Institut Teknologi Sepuluh Nopember Surabaya. Analisa Kestabilan Lyapunov

Ukuran: px
Mulai penontonan dengan halaman:

Download "Institut Teknologi Sepuluh Nopember Surabaya. Analisa Kestabilan Lyapunov"

Transkripsi

1 Institut Teknologi Seuluh Noember Surabaya Analisa Kestabilan Lyaunov

2 Contoh Soal Ringkasan Latihan

3 Contoh Soal Ringkasan Latihan Sistem Keadaan Kesetimbangan Kestabilan dalam Arti Lyaunov Penyajian Diagram Kestabilan, Kestabilan Garis Lurus dan Ketidakstabilan Kediinitan Matrik Bentuk Kuadrat Lyaunov Metode Kedua Lyaunov Analisa Kestabilan Sistem Linier

4 Pengantar Suatu sistem yang dikendalikan, baik dengan strategi engendalian konvensional (P, I, D, PI, PD, PID) mauun dengan strategi engendalian yang lain, memerlukan kondisi kestabilan. Kondisi kestabilan daat dilihat dari hasil reson waktu (erormansi dalam domain waktu), mauun reson dalam domain rekuensi. Untuk sistem linier dengan arameter konstan daat digunakan analisa kestabilan menggunakan kriteria Nyquist, mauun Routh, dsb. Sebuah sistem non linier dan atau sistem arameter berubah daat dimodelkan dalam bentuk ersamaan keadaan (state sace). Analisa kestabilan daat dilakukan dengan metode kedua Lyaunov (Metode langsung Lyaunov) berdasarkan bentuk ersamaan keadaan.

5 Sistem Beberaa deinisi kestabilan yang berkaitan dengan teorema Lyaunov, bisa ditinjau berdasarkan suatu sistem yang dideinisikan sebagai : Dengan : vektor keadaan (n-vektor), (,t) adalah n vektor dengan komonen adalah ungsi :,,..., n dan t. Persamaan di atas memunyai enyelesaian yang unik, dengan tergantung ada kondisi awal. Penyelesaian dinyatakan :, t t ;, t (Pers. ) (Pers. )

6 Keadaan Kesetimbangan Jika sistem dinyatakan berada ada kondisi kesteimbangan berada ada keadaan e dengan, t untuk semua t e Sistem dalam keadaan kestimbangan, jika sistem ini linier dan tidak berubah terhada waktu. Jika (,t) = A, maka terdaat hanya satu keadaan setimbang ada saat A adalah nonsingular. Jika A singular maka akan didaat kondisi kesetimbangan yang tak berhingga.

7 Kestabilan Lyaunov Jika sebuah bola dengan jari jari k terhada kondisi kesteimbanga e, e k e adalah norma Euclidian, (Pers. ) Misalkan S(ε) terdiri atas semua titik, sedemikian hingga : e / e e... n ne Dan bila juga S(ε) teridi dari titik sedemikian hingga : e ; t t, e untuk semua t > t. (Pers. 4) (Pers. 5) (Pers. 6)

8 Kestabilan dalam Arti Lyaunov Keadaan kesetimbangan e dari sistem disebut stabil sesuai Lyaunov jika untuk setia S(ε), ada S(δ), sehingga trayektori dengan titik awal didalam S(δ) tidak meninggalkan S(ε) dengan membesarnya waktu t menuju tak terhingga. Bilangan real δ tergantung ada ε dan ada umumnya juga bergantung ada t, maka keadaan kesetimbangan tersebut disebut stabil uniorm.

9 Kestabilan Asimtotik Keadaan kesetimbangan e dari sistem yang dinyatakan oleh ( e,t) = untuk sembarang t disebut stabil asimtotik jika keadaan tersebut stabil Lyaunov dan setia kondisi dengan titik awal didalam S(δ) tana meninggalkan S(ε), konvergen ke e dengan membesarnya t menuju tak berhingga.

10 Kestabilan Asimtotik Global Jika keadaan asimtotik berlaku untuk semua keadaan titik awal trayektori, maka keadaan kesetimbangan tersebut stabil asimtotik global. Keadaan kesetimbangan e dari sistem disebut stabil asimtotik global jika keadaan setimbang tersebut stabil, dan jika setia jawab konvergen ke e dengan membesarnya waktu t menunju tak hingga. Syarat yang erlu untuk kestabilan asimtotik global adalah bahwa hanya ada satu keadaan kesetimbangan dalam seluruh keadaan

11 Penyajian Diagram Kestabilan dan Ketidakstabilan. Gambar: Kondisi yang menggambarkan ergerakan erluru setimbang stabil Terlihat ada gambar, menunjukkan lintasan eluru dari kondisi awal dengan batas keadaan awal S(δ). Kondisi setimbang stabil sesuai hukum Lyaunov.

12 Penyajian Diagram Kestabilan dan Ketidakstabilan. Kondisi keadaan setimbang secara garis lurus ergerakan eluru dari titik awal ada daerah batas keadaan awal S(δ) menuju ke daerah ini kembali, ergerakan ini dikatakan sebagai kondisi setimbang secara garis lurus

13 Penyajian Diagram Kestabilan dan Ketidakstabilan. Kondisi tidak stabil ergerakan eluru dari kondisi awal menuju keluar dari batas kesetimbangan S(ε) menunjukkan bahwa kondisi setimbang tidak stabil.

14 Kediinitan Matrik Deinisi : A dikatakan deinit ositi, jika T A >, untuk A dikatakan deinit negati, jika T A <, untuk A dikatakan semi deinit ositi, jika T A >, untuk R n (*) A dikatakan semi deinit negati, jika T A <, untuk R n (*) (*) daat terjadi bila T A = untuk Deinisi : (Kriteria Sylvester) A deinit ositi bila A i > untuk i =,,,...n A deinit negati A <, A >, A <, A 4 >,... dst atau A i = (-) i

15 Kediinitan Matrik Deinisi : A deinit osisi jika semua nilai karakteristiknya ositi A deinit negati jika semua nilai karakteristiknya negati A semi deinit osisi jika semua nilai karakteristiknya ositi dan ada yang bernilai nol A semi deinit negati jika semua nilai karakteristiknya negati dan ada yang bernilai nol Deinit Positi akan memberikan keastian minimum Deinit Negati akan memberikan keastian maksimum

16 Kediinitan Matrik Fungsi Lyaunov V() meruakan ungsi skalar yang deinit ositi (bernilai ositi) di daerah Ω bila V() untuk semua kondisi yang tidak nol di daerah Ω dan juga harus memenuhi V() =. Sedangkan untuk ungsi Lyaunov yang bergantung ada waktu V(,t) adalah deinit ositi didaerah Ω, jika ungsi itu dibatasi dari bawah oleh ungsi deinit ositi yang tidak berubah terhada waktu Hubungan tersebut dinyatakan dalam : V(,t) > V() untuk semua t > t. V(,t) = untuk semua t > t

17 Bentuk kuadrat Lyaunov Beberaa contoh dari ungsi skalar Lyaunov yang menunjukkan siat siat seerti disebutkan diatas, Deinit ositi : Semi deinit osisi : Deinit negati : Indeiniti : 4 V ( ) V ( ) V ( ) V ( )

18 X meruakan vektor bernilai real, dan P adalah matriks simetri bernilai real. Bentuk kuadrat Lyaunov Ringkasan Contoh Soal Latihan Pengantar Untuk memahami bahwa ungsi skalar dari Lyaunov, menunjukkan suatu kondisi kestabilan, maka dinyatakan dalam bentuk kuadrat, dalam ersamaan berikut, n nn n n n n n T V ) ( P

19 . Ringkasan Contoh Soal Latihan Pengantar Jika adalah n vektor bernilai komleks dan P adalah sebuah matriks Hermitian, maka bentuk kuadrat komleks dikatakan sebagai bentuk Hermitian. Bentuk Hermitian Lyaunov n nn n n n n n V * ) ( P

20 Metode kedua Lyaunov Teorema : Jika diketahui, suatu sistem dinyatakan dalam bentuk :, t Dimana : (,t) = untuk sembarang t. Jika ada suatu arameter V(,t) yang memunyai turunan arsial ertama kontinyu dan memenuhi syarat : V(,t) deinit ositi V (, t) deinit negati Maka keadaan kesetimbangan di titik asal adalah stabil asimtotik secara uniorm. Jika ternyata V(,t) ~ untuk. ~, maka keadaan kesetimbangan di titik asal adalah stabil asimtotik global secara uniorm.

21 Metode kedua Lyaunov Teorema : Jika diketahui, suatu sistem dinyatakan dalam bentuk :, t untuk sembarang t.jika ada suatu arameter V(,t) yang memunyai turunan arsial ertama kontinyu dan memenuhi syarat : V(,t) deinit ositi V (, t) deinit negati V ( t ;, t, t) tidak terjadi nol ada t t, untuk t dan dimana Φ(t,., t ) menyatakan trayektori atau jawab dengan titik awal di ada t, maka keadaan kesetimbangan di titik asal dari sistem adalah stabil asimtotik global secara uniorm.

22 Analisa Kestabilan Sistem Linier Analisa kestabilan sistem linier arameter konstan dengan metode Lyaunov, bila sistem tersebut dinyatakan dalam bentuk : Diilih suatu kemungkinan ungsi Lyaunov sebagai berikut : Turunan dari ungsi Lyaunov dinyatakan : V T T P P T T A P PA T T T T A P. PA T A P PA T Q A V ( ) T P

23 Analisa Kestabilan Sistem Linier Teorema 4 : Bila sebuah sistem dinyatakan dengan : A Syarat erlu dan dan syarat cuku agar keadaan kesetimbangan = stabil asimtotik global adalah jika diberikan setia matrik Hermitian deinit ositi (simetri nyata) Q, maka terdaat suatu matrik Hermitian deinit ositi (simetri nyata) P sedemikian rua sehingga : T A P PA Q. Fungsi skalar T P adalah suatu ungsi Lyaunov dari sistem tersebut.

24 Analisa Kestabilan Sistem Linier Teorema: Jika V T Q tidak menjadi nol seanjang setia trayektori maka Q daat diilih berua matrik semi deinit ositi. Jika diilih suatu matrik deinit ositi sembarang, yaitu Q (atau suatu matrik semi deinit ositi sembarang Q jika V tidak menjadi nol seanjang setia trayektori) dan enyelesaian ersamaan matrik : T A P PA Q Untuk menentukan P, maka syarat erlu dan syarat cuku agar keadaan kesetimbangan = stabil asimtotik adalah bahwa P harus deinit. ositi Hasil akhir tidak bergantung ada matrik tertentu Q yang diilih, dengan syarat bahwa Q deinit ositi (semi deinit negati, tergantung kasusnya).

25 Analisa Kestabilan Sistem Linier T Untuk menentukan elemen dari matrik P, maka disamakan A P matrik dan Q elemen demi elemen. Ini menghasilkan n(n+)/ ersamaan linier untuk enentuan elemen elemen ij ji dari P. Jika eigenvalue dari A dinyatakan dengan λ, λ,... λ n masing masing diulang sebanyak kerangkaannya sebagai akar ersamaan karekteristik, dan jika untuk setia jumlah dua akar : λ j + λ k, maka elemen elemen P daat ditentukan secara unik. Perhatikan bahwa jika matrik A menyatakan suatu sistem stabil, maka jumlah λ j + λ k selalu tidak nol. Dalam menentukan ada atau tidak. adanya suatu matrik Hermitian deinit ositi atau matrik simetri nyata P, akan lebih mudah kalau diilih Q = I, dimana I adalah matrik identitas. Selanjutnya elemen elemen P dari T A P PA I dan matrik P tersebut kemudian dieriksa aakah deinit ositi atau tidak. PA

26 Contoh Soal Ringkasan Contoh Soal Latihan Pengantar Suatu sistem dinyatakan dalam bentuk model berikut : dan y(t) = C(t) Dimana : d(t) adalah disturbance Jika diberikan : Cari matrik F agar sistem dengan u(t) = F (t) menjadi tidak lagi sensiti terhada disturbance. t d t t t E B A,,, E C B A T

27 Contoh Soal Penyelesaian Dari model tersebut di atas : Atau t A BFt Edt y(t) = C (t) Penyelesaian dari ersamaan terakhir : y t At Bt Edt A( t) BF ( t) Ed( t) A BF ( t) Ed( t) ABFt ABFt t e ) e Ed t ( d Atau ABFt ABFt t Ce ) C e Ed t ( d (Pers. 6) (Pers. 7) (Pers. 8) (Pers. 9) (Pers. )

28 Contoh Soal Penyelesaian Agar sistem tidak sensiti terhada disturbance maka : C t e ABFt Ed d [ ] Untuk sistem dinamik yang dinyatakan dalam (Pers. 7) state adalah controllable jika dan hanya jika col s[q], ˆ Dimana Q = C[E (A+BF)E (A+BF) E... (A+BF) n- E] ˆ C t e ABFt Ed y(t) adalah bebas terhada eek d(t) hanya bila dienuhi : Q = C[E (A+BF)E (A+BF) E ] = [ ] yang ekivalen dengan ersamaan di atas dan asangan (A+BF, E) adalah unobservale. d ˆ (Pers. ) (Pers. )

29 Contoh Soal Penyelesaian Ringkasan Contoh Soal Latihan Pengantar ditentukan bahwa F = [ ] CE E BF A C = = E BF C A

30 Contoh Soal Penyelesaian Atau : Dengan substitusi ada ersamaan terakhir dieroleh : 4 6 Disini jika diambil =, dieroleh = - dan = -. Atau : F = [- - ].

31 Ringkasan Sebuah sistem non-linier dan atau sistem arameter berubah daat yang dimodelkan dalam ersamaan ruang keadaan (state sace), daat dianalisis kestabilannyadengan menggunakan metode kedua Lyaunov (Metode langsung Lyaunov). Metode Lyaunov tidak memerlukan untuk menyelesaikan ersamaan ruang keadaan untuk mengetahui kestabilan sistem engendalian. Metode ini daat memeriksa aakah sistem dalam keadaan terkendali secara semurna atau terkendali sebagian.

32 Latihan Ringkasan Contoh Soal Latihan Pengantar Suatu sistem dinyatakan dalam bentuk model berikut : dan y(t) = C(t) Dimana : d(t) adalah disturbance Jika diberikan : Cari matrik F agar sistem dengan u(t) = F (t) menjadi tidak lagi sensiti terhada disturbance.,,, 5 7 E C B A T t d t t t E B A

33 SEKIAN & TERIMAKASIH

Institut Teknologi Sepuluh Nopember Surabaya. Diagonalisasi Matrik Sistem Anxn

Institut Teknologi Sepuluh Nopember Surabaya. Diagonalisasi Matrik Sistem Anxn Institut Teknologi Seuluh Noember Surabaya Diagonalisasi Matrik Sistem Ann Materi Contoh Soal Latihan Materi Contoh Soal Eigenvalue Matrik Ann Eigenvektor Diagonalisasi Matrik Ann Latihan Materi Contoh

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Keterkendalian (Controlability)

Institut Teknologi Sepuluh Nopember Surabaya. Keterkendalian (Controlability) Institut Teknologi Sepuluh Nopember Surabaya Keterkendalian (Controlability) Contoh Soal Ringkasan Latihan Contoh Soal Ringkasan Latihan Vektor Bebas Linear Keterkendalian Keadaan Secara Sempurna dari

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan

Lebih terperinci

Teori kendali. Oleh: Ari suparwanto

Teori kendali. Oleh: Ari suparwanto Teori kendali Oleh: Ari suparwanto Minggu Ke-1 Permasalahan oleh : Ari Suparwanto Permasalahan Diberikan sistem dan sinyal referensi. Masalah kendali adalah menentukan sinyal kendali sehingga output sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sistem Persamaan Diferensial Definisi 2.1.1 Persamaan Diferensial Persamaan diferensial adalah persamaan yang memuat variabel bebas, variabel tak bebas dan derivative-derivatif

Lebih terperinci

PENDAHULUAN LATAR BELAKANG

PENDAHULUAN LATAR BELAKANG PENDHULUN LTR BELKNG Sistem dinamik serin diidentiikasikan ada model matematika dari ersamaan kimia ersamaan isika dan ersamaan bioloi an ersamaanna menandun arameterarameter an salin berhubunan. Perubahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

IV PEMBAHASAN. 4.1 Penentuan Titik Tetap Model Dinamika Virus HIV Titik tetap persamaan (3.1) diperoleh dengan menentukan dt 0, dt *

IV PEMBAHASAN. 4.1 Penentuan Titik Tetap Model Dinamika Virus HIV Titik tetap persamaan (3.1) diperoleh dengan menentukan dt 0, dt * 6 IV PEMBAHASAN 4. Penentuan Titik Teta Model Dinamika Titik teta ersamaan (3. dieroleh dengan menentukan dt, dt dan dv. Sehingga menurut ersamaan tersebut dieroleh titik teta s d N s dt T, T, V, T, kn

Lebih terperinci

PERSAMAAN KUADRAT. Untuk suatu kuadrat sempurna x bx c, nilai c diperoleh dengan membagi koefisien x dengan 2, kemudian mengkuadratkan hasilnya.

PERSAMAAN KUADRAT. Untuk suatu kuadrat sempurna x bx c, nilai c diperoleh dengan membagi koefisien x dengan 2, kemudian mengkuadratkan hasilnya. PERSAMAAN KUADRAT Bab. Bentuk Umum : a b c 0, a 0, a, b, c Real Menyelesaikan ersamaan kuadrat :. dg. Memfaktorkan : a b c a ( a )( a q) q a q = a ( q) a dimana : b = + q dan c, Jika ac 0 dan q berbeda

Lebih terperinci

Hasil Kali Dalam Berbobot pada Ruang L p (X)

Hasil Kali Dalam Berbobot pada Ruang L p (X) Hasil Kali Dalam Berbobot ada Ruang L () Muhammad Jakfar, Hendra Gunawan, Mochammad Idris 3 Universitas Negeri Surabaya, muhammadjakfar@unesa.ac.id Institut Teknologi Bandung, hgunawan@math.itb.ac.id 3

Lebih terperinci

III. PEMBAHASAN. dimana, adalah proses Wiener. Kemudian, juga mengikuti proses Ito, dengan drift rate sebagai berikut: dan variance rate yaitu,

III. PEMBAHASAN. dimana, adalah proses Wiener. Kemudian, juga mengikuti proses Ito, dengan drift rate sebagai berikut: dan variance rate yaitu, 4 masing menyatakan drift rate dan variance rate dari. Untuk roses stokastik yang didefinisikan ada ruang robabilitas (Ω,, berlaku hal berikut: Misalkan adalah roses Wiener ada (Ω,,. Integral stokastik

Lebih terperinci

MAT 602 DASAR MATEMATIKA II

MAT 602 DASAR MATEMATIKA II MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B

Lebih terperinci

SIMAK UI 2010 Matematika Dasar

SIMAK UI 2010 Matematika Dasar SIMAK UI 00 Matematika Dasar Kode Soal 307 Doc. Name: SIMAKUI00MATDAS307 Version: 0-0 halaman 0. Dua buah dadu dilemar secara bersamaan. x adalah angka yang keluar dari dadu ertama. y adalah angka yang

Lebih terperinci

Oleh Nara Riatul Kasanah Dosen Pembimbing Drs. Sri Suprapti H., M.Si

Oleh Nara Riatul Kasanah Dosen Pembimbing Drs. Sri Suprapti H., M.Si Oleh Nara Riatul Kasanah 1209100079 Dosen Pembimbing Drs. Sri Suprapti H., M.Si JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 PENDAHULUAN

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam

UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 1999 Waktu : 2,5 jam UJIAN TENGAH SEMESTER KALKULUS I Senin, 5 Maret 999 Waktu :,5 jam SETIAP NOMOR MEMPUNYAI BOBOT 0. Misalkan diketahui fungsi f dengan ; 0 f() = ; < 0 Gunakan de nisi turunan untuk memeriksa aakah f 0 (0)

Lebih terperinci

BAB II FUNGSI DAN GRAFIK FUNGSI

BAB II FUNGSI DAN GRAFIK FUNGSI BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai alikasi koresondensi/hubunan antara dua himunan serin terjadi. Sebaai 4 contoh volume bola denan

Lebih terperinci

MAKALAH SEMINAR PENDIDIKAN MATEMATIKA PENARIKAN AKAR PANGKAT TIGA DARI BILANGAN BULAT DENGAN HASIL HAMPIRAN

MAKALAH SEMINAR PENDIDIKAN MATEMATIKA PENARIKAN AKAR PANGKAT TIGA DARI BILANGAN BULAT DENGAN HASIL HAMPIRAN MAKALAH SEMINAR PENDIDIKAN MATEMATIKA PENARIKAN AKAR PANGKAT TIGA DARI BILANGAN BULAT DENGAN HASIL HAMPIRAN OLEH LUKMANUDIN D07.090.5 PROGRAM STUDY PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Keteramatan (Observability)

Institut Teknologi Sepuluh Nopember Surabaya. Keteramatan (Observability) Institut Teknologi Sepuluh Nopember Surabaa Keteramatan (Observabilit) Contoh Soal Ringkasan Latihan Contoh Soal Ringkasan Konsep Keteramatan Keteramatan Sistem Kontinu Sarat Keteramatan Sempurna pada

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu

Lebih terperinci

SISTEM PERSAMAAN LINEAR ( BAGIAN II )

SISTEM PERSAMAAN LINEAR ( BAGIAN II ) SISTEM PERSAMAAN LINEAR ( BAGIAN II ) D. FAKTORISASI MATRIKS D2 2. METODE ITERASI UNTUK MENYELESAIKAN SPL D3 3. NILAI EIGEN DAN VEKTOR EIGEN D4 4. POWER METHOD Beserta contoh soal untuk setiap subbab 2

Lebih terperinci

TRANSFORMASI AFFIN PADA BIDANG

TRANSFORMASI AFFIN PADA BIDANG Jurnal Matematika Vol. No. November 03 [ : 8 ] TRANSFORMASI AFFIN PADA BIDANG Gani Gunawan dan Suwanda Program Studi Matematika, Fakultas MIPA, Universitas Islam Bandung Prgram Studi Statistika, Fakultas

Lebih terperinci

MENGANALISA KESTABILAN SISTEM TENAGA DENGANMETODE LYAPUNOV RISNIDAR CHAN. Jurusan Teknik Elektro Fakultas Teknik Universitas Sumatera Utara

MENGANALISA KESTABILAN SISTEM TENAGA DENGANMETODE LYAPUNOV RISNIDAR CHAN. Jurusan Teknik Elektro Fakultas Teknik Universitas Sumatera Utara MENGANALISA KESTABILAN SISTEM TENAGA DENGANMETODE LYAPUNOV RISNIDAR CHAN Jurusan Teknik Elektro Fakultas Teknik Universitas Sumatera Utara 1. Pendahuluan. Dalam pelayanan energi listrik kepada konswnen

Lebih terperinci

BAB V KESIMPULAN. Berdasarkan uraian pada Bab III dan Bab IV maka dapat disimpulkan sebagai

BAB V KESIMPULAN. Berdasarkan uraian pada Bab III dan Bab IV maka dapat disimpulkan sebagai BAB V KESIMPULAN Berdasarkan uraian ada Bab III dan Bab IV maka daat disimulkan sebagai berikut 1. Keluarga emetaan K C,δ (R, R) dan L C,δ (R, R) adalah beberaa bentuk keluarga emetaan demi linear dari

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

Integral dan Persamaan Diferensial

Integral dan Persamaan Diferensial Sudaryatno Sudirham Studi Mandiri Integral dan Persamaan Diferensial ii Darublic BAB 3 Integral (3) (Integral Tentu) 3.. Luas Sebagai Suatu Integral. Integral Tentu Integral tentu meruakan integral yang

Lebih terperinci

oleh seperangkat variabel X, maka persamaan di atas dinamakan persamaan struktural, dan modelnya disebut model struktural.

oleh seperangkat variabel X, maka persamaan di atas dinamakan persamaan struktural, dan modelnya disebut model struktural. ANALISIS JALUR A. PENGERTIAN ANALISIS JALUR Telaah statistika menyatakan bahwa untuk tujuan eramalan/ endugaan nilai Y atas dasar nilai-nilai X 1, X,., X i, ola hubungan yang sesuai adalah ola hubungan

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

PERTEMUAN Logika Matematika

PERTEMUAN Logika Matematika 3-1 PERTEMUAN 3 Nama Mata Kuliah : Matematika Diskrit (3 SKS) Nama Dosen Pengamu : Dr. Suarman E-mail : matdis@netcourrier.com HP : 0813801198 Judul Pokok Bahasan Tujuan Pembelajaran : 3. Logika Matematika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam

Lebih terperinci

KENDALI OPTIMAL PADA PENCEGAHAN WABAH FLU BURUNG DENGAN ELIMINASI, KARANTINA DAN PENGOBATAN

KENDALI OPTIMAL PADA PENCEGAHAN WABAH FLU BURUNG DENGAN ELIMINASI, KARANTINA DAN PENGOBATAN KENDALI OPTIMAL PADA PENCEGAHAN WABAH FLU BURUNG DENGAN ELIMINASI, KARANTINA DAN PENGOBATAN OLEH : TASLIMA NRP : 1209201728 DOSEN PEMBIMBING 1. SUBCHAN, M.Sc, Ph.d 2. Dr. ERNA APRILIANI, M.Sc ABSTRAK Salah

Lebih terperinci

Pembicaraan fluida menjadi relatif sederhana, jika aliran dianggap tunak (streamline atau steady)

Pembicaraan fluida menjadi relatif sederhana, jika aliran dianggap tunak (streamline atau steady) DINAMIKA FLUIDA Hidrodinamika meruakan cabang mekanika yang memelajari fluida bergerak (gejala tentang fluida cuku komleks) Pembicaraan fluida terdaat bermacam-macam antara lain: - dari jenis fluida (kental

Lebih terperinci

Menentukan Rumus Umum Suku ke-n dari Barisan Bilangan dalam BentukPenjumlahan Polinom Melalui Sistim Persamaan Linier. OLEH WARMAN, S.Pd.

Menentukan Rumus Umum Suku ke-n dari Barisan Bilangan dalam BentukPenjumlahan Polinom Melalui Sistim Persamaan Linier. OLEH WARMAN, S.Pd. Menentukan Rumus Umum Suku ke-n dari Barisan Bilangan dalam BentukPenjumlahan Polinom Melalui Sistim Persamaan Linier OLEH WARMAN, S.Pd. DINAS PENDIDIKAN KABUPATEN BLITAR SMP NEGERI 1 GANDUSARI Agustus

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI.

FUNGSI DAN GRAFIK FUNGSI. FUNGSI DAN GRAFIK FUNGSI Materi ke-4 eko@uns.ac.id Materi Fungsi Fungsi Surjekti, Fungsi Injekti, dan Fungsi Bijekti Operasi Pada Fungsi Fungsi Invers Fungsi Komposisi Graik Fungsi Dalam Sistem Koordinat

Lebih terperinci

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR

IV PEMBAHASAN. jika λ 1 < 0 dan λ 2 > 0, maka titik bersifat sadel. Nilai ( ) mengakibatkan. 4.1 Model SIR 9 IV PEMBAHASAN 4.1 Model SIR 4.1.1 Titik Tetap Untuk mendapatkan titik tetap diperoleh dari dua persamaan singular an ) sehingga dari persamaan 2) diperoleh : - si + s = 0 9) si + )i = 0 didapat titik

Lebih terperinci

Matriks. Baris ke 2 Baris ke 3

Matriks. Baris ke 2 Baris ke 3 Matriks A. Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegi panjang. Susunan bilangan itu diletakkan di dalam kurung

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

MATRIKS Nuryanto, ST., MT.

MATRIKS Nuryanto, ST., MT. MateMatika ekonomi MATRIKS TUJUAN INSTRUKSIONAL KHUSUS Setelah mempelajari bab ini, anda diharapkan dapat : 1. Pengertian matriks 2. Operasi matriks 3. Jenis matriks 4. Determinan 5. Matriks invers 6.

Lebih terperinci

SKRIPSI ANALISIS PENGELOMPOKKAN KECAMATAN DI KODYA SURABAYA BERDASARKAN VARIABEL-VARIABEL KEPENDUDUKAN, KESEHATAN DAN PENDIDIKAN

SKRIPSI ANALISIS PENGELOMPOKKAN KECAMATAN DI KODYA SURABAYA BERDASARKAN VARIABEL-VARIABEL KEPENDUDUKAN, KESEHATAN DAN PENDIDIKAN SKRIPSI ANALISIS PENGELOMPOKKAN KECAMATAN DI KODYA SURABAYA BERDASARKAN VARIABEL-VARIABEL KEPENDUDUKAN, KESEHATAN DAN PENDIDIKAN Oleh : Rengganis L. N. R 302 00 046 PENDAHULUAN Latar Belakang Penduduk

Lebih terperinci

EVALUASI INTEGRAL ELIPTIK LENGKAP PERTAMA PADA MODULI SINGULAR

EVALUASI INTEGRAL ELIPTIK LENGKAP PERTAMA PADA MODULI SINGULAR EVALUASI INTEGRAL ELIPTIK LENGKAP PERTAMA PADA MODULI SINGULAR Elma Rahayu Manuharawati Jurusan Matematika Fakultas Matematika Ilmu Pengetahuan Alam Universitas Negeri Surabaya 603 Jurusan Matematika Fakultas

Lebih terperinci

BAB 3 PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM

BAB 3 PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM BAB 3 PENGEMBANGAN TEOREMA DAN PERANCANGAN PROGRAM 3.1. Pengembangan Teorema Dalam enelitian dan erancangan algoritma ini, akan dibahas mengenai beberaa teorema uji rimalitas yang terbaru. Teorema-teorema

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

Pertemuan IV II. Torsi

Pertemuan IV II. Torsi Pertemuan V. orsi.1 Definisi orsi orsi mengandung arti untir yang terjadi ada batang lurus aabila dibebani momen (torsi) yang cendrung menghasilkan rotasi terhada sumbu longitudinal batang, contoh memutar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

DESAIN KOMPENSATOR KAWASAN FREKUENSI. Dalam bab terdahulu, telah dipelajari analisa TKA dan prosedur desain. Desain

DESAIN KOMPENSATOR KAWASAN FREKUENSI. Dalam bab terdahulu, telah dipelajari analisa TKA dan prosedur desain. Desain DESAIN KOMPENSATOR KAWASAN FREKUENSI Dalam bab terdahulu, telah dielajari analisa TKA dan rosedur desain. Desain TKA telah ditamilkan sebagai metode untuk menangani tanggaan eralihan (transien) sistem

Lebih terperinci

KAJIAN KONSEP RUANG NORMA-2 DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA

KAJIAN KONSEP RUANG NORMA-2 DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA Jurnal Matematika Murni dan Teraan εsilon Vol. 07, No.01, 013), Hal. 13 0 KAJIAN KONSEP RUANG NORMA- DENGAN DOMAIN PEMETAAN BERUPA RUANG BERDIMENSI HINGGA Wahidah 1 dan Moch. Idris 1, Program Studi Matematika

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Sistem Pendulum Terbalik Dalam penelitian ini diperhatikan sistem pendulum terbalik seperti pada Gambar di mana sebuah pendulum terbalik dimuat dalam motor yang bisa digerakkan.

Lebih terperinci

YAYASAN PRAWITAMA SMK WIKRAMA BOGOR

YAYASAN PRAWITAMA SMK WIKRAMA BOGOR Telp. 051-84411, email: prohumasi@smkwikrama.net, FUNGSI KOMPOSISI DAN INVERS Pembahasan : 1. Pengertian ungsi, daerah asal daerah hasil Fungsi merupakan Daerah Asal : Suatu ungsi : A B, dengan daerah

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci

MATRIKS A = ; B = ; C = ; D = ( 5 )

MATRIKS A = ; B = ; C = ; D = ( 5 ) MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. untuk berkunjung ke suatu negara. Permintaan pariwisata biasanya diukur dari segi

BAB II TINJAUAN PUSTAKA. untuk berkunjung ke suatu negara. Permintaan pariwisata biasanya diukur dari segi BAB II TINJAUAN PUSTAKA 2.1 Permintaan Pariwisata Pariwisata mamu mencitakan ermintaan yang dilakukan oleh wisatawan untuk berkunjung ke suatu negara. Permintaan ariwisata biasanya diukur dari segi jumlah

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

1 Sistem Bilangan Real

1 Sistem Bilangan Real Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Matriks Matriks adalah himpunan bilangan real yang disusun secara empat persegi panjang, mempunyai baris dan kolom dengan bentuk umum : Tiap-tiap bilangan yang berada didalam

Lebih terperinci

PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung

PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung PENGEMBANGAN RUANG FUNGSI KLASIK Oleh: Encum Sumiaty FPMIPA Universitas Pendidikan Indonesia Bandung e-mail: e.sumiaty@yahoo.com Abstrak Diketahui ruang fungsi klasik L (, ). Melalui oerator T ada ruang

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya.

BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya. BAB IV PEMBAHASAN Pada bab ini dilakukan analisis model penyebaran penyakit AIDS dengan adanya transmisi vertikal pada AIDS. Dari model matematika tersebut ditentukan titik setimbang dan kemudian dianalisis

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

Penerapan Multivariate Exponentially Weighted Moving Average Control Chart Pada Proses Pembuatan Boiler di PT. ALSTOM ESI Surabaya

Penerapan Multivariate Exponentially Weighted Moving Average Control Chart Pada Proses Pembuatan Boiler di PT. ALSTOM ESI Surabaya 1 Peneraan Multivariate Exonentially Weighted Moving Average Control Chart Pada Proses Pembuatan Boiler di PT. ALSTOM ESI Surabaya R. Candra Dewantara (1), Dr. Muhammad Mashuri, M.T. () Jurusan Statistika,

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 0 PAKET Pilihan Ganda: Pilihlah satu jawaban yang aling teat.. Ingkaran dari ernyataan Jika emerintah menghauskan kebijakan subsidi bahan bakar minyak

Lebih terperinci

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T

BAB I PENDAHULUAN. Y dikatakan linear jika untuk setiap x, Diberikan ruang Hilbert X atas lapangan F dan T B( X ), operator T BAB I PENDAHULUAN. Latar Belakang dan Permasalahan Bidang ilmu analisis meruakan salah satu cabang ilmu matematika yang di dalamnya banyak membicarakan konse, aksioma, teorema, lemma disertai embuktian

Lebih terperinci

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 JURUSAN MATEMATIKA Nurlita Wulansari (1210100045) Dosen Pembimbing: Drs. M. Setijo Winarko, M.Si Drs. Lukman Hanafi, M.Sc FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Lebih terperinci

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j. MATRIKS A. Definisi Matriks 1. Definisi Matriks dan Ordo Matriks Matriks adalah susunan bilangan (elemen) yang disusun menurut baris dan kolom dan dibatasi dengan tanda kurung. Jika suatu matriks tersusun

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

BAB III TURUNAN DALAM RUANG DIMENSI-n

BAB III TURUNAN DALAM RUANG DIMENSI-n BAB III TURUNAN DALAM RUANG DIMENSI-n 1. FUNGSI DUA PEUBAH ATAU LEBIH fungsi bernilai riil dari peubah riil, fungsi bernilai vektor dari peubah riil Fungsi bernilai riil dari dua peubah riil yakni, fungsi

Lebih terperinci

GELOMBANG BUNYI. Cepat rambat bunyi di udara yang dipengaruhi oleh tekanan dinyatakan dengan persamaan : pada gas ideal ; M

GELOMBANG BUNYI. Cepat rambat bunyi di udara yang dipengaruhi oleh tekanan dinyatakan dengan persamaan : pada gas ideal ; M SMK Negeri Rangkasbitung GELOMBANG BUNYI Bunyi meruakan salah satu bentuk gelombang mekanik, yaitu gelombang yang memerlukan medium sebagai erambatannya. Bunyi yang merambat ada medium udara bentuknya

Lebih terperinci

Turunan Fungsi dan Aplikasinya

Turunan Fungsi dan Aplikasinya Bab 8 Sumber: www.duniacyber.com Turunan Fungsi dan Aplikasinya Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, siat, dan aturan dalam perhitungan turunan ungsi; menggunakan turunan untuk

Lebih terperinci

Algoritma Jaringan Syaraf Tiruan Hopfield

Algoritma Jaringan Syaraf Tiruan Hopfield 2.6. Jaringan Saraf Tiruan Hofield Jaringan syaraf Tiruan Hofield termasuk iterative autoassociative network yang dikembangkan oleh Hofield ada tahun 1982, 1984. Dalam aringan Hofield, semua neuron saling

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

270 o. 90 o. 180 o PENDAHULUAN

270 o. 90 o. 180 o PENDAHULUAN PENDAHULUAN Latar Belakang Perkembangan analisis data saat ini masih bertumu ada analisis untuk data linear. Disisi lain, untuk kasus-kasus tertentu engukuran dilakukan secara sirkular. Beberaa ilustrasi

Lebih terperinci

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5.

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. SISTEM DINAMIK KONTINU LINEAR Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. Lisa Risfana Sari Sistem Dinamik D Sistem dinamik adalah sistem yang dapat diketahui

Lebih terperinci

Nama : Mohammad Syaiful Lutfi NIM : D Kelas : Elektro A

Nama : Mohammad Syaiful Lutfi NIM : D Kelas : Elektro A Nama : Mohammad Saiful Lutfi NIM : D46 Kelas : Elektro A RANGKUMAN MATERI MOMENTUM SUDUT DAN BENDA TEGAR Hukum kekalan momentum linier meruakan salah satu dari beberaa hukum kekalan dalam fisika. Dalam

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2 Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa

Lebih terperinci

BAB IV PENGEMBANGAN MODEL KAPLAN

BAB IV PENGEMBANGAN MODEL KAPLAN BAB IV PENGEMBANGAN MODEL KAPLAN Pada bab ini akan dibahas model yang dikembangkan dari model Kaplan. Terdapat beberapa asumsi Kaplan yang akan dimodifikasi. Selain itu, pada bab ini juga diberikan analisis

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI.

FUNGSI DAN GRAFIK FUNGSI. FUNGSI DAN GRAFIK FUNGSI Materi ke-4 eko@uns.ac.id ekop2003@yahoo.com Materi Fungsi ( deinisi, daerah asal dan daerah hasil ) Fungsi Surjekti, Injekti, Bijekti dan Invers Operasi Pada Fungsi dan Fungsi

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

Acoustics An Introduction by Heinrich Kuttruff

Acoustics An Introduction by Heinrich Kuttruff Acoustics An Introduction by Heinrich Kuttruff Diterjemahkan oleh : Okta Binti Masfiatur Rohmah Fisika, FMIPA, Universitas Sebelas Maret, 1 Bab 4 4.1 Solusi dari ersamaan gelombang 48 4. Gelombang harmonik

Lebih terperinci

MATRIK dan RUANG VEKTOR

MATRIK dan RUANG VEKTOR MATRIK dan RUANG VEKTOR A. Matrik. Pendahuluan Sebuah matrik didefinisikan sebagai susunan persegi panjang dari bilangan bilangan yang diatur dalam baris dan kolom. Matrik ditulis sebagai berikut: a a

Lebih terperinci

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan BAB II KAJIAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

Lebih terperinci

BAB 3 PEMBAHASAN. 3.1 Pemilahan Data

BAB 3 PEMBAHASAN. 3.1 Pemilahan Data BAB 3 PEMBAHASAN 3.1 Pemilahan Data Pemilahan data dilakukan untuk menentukan data mana saja yang akan diolah. Dalam enelitian ini, data yang diikutsertakan dalam engolahan ditentukan berdasarkan teori

Lebih terperinci

LIMIT & KEKONTINUAN IRA PRASETYANINGRUM

LIMIT & KEKONTINUAN IRA PRASETYANINGRUM LIMIT & KEKONTINUAN IRA PRASETYANINGRUM Bilangan Tidak Tertentu Nol = Bilangan yang menyatakan banyaknya elemen himpunan kosong Misal : A={Orang yang Istrinya } Terdapat bilangan mendekati dari kiri/bawah/negati

Lebih terperinci

TE Sistem Linier. Sistem Waktu Kontinu

TE Sistem Linier. Sistem Waktu Kontinu TE 226 - Sistem Linier Jimmy Hasugian Electrical Engineering - Maranatha Christian University jimlecture@gmail.com - http://wp.me/p4scve-g Sistem Waktu Kontinu Jimmy Hasugian (MCU) Sistem Waktu Kontinu

Lebih terperinci

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,

Lebih terperinci

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D]

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D] UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. SBMPTN MADAS 4 Jika fungsi f x a x x c menyinggung sumbu x di x, maka a A. B. C. D. 5 E. 7 Solusi: [D] 6 f x a x x c f ' x

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Persoalan jalur terendek (Shortest Path) meruakan suatu jaringan engarahan erjalanan dimana seseorang engarah jalan ingin menentukan jalur terendek antara dua kota

Lebih terperinci

BAB I PENDAHULUAN. himpunan vektor riil dengan n komponen. Didefinisikan R + := {x R x 0}

BAB I PENDAHULUAN. himpunan vektor riil dengan n komponen. Didefinisikan R + := {x R x 0} BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Misalkan R menyatakan himpunan bilangan riil. Notasi R n menyatakan himpunan vektor riil dengan n komponen. Didefinisikan R + := {x R x } dan R n + := {x= (x

Lebih terperinci

ANALISIS TRANSPORTASI DAN INSTALASI RIGID RISER PADA SISTEM FREE STANDING HYBRID RISER

ANALISIS TRANSPORTASI DAN INSTALASI RIGID RISER PADA SISTEM FREE STANDING HYBRID RISER ANALISIS TRANSPORTASI DAN INSTALASI RIGID RISER PADA SISTEM FREE STANDING HYBRID RISER Yonathan Mozes Mandagi 1, Paramashanti 2 1 Program Studi Teknik Kelautan, Institut Teknologi Bandung, Jl. Ganeca 10

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

Eigen value & Eigen vektor

Eigen value & Eigen vektor Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika

MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika MATRIKS FTP UB Mas ud Effendi Pokok Bahasan Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar Invers suatu matriks bujursangkar Penyelesaian set persamaan linier Nilai-eigen dan

Lebih terperinci

BAB II MODEL EVAPORASI DALAM INTI MAJEMUK

BAB II MODEL EVAPORASI DALAM INTI MAJEMUK BAB II MODL VAPORASI DALAM INTI MAJMUK. Model Weiskof-wing Pada akhir dari taha re-equilibrium, recidual nucleus seharusnya tertinggal ada taha equilibrium., dimana energi eksitasi * terbagi oleh banyaknya

Lebih terperinci

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Matematika Wajib

K13 Revisi Antiremed Kelas 10 Matematika Wajib K Revisi Antiremed Kelas 0 Matematika Wajib Fungsi Kuadrat - Latihan Soal Doc. Name: RKAR0MATWJB050 Version : 06-0 halaman 0. Ordinat titik balik grafik fungsi arabola y x x (5 9) adalah 5, > 0. Absis

Lebih terperinci