang, dapat ditunjukkan bahwa metode elemen hingga Least Square merupakan solusi pendekatan yang terbaik dimana error dari solusi memiliki orde yang sama dengan error interpolasi. Dalam bidang teknik dan terapan, sangatlah penting untuk mengevaluasi keakuratan dari solusi pendekatan. Pada metode ini, indikator error diperoleh dari persamaan residu yang diminimalkan oleh prosedur yang mana merupakan indikator yang baik untuk mencapai solusi optimal. (4) Simulasi bersama. Karena metode Least Square merupakan metode yang unified untuk mendekati solusi dari fenomena fisika yang berbeda, satu algoritma, satu kode dan satu simulasi untuk menganalisis disiplin ilmu yang berbeda seperti perpindahan panas dan interaksi padat-fluida. (5) Seperti yang sudah disebutkan sebelumnya bahwa metode Least Square diformulasikan dalam set yang umum. Oleh karena itu metode ini dapat diprogram secara sistematis, misalnya untuk aplikasi yang baru hanya perlu merubah atau menambahkan koefisien, vektor beban dan kondisi batas untuk sistem orde satu. Hal ini dapat mengurangi waktu, biaya dan error pemrograman dalam pengembangan program Tujuan Penelitian Tujuan dari penelitian ini adalah untuk mempelajari metode elemen hingga Least Squares yang diterapkan untuk mencari solusi pendekatan persamaan konveksi difusi. Dilanjutkan dengan menyusun algoritma pemrograman dan implementasi program dengan menggunakan software Matlab. Diharapkan metode ini dapat menjadi alternatif untuk menyelesaikan aplikasi dari persamaan konveksi difusi.

4 Tinjauan Pustaka Dalam penyusunan Tesis ini, diperlukan adanya panduan dari sejumlah literatur. Jurnal utama dalam tesis ini berjudul "Stabilized Least Squares Finite Element Method for 2D and 3D Convection-Diffusion" yang ditulis oleh Pireira (2014). Untuk dasar teori terkait persamaan diferensial digunakan buku Mayer Humi (2006) dan Perko (2000). Sedangkan untuk mempelajari metode elemen hingga Least Squares termasuk beberapa metode pendukung dipergunakan buku Bochev & Gunzburger (2009), Jiang (1998) dan Chung (2002). Teori terkait persamaan konveksi difusi dipergunakan buku Bejan (2013) dan Jiji (2006). Sedangkan contoh implementasi dari persamaan konveksi difusi diperoleh dari jurnal Kumar (2009) Metode Penelitian Metode yang dipergunakan dalam penelitian ini adalah kajian pustaka dari beberapa buku dan paper terkait. Langkah-langkah yang akan dipergunakan adalah sebagai berikut 1. Mempelajari persamaan konveksi difusi. 2. Mempelajari metode elemen hingga Least Squares beserta aplikasinya pada kasus yang sederhana. Selanjutnya memperluas penerapan dari metode Least Squares. Mempelajari metode pendukung yang nantinya dipergunakan juga dalam penelitian ini. Selanjutnya mencari solusi persamaan konveksi difusi dengan menggunakan metode Least Squares. 3. Merancang algoritma pemrograman dan mengimplementasikannnya ke dalam bahasa pemrograman dengan menggunakan software Matlab. Program yang dibuat nantinya akan digunakan untuk mensimulasikan solusi dari beberapa contoh kasus persamaan konveksi difusi. 4. Membuat kesimpulan dan menyusun laporan hasil penelitian.

5 Sistematika Penulisan Gambaran dari tesis ini secara menyeluruh, dapat diperhatikan pada sistematika penulisan sebagai berikut. BAB I PENDAHULUAN berisikan latar belakang, tujuan penelitian, tinjauan pustaka, metode penelitian dan sistematika penulisan. BAB II LANDASAN TEORI yang memuat teori yang dipergunakan sebagai alat yang menunjang pembahasan bab selanjutnya. Landasan teori yang diberikan meliputi persamaan diferensial, sistem persamaan diferensial dan metode elemen hingga Least Squares pada persamaan diferensial orde satu. BAB III PEMBAHASAN merupakan pembahasan mengenai persamaan konveksi difusi, metode elemen hingga Least Squares beserta beberapa metode pendukungnya yang kemudian dilanjutkan dengan penyelesaian persamaan konveksi difusi dengan metode elemen hingga Least Squares. BAB IV HASIL berisikan algoritma pemrograman dan implementasi dalam bahasa pemrograman dengan menggunakan software Matlab. BAB V PENUTUP meliputi kesimpulan dari hasil penelitian dan saran untuk pengembangan penelitian selanjutnya.

6 BAB II DASAR TEORI Topik yang akan dibahas dalam tesis ini adalah metode elemen hingga least squares yang diterapkan pada persamaan konveksi difusi. Elemen hingga merupakan salah satu metode yang umum dipergunakan untuk menyelesaikan persamaan diferensial. Secara umum, elemen hingga diklasifikasikan dalam tiga kelompok yaitu Metode Rayleigh-Ritz, Metode Galerkin dan Metode Least Squares. Menurut Jiang (1998), Metode Least Squares memiliki lebih banyak kelebihan untuk diterapkan dalam menyelesaikan persamaan di bidang Fluid mechanics dan Electromagnetics. Berikut diberikan beberapa definisi dan teorema yang mendasari pembahasan mengenai metode tersebut Persamaan Diferensial Persamaan diferensial adalah persamaan yang memuat derivatif dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas. Definisi (Mayer Humi, 1991) Suatu persamaan diferensial dikatakan linier apabila semua variabel tak bebas dan derivatif-derivatifnya dalam persamaan tersebut memenuhi syarat-syarat sebagai berikut : 1. variabel-variabel tak bebas dan derivatif-derifatifnya muncul dalam derajat satu. 2. tidak ada perkalian antara variabel tak bebas dengan derivatifnya. 3. tidak ada fungsi transenden dari variabel-variabel tak bebas. Selanjutnya persamaan diferensial dikatakan non linier apabila tidak memenuhi paling sedikit satu syarat di atas. 6

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama dipelajari dan berkembang pesat. Perkembangan ilmu matematika tidak terlepas dari perkembangan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis. Selain itu, literatur-literatur

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang memiliki banyak manfaat, diantaranya sebagai salah satu ilmu bantu yang sangat penting dalam kehidupan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut dapat dikembangkan melalui pemodelan matematika. Sehingga dengan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Di antara beberapa disiplin ilmu, fisika

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Teknikom : Vol. No. (27) E-ISSN : 2598-2958 PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya Utama,

Lebih terperinci

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Teknikom : Vol. No. (27) ISSN : 2598-2958 (online) Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Dinamika fluida adalah salah satu disiplin ilmu yang mengkaji perilaku dari zat cair dan gas dalam keadaan diam ataupun bergerak dan interaksinya dengan benda padat.

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Solusi multivalued dapat muncul dalam masalah-masalah fisika. Masalahmasalah yang memerlukan perhitungan solusi multivalued antara lain masalah gelombang dispersi,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan diferensial adalah persamaan yang memuat derivatif dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas. Persamaan diferensial

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu bentuk model matematika adalah berupa persamaan diferensial. Persamaan diferensial sering digunakan dalam memodelkan suatu permasalahan untuk menggambarkan

Lebih terperinci

BAB I PENDAHULUAN. tesis ini. Selain itu, literatur-literatur yang mendasari tesis ini akan diuraikan

BAB I PENDAHULUAN. tesis ini. Selain itu, literatur-literatur yang mendasari tesis ini akan diuraikan 1 BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis ini. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis ini. Selain itu, literatur-literatur

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

BAB I PENDAHULUAN. dengan ilmu rekayasa struktur dalam bidang teknik sipil. Perkembangan ini

BAB I PENDAHULUAN. dengan ilmu rekayasa struktur dalam bidang teknik sipil. Perkembangan ini BAB I PENDAHULUAN I. Umum Saat ini perkembangan ilmu pengetahuan sudah sangat pesat, begitu juga dengan ilmu rekayasa struktur dalam bidang teknik sipil. Perkembangan ini didukung oleh kemajuan teknologi

Lebih terperinci

BAB 1 PENDAHULUAN. metode REP menggunakan patch sebagai media untuk. perhitungannya.

BAB 1 PENDAHULUAN. metode REP menggunakan patch sebagai media untuk. perhitungannya. BAB 1 PENDAHULUAN 1. 1. Umum Penyimpangan atau error solusi tidak dapat dihindarkan dalam penggunaan metode elemen hingga, baik karena modelisasi yang kurang tepat, pemakaian integrasi numerik, ketidaktepatan

Lebih terperinci

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Ditinjau dari bidang ilmu pengetahuan, teori persamaan diferensial merupakan suatu cabang analisis matematika yang banyak dipakai dalam kehidupan nyata,

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Berikut adalah diagram alir penelitian konduksi pada arah radial dari pembangkit energy berbentuk silinder. Gambar 3.1 diagram alir penelitian konduksi

Lebih terperinci

MATA KULIAH ANALISIS NUMERIK

MATA KULIAH ANALISIS NUMERIK BAHAN AJAR MATA KULIAH ANALISIS NUMERIK Oleh: M. Muhaemin Muhammad Saukat JURUSAN TEKNIK DAN MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN 2009 Bahan Ajar Analisis

Lebih terperinci

Triyana Muliawati, S.Si., M.Si.

Triyana Muliawati, S.Si., M.Si. SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. triyana.muliawati@ma.itera.ac.id 1. Pengenalan Metode

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Aryati dkk.(2003) menyatakan bahwa persamaan diferensial adalah formulasi matematis dari masalah di berbagai bidang kehidupan. Persamaan diferensial sering

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial berperan penting dalam kehidupan, sebab banyak permasalahan pada dunia nyata dapat dimodelkan dengan bentuk persamaan diferensial. Ada dua jenis

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

BAB 1 PENDAHULUAN. luas dalam berbagai bidang pendidikan di Indonesia. Banyak universitas di Indonesia

BAB 1 PENDAHULUAN. luas dalam berbagai bidang pendidikan di Indonesia. Banyak universitas di Indonesia 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam era globalisasi sekarang ini, peranan teknologi informasi sudah sangat luas dalam berbagai bidang pendidikan di Indonesia. Banyak universitas di Indonesia telah

Lebih terperinci

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA A III PEMODELAN DENGAN METODE VOLUME HINGGA 3.1 Teori Dasar Metode Volume Hingga Computational fluid dnamic atau CFD merupakan ilmu ang mempelajari tentang analisa aliran fluida, perpindahan panas dan

Lebih terperinci

ANALISIS PERPINDAHAN KALOR YANG TERJADI PADA RECTANGULAR DUCT DENGAN ANSYS 11 SP1 DAN PERHITUNGAN METODE NUMERIK

ANALISIS PERPINDAHAN KALOR YANG TERJADI PADA RECTANGULAR DUCT DENGAN ANSYS 11 SP1 DAN PERHITUNGAN METODE NUMERIK TUGAS AKHIR ANALISIS PERPINDAHAN KALOR YANG TERJADI PADA RECTANGULAR DUCT DENGAN ANSYS 11 SP1 DAN PERHITUNGAN METODE NUMERIK Disusun: FATHAN ROSIDI NIM : D 200 030 126 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

ANALISIS MODEL MATEMATIKA PROSES PENYEBARAN LIMBAH CAIR PADA AIR TANAH

ANALISIS MODEL MATEMATIKA PROSES PENYEBARAN LIMBAH CAIR PADA AIR TANAH ANALISIS MODEL MATEMATIKA PROSES PENYEBARAN LIMBAH CAIR PADA AIR TANAH Oleh: 1 Arif Fatahillah, 2 M. Gangga D. F. F. P 1,2 Program Studi Pendidikan Matematika FKIP Universitas Jember e-mail: arif.fkip@unej.ac.id

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

BAB-4. METODE PENELITIAN

BAB-4. METODE PENELITIAN BAB-4. METODE PENELITIAN 4.1. Bahan Penelitian Untuk keperluan kalibrasi dan verifikasi model numerik yang dibuat, dibutuhkan data-data tentang pola penyebaran polutan dalam air. Ada beberapa peneliti

Lebih terperinci

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi yang begitu pesat dewasa ini sangat mempengaruhi jumlah ketersediaan sumber-sumber energi yang tidak dapat diperbaharui yang ada di permukaan

Lebih terperinci

ANALISIS MORFOLOGI SUNGAI PADA POLA DISTRIBUSI SEDIMENTASI. Oleh : Kamiran Danang Bagiono

ANALISIS MORFOLOGI SUNGAI PADA POLA DISTRIBUSI SEDIMENTASI. Oleh : Kamiran Danang Bagiono ANALISIS MORFOLOGI SUNGAI PADA POLA DISTRIBUSI SEDIMENTASI Oleh : Kamiran Danang Bagiono Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya ddbagioo@gmail.com

Lebih terperinci

SIMULASI NUMERIK POLA DISTRIBUSI SUHU PADA PLAT LOGAM DENGAN METODE BEDA HINGGA

SIMULASI NUMERIK POLA DISTRIBUSI SUHU PADA PLAT LOGAM DENGAN METODE BEDA HINGGA SIMULASI NUMERIK POLA DISTRIBUSI SUHU PADA PLAT LOGAM DENGAN METODE BEDA HINGGA SKRIPSI oleh RO SIL QOHHAR L W NIM 080210192046 PROGRAM STUDI PENDIDIKAN FISIKA JURUSAN PENDIDIKAN MIPA FAKULTAS KEGURUAN

Lebih terperinci

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sering menjadi pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk menunjang perkembangan

Lebih terperinci

BAB I PENDAHULUAN. perpindahan energi yang mungkin terjadi antara material atau benda sebagai akibat

BAB I PENDAHULUAN. perpindahan energi yang mungkin terjadi antara material atau benda sebagai akibat BAB I PENDAHULUAN A. LATAR BELAKANG Ilmu termodinamika merupakan ilmu yang berupaya untuk memprediksi perpindahan energi yang mungkin terjadi antara material atau benda sebagai akibat dari perbedaan suhu

Lebih terperinci

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method) Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 320 Persamaan Laplace Menggunakan Metode Crank-Nicholson (The Solution of Laplace Equation Using Crank-Nicholson Method) Titis

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

BAB I PENDAHULUAN. Desain yang baik dari sebuah airfoil sangatlah perlu dilakukan, dengan tujuan untuk meningkatkan unjuk kerja airfoil

BAB I PENDAHULUAN. Desain yang baik dari sebuah airfoil sangatlah perlu dilakukan, dengan tujuan untuk meningkatkan unjuk kerja airfoil BAB I PENDAHULUAN 1.1 Latar Belakang Desain yang baik dari sebuah airfoil sangatlah perlu dilakukan, dengan tujuan untuk meningkatkan unjuk kerja airfoil itu sendiri. Airfoil pada pesawat terbang digunakan

Lebih terperinci

STUDI PROBABILITAS RESPON STRUKTUR DENGAN DUA DERAJAT KEBEBASAN MENGGUNAKAN METODE ELEMEN HINGGA

STUDI PROBABILITAS RESPON STRUKTUR DENGAN DUA DERAJAT KEBEBASAN MENGGUNAKAN METODE ELEMEN HINGGA STUDI PROBABILITAS RESPON STRUKTUR DENGAN DUA DERAJAT KEBEBASAN MENGGUNAKAN METODE ELEMEN HINGGA BUDIARTO NRP : 0421021 Pembimbing : Olga Pattipawaej, Ph.D FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

Bab I Pendahuluan I.1 Latar Belakang

Bab I Pendahuluan I.1 Latar Belakang Bab I Pendahuluan I.1 Latar Belakang Pada beberapa tahun belakangan ini seiring dengan berkembangnya teknologi komputer dengan prosesor berkecepatan tinggi dan daya tampung memori yang besar, komputasi

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Suhu merupakan salah satu dimensi pengukuran. Nilai dari suhu dapat diukur pada suatu lingkungan dan suhu mengalami kenaikan dan penurunan karena adanya perambatan

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN III.1 Metodologi Umum Penelitian untuk merumuskan sistem berbasis pada penanganan permasalahan di pabrik urea Kaltim-1 ini secara garis besar dilakukan dalam tahapan-tahapan

Lebih terperinci

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL Dalam menyelesaikan persamaan pada tugas akhir ini terdapat beberapa teori dasar yang digunakan. Oleh karena itu, pada

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Estimasi minimax adalah suatu upgrade pendekatan non-klasik (upgraded non-classical approach) dalam bidang estimasi inferensi statistik yang diperkenalkan oleh Abraham

Lebih terperinci

PEMODELAN DAN SIMULASI NUMERIK SEBARAN AIR PANAS SPRAY POND MENGGUNAKAN METODE VOLUME HINGGA

PEMODELAN DAN SIMULASI NUMERIK SEBARAN AIR PANAS SPRAY POND MENGGUNAKAN METODE VOLUME HINGGA PEMODELAN DAN SIMULASI NUMERIK SEBARAN AIR PANAS SPRAY POND MENGGUNAKAN METODE VOLUME HINGGA Arif Fatahillah 1*, Susi Setiawani 1, Novian Nur Fatihah 1 Prodi Pendidikan Matematika, FKIP, Universitas Jember,

Lebih terperinci

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT Agusman Sahari. 1 1 Jurusan Matematika FMIPA UNTAD Kampus Bumi Tadulako Tondo Palu Abstrak Dalam paper ini mendeskripsikan tentang solusi masalah transport polutan

Lebih terperinci

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU),

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU), PENDAHULUAN A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa.

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

BAB I PENDAHULUAN UMUM

BAB I PENDAHULUAN UMUM BAB I PENDAHULUAN 1. 1. UMUM 1. 1. 1. Metode Elemen Hingga Permasalah mekanika dapat dijabarkan dan diselesaikan dengan persamaan matematika untuk mendapatkan solusi eksak. Perkembangan teknologi memunculkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu bidang ilmu yang sangat berperan dalam kehidupan sehari-hari. Banyak permasalahan dalam kehidupan sehari-hari yang akan lebih

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Di zaman sekarang, kemajuan sains dan teknologi sangat berkembang pesat. Salah satu ilmu yang berkembang adalah matematika yang merupakan induk dari semua ilmu

Lebih terperinci

I. PENDAHULUAN. II. DASAR TEORI Materi yang digunakan dalam penelitian ini adalah sebagai berikut:

I. PENDAHULUAN. II. DASAR TEORI Materi yang digunakan dalam penelitian ini adalah sebagai berikut: 1 Pengaruh Laju Aliran Sungai Utama Dan Anak Sungai Terhadap Profil Sedimentasi Di Pertemuan Dua Sungai Model Sinusoidal Yuyun Indah Trisnawati dan Basuki Widodo Matematika, Fakultas Matematika dan Ilmu

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 11-12: Finite Dierence Method for PDE Wave Eqs Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Masalah Gelombang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN Bab ini memuat tentang latar belakang yang mendasari penelitian. Berdasarkan pada latar belakang tersebut, ditentukan tujuan penelitian yang ingin dicapai. Pada bab ini juga dijelaskan

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Seiring berkembangnya zaman, lalu lintas menjadi sarana yang sangat dibutuhkan oleh masyarakat.semakin banyak pengguna kendaraan bermotor, semakin besar pula ketergantungan

Lebih terperinci

Distribusi Air Bersih Pada Sistem Perpipaan Di Suatu Kawasan Perumahan

Distribusi Air Bersih Pada Sistem Perpipaan Di Suatu Kawasan Perumahan JURNAL SAINS POMITS Vol. 1, No. 1, 2013 1-6 1 Distribusi Air Bersih Pada Sistem Perpipaan Di Suatu Kawasan Perumahan Annisa Dwi Sulistyaningtyas, Prof. Dr. Basuki Widodo, M.Sc. Jurusan Matematika, Fakultas

Lebih terperinci

BAB 1 PENDAHULUAN. menimbulkan permasalahan baru seputar arus kepadatan jalan. Sebagai

BAB 1 PENDAHULUAN. menimbulkan permasalahan baru seputar arus kepadatan jalan. Sebagai BAB 1 PENDAHULUAN 1.1 Latar Belakang Transportasi merupakan sarana penting sebagai salah satu faktor pendukung berkembangnya suatu kota. Oleh karena itu kebutuhan akan jalur transportasi semakin bertambah.

Lebih terperinci

PEMODELAN DAN SIMULASI NUMERIK GERAK OSILASI SISTEM BANDUL PEGAS BERSUSUN ORDE KEDUA DALAM DUA DIMENSI

PEMODELAN DAN SIMULASI NUMERIK GERAK OSILASI SISTEM BANDUL PEGAS BERSUSUN ORDE KEDUA DALAM DUA DIMENSI PEMODELAN DAN SIMULASI NUMERIK GERAK OSILASI SISTEM BANDUL PEGAS BERSUSUN ORDE KEDUA DALAM DUA DIMENSI Frando Heremba, Nur Aji Wibowo, Suryasatriya Trihandaru Program Studi Fisika Fakultas Sains dan Matematika

Lebih terperinci

BAB 1 PENDAHULUAN. perumusan persamaan integral tidak memerlukan syarat awal dan syarat batas.

BAB 1 PENDAHULUAN. perumusan persamaan integral tidak memerlukan syarat awal dan syarat batas. BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Banyak masalah nyata di alam ini yang dapat dibuat model matematikanya. Persamaan diferensial adalah salah satu model matematika yang banyak digunakan pada

Lebih terperinci

Pendahuluan

Pendahuluan Pendahuluan Pendahuluan Numerik dengan Matlab KOMPUTASI NUMERIK dengan MATLAB Oleh : Ardi Pujiyanta Edisi Pertama Cetakan Pertama, 2007 Hak Cipta 2007 pada penulis, Hak Cipta dilindungi undang-undang.

Lebih terperinci

BAB I PENDAHULUAN ( )

BAB I PENDAHULUAN ( ) BAB I PENDAHULUAN 1.1. Latar Belakang Persamaan diferensial merupakan persamaan yang melibatkan turunan dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas dan dituliskan dengan

Lebih terperinci

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Suhartono dan Solikhin Zaki Jurusan Matematika FMIPA UNDIP Abstrak Penelitian

Lebih terperinci

BAB IV SIMULASI MONTE CARLO

BAB IV SIMULASI MONTE CARLO BAB IV SIMULASI MONTE CARLO Monte Carlo adalah algoritma komputasi untuk mensimulasikan berbagai perilaku sistem fisika dan matematika. Penggunaan klasik metode ini adalah untuk mengevaluasi integral definit,

Lebih terperinci

Penyelesaian Penempatan Kutub Umpan Balik Keluaran dengan Matriks Pseudo Invers

Penyelesaian Penempatan Kutub Umpan Balik Keluaran dengan Matriks Pseudo Invers Penyelesaian Penempatan Kutub Umpan Balik Keluaran dengan Matriks Pseudo Invers Agung Wicaksono, J2A605006, Jurusan Matematika, FSM UNDIP, Semarang, 2012 Abstrak: Metode matriks pseudo invers merupakan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 21 BAB III METODE PENELITIAN 3.1 Desain Penelitian Pada bab ini akan dipaparkan skema umum penelitian yang dilakukan untuk mempermudah dalam melakukan penelitian. Dalam penelitian ini terdapat dua tahapan

Lebih terperinci

ANALISIS DISTRIBUSI SUHU PADA PELAT DUA DIMENSI DENGAN MENGGUNAKAN METODA BEDA HINGGA

ANALISIS DISTRIBUSI SUHU PADA PELAT DUA DIMENSI DENGAN MENGGUNAKAN METODA BEDA HINGGA Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol No., esember 0 ISSN: 087-9946 ANALISIS ISTRIBUSI SUHU PAA PELAT UA IMENSI ENGAN MENGGUNAKAN METOA BEA HINGGA Supardiyono Jurusan Fisika FMIPA UNESA Kampus

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang permasalahan, tujuan penulisan, tinjauan pustaka, metode penelitian, dan sistematika penulisan. 1.1. Latar Belakang Permasalahan Dalam

Lebih terperinci

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah Bab 1 Pendahuluan 1.1 Latar Belakang Masalah Gas alam adalah bahan bakar fosil berbentuk gas, dengan komponen utamanya adalah metana (CH 4 ) yang merupakan molekul hidrokarbon rantai terpendek dan teringan.

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan matematika merupakan bidang matematika yang berusaha untuk merepresentasikan dan menjelaskan masalah dunia nyata dalam pernyataan matematik. Representasi

Lebih terperinci

BAB I PENDAHULUAN. Tabel 1.1 Besaran dan peningkatan rata-rata konsumsi bahan bakar dunia (IEA, 2014)

BAB I PENDAHULUAN. Tabel 1.1 Besaran dan peningkatan rata-rata konsumsi bahan bakar dunia (IEA, 2014) BAB I PENDAHULUAN 1.1 Latar Belakang Di era modern, teknologi mengalami perkembangan yang sangat pesat. Hal ini akan mempengaruhi pada jumlah konsumsi bahan bakar. Permintaan konsumsi bahan bakar ini akan

Lebih terperinci

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI JURNAL MATEMATIKA DAN KOMPUTER EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI Kushartantya dan Awalina Kurniastuti Jurusan Matematika

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar belakang

BAB I PENDAHULUAN 1.1 Latar belakang BAB I PENDAHULUAN Pada bab pendahuluan dijelaskan mengenai latar belakang yang mendasari penelitian ini yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah yang

Lebih terperinci

II. TINJAUAN PUSTAKA Nutrient Film Technique (NFT) 2.2. Greenhouse

II. TINJAUAN PUSTAKA Nutrient Film Technique (NFT) 2.2. Greenhouse II. TINJAUAN PUSTAKA 2.1. Nutrient Film Technique (NFT) Nutrient film technique (NFT) merupakan salah satu tipe spesial dalam hidroponik yang dikembangkan pertama kali oleh Dr. A.J Cooper di Glasshouse

Lebih terperinci

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS PRESENTASI TUGAS AKHIR KI091391 SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS (Kata kunci:persamaan burgers,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah Bab 1 Pendahuluan 1.1 Latar Belakang Masalah Gelombang air laut merupakan salah satu fenomena alam yang terjadi akibat adanya perbedaan tekanan. Panjang gelombang air laut dapat mencapai ratusan meter

Lebih terperinci

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan diferensial merupakan ilmu matematika yang dapat digunakan untuk menjelaskan masalah-masalah fisis. Masalah fisis merupakan masalah yang berkaitan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika adalah salah satu ilmu pengetahuan yang mempunyai peranan sangat besar dalam kehidupan nyata. Salah satu bagian dari matematika adalah persamaan

Lebih terperinci

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK oleh Tim Dosen Mata Kuliah Metode Numerik Fakultas Teknik Universitas Indonesia Maret 2016 1 DAFTAR ISI hlm. PENGANTAR BAB 1 BAB 2 INFORMASI UMUM KOMPETENSI

Lebih terperinci

OPTIMASI PENGGUNAAN AIR CONDITIONER (AC) PADA SUATU RUANGAN DENGAN METODE ELEMEN HINGGA SKRIPSI LAMTIUR SIMBOLON

OPTIMASI PENGGUNAAN AIR CONDITIONER (AC) PADA SUATU RUANGAN DENGAN METODE ELEMEN HINGGA SKRIPSI LAMTIUR SIMBOLON OPTIMASI PENGGUNAAN AIR CONDITIONER (AC) PADA SUATU RUANGAN DENGAN METODE ELEMEN HINGGA SKRIPSI LAMTIUR SIMBOLON 130803065 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Berkurangnya fungsi pendengaran adalah penurunan fungsi pendengaran pada salah satu ataupun kedua telinga. Hal ini disebabkan oleh infeksi, strokes, obat-obatan,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi panas merupakan salah satu wujud energi yang masuk ke dalam kategori energi kinetis dalam dunia fisika. Ketika suatu benda terbilang panas, benda tersebut mengandung

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

Yogyakarta, Maret 2011 Penulis. Supardi, M.Si

Yogyakarta, Maret 2011 Penulis. Supardi, M.Si PRAKATA Puji syukur kami panjatkan kepada Alloh swt yang telah melimpahkan kasih sayangnya sehingga buku yang berjudul METODE NUMERIK dengan MATLAB ini dapat kami selesaikan penulisannya. Metode numerik

Lebih terperinci

Gambar 2.1 Winding pattern [5]

Gambar 2.1 Winding pattern [5] BAB II LANDASAN TEORI 2.1 Composite Overwrapped Pressure Vessel (COPV) Composite overwrapped pressure vessel (COPV) merupakan sebuah bejana tekan yang dibalut atau dilapisi oleh serat komposit. COPV biasa

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sekitar 70% dari permukaan bumi adalah air, tetapi bukan berarti persediaan air untuk kebutuhan manusia berlimpah, karena 97,5% air tersebut adalah air laut

Lebih terperinci

BAB VI ANALISIS REGRESI LINEAR GANDA

BAB VI ANALISIS REGRESI LINEAR GANDA BAB VI ANALISIS REGRESI LINEAR GANDA 1. Pendahuluan Analisis regresi merupakan suatu analisis antara dua variabel yaitu variabel independen (Prediktor) yaitu variabel X dan variabel dependent (Respon)

Lebih terperinci

BAB ΙΙ LANDASAN TEORI

BAB ΙΙ LANDASAN TEORI 7 BAB ΙΙ LANDASAN TEORI Berubahnya nilai suatu variabel tidak selalu terjadi dengan sendirinya, bisa saja berubahnya nilai suatu variabel disebabkan oleh adanya perubahan nilai pada variabel lain yang

Lebih terperinci

TUGAS AKHIR. OLEH : Mochamad Sholikin ( ) DOSEN PEMBIMBING Prof.DR.Basuki Widodo, M.Sc.

TUGAS AKHIR. OLEH : Mochamad Sholikin ( ) DOSEN PEMBIMBING Prof.DR.Basuki Widodo, M.Sc. TUGAS AKHIR KAJIAN KARAKTERISTIK SEDIMENTASI DI PERTEMUAN DUA SUNGAI MENGGUNAKAN METODE MESHLESS LOCAL PETROV- GALERKIN DAN SIMULASI FLUENT OLEH : Mochamad Sholikin (1207 100 056) DOSEN PEMBIMBING Prof.DR.Basuki

Lebih terperinci