MATRIKS Nuryanto, ST., MT.
|
|
|
- Verawati Hermawan
- 8 tahun lalu
- Tontonan:
Transkripsi
1 MateMatika ekonomi MATRIKS
2 TUJUAN INSTRUKSIONAL KHUSUS Setelah mempelajari bab ini, anda diharapkan dapat : 1. Pengertian matriks 2. Operasi matriks 3. Jenis matriks 4. Determinan 5. Matriks invers 6. Persamaan linier simultan
3 Deskripsi Singkat Dalam perkuliahan ini, anda akan mempelajari tentang matriks dan operasi matriks Bagian selanjutan akan membahas tentang jenis matriks dan determinan Bagian akhir perkuliahan akan membahas matriks invers dan persamaan linier simultan
4 1.Diketahui : A = B = 1 3 C = Buktikan : (AB)C = A(BC) tugas 2.Diketahui : a.jika A = A T =? b. Jika B = 1 0 B = (AB) T =? Hitung adjoint matriks dari : a b c d
5 Matriks A ditulis sebagai berikut : A = a 11 a 12 a 13 contoh A = a 21 b 22 a a 31 a 32 a matriks Artinya a 23 menunjukkan unsur matriks A yang terletak pada baris ke 2 dan kolom ke 3. Arti a ij menunjukkan nilai/angka dari suatu matriks A, misalnya yang terletak pada baris ke i dan kolom ke j. Demikian pula untuk A mxn artinya matriks A berdimensi/berorder mxn. Matriks A nxn dinamakan matriks bujur sangkar, ditulis A n. Contoh : matriks A 3x3 dapat ditulis dengan A 3. Ada 3 macam matriks : 1.Matriks baris, yaitu merupakan vektor baris 2.Matriks kolom, yaitu merupakan vektor kolom 3.Matriks berorder/berdimensi banyak : A mxn
6 Operasi matriks 1.Sama dengan, apabila dimensi atau order kedua matriks tersebut sama sehingga nilai unsur yang berindeks sama harus sama. a 12 = b 12 ; a 23 = b 23 2.Penjumlahan, dimana matriks A dapat ditambahkan dengan matriks B apabila kedua matriks tersebut mempunyai dimensi yang sama. A = a 11 a 12 B = b 11 b 21 A +B + C = a 11 + b 11 a 12 + b 12 a 12 a 22 b 12 b 22 a 21 + b 21 a 22 + b 22 3.Pengurangan, dimana pengurangan dalam matriks dapat dilakukan dengan syarat kedua matriks tersebut mempunyai dimensi yang sama. A = 4 6 B = 1 3 A B = = Perkalian, apabila kedua matriks tersebut mempunyai kesamaan dalam jumlah kolom matriks yang dikalikan dengan jumlah baris matriks yang digunakan sebagai penggali. A mxn. B nxm = C mxm
7 Jenis matriks a.identity matriks, yaitu jika nilai diagonal matriks tersebut adalah 1 dan nilai unsur lainnya nol. Null matrix (zero matrix) jika nilai semua unsur bernilai nol. Contoh : I = N = b.transpose suatu matriks, suatu matriks A ditulis A T atau A ditentukan dengan mengubah tiap baris matriks A menjadi kolom-kolom matriks A T atau sebaliknya tiap kolom matriks A diubah menjadi baris-baris matriks A T. A = (a ij ) A T = (a ij ) Contoh : A = 4 6 A T =
8 c. Matriks setangkup, yaitu transpose sendiri, misalnya matriks diagonal D dan matriks satuan I. D = D I = I keterangan : D = matriks diagonal Contoh : I = matriks satuan I = 1 0 I = d.matriks satuan atau identitas I, yaitu matriks I adalah matriks bujur sangkar yang semua unsur diagonal utamanya = 1 dan semua unsur lainnya sama dengan nol. Sifat : I mxn. A mxn = A mxn I mxn. A mxn = tidak dapat dioperasikan
9 e. Sifat invers matriks, yaitu invers A -1 suatu matriks A memenuhi syarat : AA -1 = A -1 A = 1. Matriks A harus bujur sangkar (A -1 ) -1 = A (AB) -1 = B -1 A -1 (A T ) -1 = (A -1 ) T Invers transposenya suatu matriks sama dengan transpose invers faktornya dengan urutan terbalik. f. Matriks diagonal, yaitu matriks bujur sangkar yang setiap elemennya sama dengan nol; kecuali elemen diagonal pokoknya, minimal salah satu elemennya tidak sama dengan nol. Contoh : A = 10 0 B = ½
10 g. Skalar, yaitu matriks bujur sangkar yang hanya mempunyai satu baris dan satu kolom saja. 3 = (3) 1x1 = (3) ; 10 = (10) 1x1 = (10) h. Skalar matriks, yaitu matriks bujur sangkar yang nilai setiap elemen diagonal sebesar k (bilangan skalar) dan elemen lainnya sama dengan nol. a ij = k apabila i = j a ij = 0 apabila i j Contoh : S = k.i3 = k 0 0 ; S = 1/3 0 0 k 0 0 1/3 0 0 k i. Matriks invers, yaitu matriks bujur sangkar dimana a ij = a ji Contoh : A = 2 4 ; B =
11 j. Vektor, yaitu matriks yang hanya terdiri dari satu baris atau satu kolom saja. Contoh : A = (1 4 6) B = k. Matriks singular, yaitu matriks bujur sangkar yang tidak mempunyai invers dan determinannya sama dengan nol. l. Matriks nonsingular, yaitu matriks bujur sangkar yang mempunyai invers dan determinannya tidak sama dengan nol. m. Matriks commute, yaitu bila AB = BA, maka kedua matriks tersebut adalah commute.
12 determinan Determinan adalah sumbu bilangan (skalar) yang didefenisikan secara unik dalam hubungannya dengan suatu matriks bujur sangkar dan dinamakan determinan matriks, ditulis A n. Matriks bujur sangkar order 2x2 Bentuk umum : Menguraikan determinan derajat tiga dengan cara sarrus Aturan sarrus hanya berlaku khusus untuk determinan berderajat tiga. ( - ) ( - ) ( - ) = ( ) ( ) (33) (21) = ( + ) ( + ) ( + )
13 Menguraikan determinan dengan cara menentukan terlebih dahulu determinan matriks minor tiap elemen dan kofaktor Menentukan minor elemen, kalau dari suatu determinan B matriks Bnxn dihapus baris I dan kolom j, maka determinan M orde (n-1) yang sisa dinamakan minor elemen bij pada potongan baris i kolom j. Minor unsur bij yang diberi tanda minus bila (i + j) ganjil, dinamakan kofaktor unsur bij determinan B. b11 b12 b13 B = b12 b22 b23 b13 b23 b33 Minor elemen bij adalah sebagai berikut b11 = M11 = b22 b23 ; b33 = M33 = b11 b12 b32 b33 b21 b22
14 b 13 = M 13 = b 21 b 22 ; b 22 = M 22 = b 11 b 13 b 31 b 32 b 31 b 33 b 31 = M 31 = b 12 b 13 ; b 12 = M 12 = b 21 b 23 b 22 b 23 b 31 b 33 Demikian pula untuk : M 21 dihapus dari baris 2 dan kolom 1 M 23 dihapus dari baris 2 dan kolom 3 M 32 dihapus dari baris 3 dan kolom 2 Kofaktor = K ij = (-1) i+j M ij Contoh matriks kofaktor K = K 11 K 12 ; K = K 11 K 12 K 13 K 21 K 22 K 21 K 22 K 23 K 31 K 23 K 33
15 Contoh : K 11 = (-1) 1+1 M 11 = b 22 b 23 = b 22.b 33 b 32.b 23 b 32 b 33 K 12 = (-1) 1+2 M 12 = b 21 b 23 = -b 21.b 33 + b 31.b 23 b 31 b 33 Nilai determinan B dapat diuraikan dalam kofaktor unsur bij suatu baris atau kolom sebagai berikut ; B = B = n bij Kij j 1 n bij Kij j 1 (terhadap sembarang baris i = 1,2 n) atau (terhadap sembarang kolom j = 1,2 n) Contoh : Terhadap baris 1 B = b 11 K 11 + b 12 K 12 + b 13 K 13
16 B = b 11 (b 22.b 33 b 32.b 23 ) b 12 (b 21.b 33 b 31.b 23 ) + b 13 (b 21.b 32 b 31.b 22 ) Dan seterusnya Terhadap kolom 3 B = b 13 K 13 + b 23 K 23 + b 33 K 33 B = b 13 (b 21.b 32 b 31.b 22 ) b 23 (b 11.b 32 b 31.b 12 ) + b 33 (b 11.b 22 - b 21.b 12 ) Dan seterusnya Contoh : B = Misal terhadap baris ke 1 maka : B = b 11 K 11 + b 12 K 12 + b 13 K 13 = (1)(-1) (2)(-1) (1)(-1) = 6..(1)
17 Misal terhadap kolom 2, maka B = b 12 K 12 + b 22 K 22 + b 32 K 32 = (2)(-1) (2)(-1) (1)(-1) = (2)(3) + 2(1) + 1(-2) = 6 (2) Ternyata (1) = (2) yaitu B = 6 Contoh : A = 1 4, cari Ā 3 2 Jawaban : A = adjoint A = Transpose dari matriks kofaktornya A = a 11 a 12 K = K 11 K 12 K T = K 11 K 12 a 21 a 22 K 21 K 22 K 21 K 22
18 A = K T K 11 K 21 K 12 K 22 K 11 = (-1) 1+1 M 11 = 1 2 = 2 K 12 = (-1) 1+2 M 12 = -1 3 = -3 K 21 = (-1) 2+1 M 21 = -1 4 = -4 K 22 = (-1) 2+2 M 22 = 1 1 = 1 Jadi : Ā = K T =
19 Matriks invers A -1 = Ā invers = adjoint A determinan Contoh : hitung invers matriks B = Jawab : B = = ( ) ( ) K = K 11 K 12 K 13 B = K T K 11 K 21 K 31 K 21 K 22 K 23 K 12 K 22 K 23 K 31 K 32 K 33 K 13 K 23 K 33 K 11 = (-1) 1+1 M 11 = =
20 K 12 = (-1) 1+2 M 12 = = K 13 = (-1) 1+3 M 13 = = K 21 = (-1) 2+1 M 21 = = K 22 = (-1) 2+2 M 22 = = K 23 = (-1) 2+3 M 23 = = K 31 = (-1) 3+1 M 31 = = K 32 = (-1) 3+2 M 32 = = K 33 = (-1) 3+3 M 33 = = B = B -1 = B = B =
21 Persamaan linier simultan Matriks dapat digunakan untuk mencari jawaban persamaan linier simultan. Sistem n persamaan tak homogin dengan n/hasil yang tidak diketahui dapat ditulis sebagai berikut : a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 2 + a 22 x a 2n x n = b 2.. an1x2 + an2x2 + + annxn = bn I Mengingat rumus defenisi hasil kali matriks baris dengan matriks kolom dan bahwa suatu matriks dapat juga dianggap terdiri atas sejumlah matriks baris maka sistem persamaan (I) dapat ditulis sebagai berikut : a 11 a 12 a 1n x 1 b 1 a 21 a 22 a 2n x 2 b 2... =. Ax = b a n1 a n2 a nn x n b n
22 A nxn. X nx1 = b nx1 Matriks pertama adalah matriks bujur sangkar A nxn = A Matriks kedua adalah vektor kolom X nx1 = X Matriks ketiga adalah vektor kolom b nx1 = b Sehingga sistem persamaan dapat ditulis sebagai berikut : Ax = b x = b/a = A -1 b = Ā. b A Cara I : mencari harga-harga x dengan invers A-1 A -1 A = I I X = X Persamaan : Ax = b, kalikan ruas kiri dan kanan dengan A-1, maka A -1 A X = A -1 b A -1 b syarat A 0 Invers A-1 diperoleh dari matriks koefisien A persamaan-persamaan itu
23 Cara II : mencari harga-harga dengan kaidah Cramer X 1 = Āj ; syarat A 0 A Keterangan : A = determinan matriks A Aj = determinan matriks A yang kolom ke j (=i) telah diganti oleh vektor kolom b Contoh soal : x 1 + 2x 2 3x 3 = 7 6x 1 + 4x 2 + x 3 = 37 5x 1 + 3x 2 + 2x 3 = 31 Jawaban : Cara I dengan invers matriks koefisien x x 2 = x 3 31
24 A. X = b A = 1(8-3) -2(12-5) -3(18-20) = -3 Matriks kofaktor A K = K 11 K 12 K = K 21 K 22 K 23 = K 31 K 32 K Ā = K T = Ā = A -1 = A
25 X = A -1.b = Maka l x 1 = x 2 3 = = 3 X Jadi diperoleh harga-harga x sebagai berikut ; x 1 = 4; x 2 = 3 dan x 3 = 1 Cara pemecahan II dengan kaidah Cramer Kolom 1 diganti matriks kolom b A1 = = 7(8-3) (12(74-31) 3( ) = A = -3; jadi x1 = A1 = -12 = 4 A -3
26 Kolom 2 diganti matriks kolom b A 2 = = 1(74-31) 7(1-5) 3( ) = A = -3; jadi x 1 = A 2 = -9 = 3 A -3 Kolom 3 diganti matriks kolom b A 3 = = 1( ) 2( ) + 7(18-20) = A = -3; jadi x 3 = A 3 = -3 = 1 A -3 Ternyata jawaban cara 1 dan cara 2 sama.
27 Terima kasih, Semoga Bermanfaat
ALJABAR LINIER DAN MATRIKS
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya
MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.
MATRIKS A. Definisi Matriks 1. Definisi Matriks dan Ordo Matriks Matriks adalah susunan bilangan (elemen) yang disusun menurut baris dan kolom dan dibatasi dengan tanda kurung. Jika suatu matriks tersusun
BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks
1.1 LATAR BELAKANG BAB I PENDAHULUAN Teori matriks merupakan salah satu cabang ilmu aljabar linier yang menjadi pembahasan penting dalam ilmu matematika. Sejalan dengan perkembangan ilmu pengetahuan, aplikasi
MATRIK dan RUANG VEKTOR
MATRIK dan RUANG VEKTOR A. Matrik. Pendahuluan Sebuah matrik didefinisikan sebagai susunan persegi panjang dari bilangan bilangan yang diatur dalam baris dan kolom. Matrik ditulis sebagai berikut: a a
Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse
Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam
Vektor. Vektor. 1. Pengertian Vektor
Universitas Muhammadiyah Sukabumi Artikel Aljabar Vektor dan Matriks Oleh : Zie_Zie Vektor Vektor 1. Pengertian Vektor a. Definisi Vektor adalah suatu besaran yang mempunyai nilai (besar) dan arah. Contohnya
MATRIKS A = ; B = ; C = ; D = ( 5 )
MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.
MATRIKS. Notasi yang digunakan NOTASI MATRIKS
MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.
BAB II DETERMINAN DAN INVERS MATRIKS
BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau
DIKTAT MATEMATIKA II
DIKTAT MATEMATIKA II (MATRIK) Drs. A. NABABAN PURNAWAN, S.Pd.,M.T JURUSAN PENDIDIKAN TEKNIK MESIN FAKULTAS PENDIDIKAN TEKNOLOGI DAN KEJURUAN UNIVERSITAS PENDIDIKAN INDONESIA 2004 MATRIKS I. PENGERTIAN
Part III DETERMINAN. Oleh: Yeni Susanti
Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)
6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1
6- Operasi Matriks Contoh 6-1 : Budi diminta tolong oleh ibunya untuk membeli 2 kg gula dan 1 kg kopi. Dengan uang Rp. 10.000,- Budi mendapatkan uang kembali Rp. 3.000,-. Dihari yang lain, Budi membeli
METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV. Norma Puspita, ST. MT. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n
METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV Norma Puspita, ST MT Matriks Matriks adlah susunan bilangan (elemen) yang disusun menurut baris dan kolom sehingga berbentuk persegi panjang Matriks dinotasikan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL
8 MATRIKS DAN DETERMINAN
8 MATRIKS DAN DETERMINAN Matriks merupakan pengembangan lebih lanjut dari sistem persamaan linear. Oleh karenanya aljabar matriks sering juga disebut dengan aljabar linear. Matriks dapat digunakan untuk
BAB I MATRIKS DEFINISI : NOTASI MATRIKS :
BAB I MATRIKS DEFINISI : Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun/dijajarkan berbentuk persegi panjang (menurut baris dan kolom). Skalar-skalar itu disebut elemen matriks.
BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =
BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam
Matriks Jawab:
Matriks A. Operasi Matriks 1) Penjumlahan Matriks Jika A dan B adalah sembarang Matriks yang berordo sama, maka penjumlahan Matriks A dengan Matriks B adalah Matriks yang diperoleh dengan cara menjumlahkan
2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks
2. MATRIKS 1. Pengertian Matriks Matriks adalah himpunan skalar yang disusun secara empat persegi panjang menurut baris dan kolom. Matriks diberi nama huruf besar, sedangkan elemen-elemennya dengan huruf
Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan
C. Determinan dan Invers Matriks C.. Determinan Suatu matriks persegi selalu dapat dikaitkan dengan suatu bilangan yang disebut determinan. Determinan dari matriks persegi dinotasikan dengan. Untuk matriks
BAB II TINJAUAN PUSTAKA
5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang
MATRIKS. 2. Matriks Kolom Matriks kolom adalah matriks yang hanya mempunyai satu kolom. 2 3 Contoh: A 4 x 1 =
NAMA : KELAS : 1 2 MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital
Aljabar Linier Elementer. Kuliah 7
Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan
Banyaknya baris dan kolom suatu matriks menentukan ukuran dari matriks tersebut, disebut ordo matriks
MATRIKS DEFINISI Matriks adalah susunan bilangan real atau bilangan kompleks (atau elemen-elemen) yang disusun dalam baris dan kolom sehinggga membentuk jajaran persegi panjang. Matriks memiliki m baris
Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2
Determinan Determinan Setiap matriks bujur sangkar A yang berukuran (nxn) dapat dikaitkan dengan suatu skalar yang disebut determinan matriks tersebut dan ditulis dengan det(a) atau A. Untuk menghitung
BAB 2. DETERMINAN MATRIKS
BAB. DETERMINAN MATRIKS DETERMINAN MATRIKS . Definisi DETERMINAN Determinan : produk (hasil kali) bertanda dari unsur-unsur matriks sedemikian hingga berasal dari baris dan kolom yang berbeda, kemudian
DETERMINAN. Determinan matriks hanya didefinisikan pada matriks bujursangkar (matriks kuadrat). Notasi determinan matriks A: Jika diketahui matriks A:
DETERMINAN Definisi Determinan Matriks Determinan matriks adalah bilangan tunggal yang diperoleh dari semua permutasi elemen matriks bujur sangkar.jika subskrip permutasi elemen matriks adalah genap (inversi
MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika
MATRIKS FTP UB Mas ud Effendi Pokok Bahasan Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar Invers suatu matriks bujursangkar Penyelesaian set persamaan linier Nilai-eigen dan
a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA.
a11 a12 x1 b1 a a x b 21 22 2 2 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 a11 a12 x1 b1 a a x b 21 22 2 2 Setijo Bismo
MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI
MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.
MATRIKS. Matriks adalah himpunan skalar (bilangan riil/kompleks) yang disusun secara empat persegi panjang (menurut baris dan kolom)
MTRIKS DEFINISI Bentuk umum =(aij),i=,,...m J=,,...m a a a n baris a a..a n baris MTRIKS Matriks adalah himpunan skalar (bilangan riil/kompleks) yang disusun secara empat persegi panjang (menurut baris
Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij)
MATRIKS a a a... a n a a a... an A a a a... a n............... am am am... a mn Matriks A dengan m baris dan n kolom (A m n). Notasi Matriks : a, dimana a adalah elemen pada baris ke i kolom ke j Kesamaan
MATRIKS. Slide : Tri Harsono PENS - ITS. 1 Politeknik Elektronika Negeri Surabaya (PENS) - ITS
MATRIKS Slide : Tri Harsono PENS - ITS 1 Sifat Matriks Perkalian dua matriks tidak komutatif Perkalian dua matriks bersifat assosiatif dan distributif tidak komutatif AB BA (AB)C = A(BC) A(B+C) = AB +
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dipaparkan mengenai konsep dasar tentang matriks meliputi definisi matriks, jenis-jenis matriks, operasi matriks, determinan, kofaktor, invers suatu matriks, serta
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS
Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini.
. INVERS MTRIKS Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. a. RNK MTRIKS Matriks tak nol dikatakan mempunyai rank r jika paling
TUGAS MANDIRI MATRIKS. Mata Kuliah : Matematika ekonomi
TUGAS MANDIRI MATRIKS Mata Kuliah : Matematika ekonomi NamaMahasiswa : Suriani NIM : 140610098 Kode Kelas Dosen : 141-MA112-M6 : NeniMarlinaPurbaS.Pd UNIVERSITAS PUTERA BATAM 2014 KATA PENGANTAR Puji syukur
MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI
214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi
a11 a12 x1 b1 Lanjutan Mencari Matriks Balikan dengan OBE
a11 a12 x1 b1 a a x b 21 22 2 2 Lanjutan Mencari Matriks Balikan dengan OBE a11 a12 x1 b1 a a x b 21 22 2 2 Untuk DIPERHATIKAN! a A c Untuk mencari Matriks INVERS ordo 2, rumus: 1 1 d b A a d b c c a b
Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut
Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen
LEMBAR AKTIVITAS SISWA MATRIKS
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel
Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.
MATRIKS Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1
MATRIKS. 3. Matriks Persegi Matriks persegi adalah matriks yang mempunyai baris dan kolom yang sama.
MATRIKS Matriks adalah susunan berbeda dalam bentuk persegi panjang yang diatur pada baris dan kolom. NOTASI MATRIKS DAN ORDO MATRIKS Notasi matriks biasanya dituliskan dalam huruf kapital (huruf besar)
5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.
1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y
Pertemuan 2 Matriks, part 2
Pertemuan 2 Matriks, part 2 Beberapa Jenis Matriks Khusus 1. Matriks Bujur Sangkar Suatu matriks dengan banyak baris = banyak kolom = n disebut matriks bujur sangkar berukuran n (berordo n). Barisan elemen
Pertemuan 4 Aljabar Linear & Matriks
Pertemuan 4 Aljabar Linear & Matriks 1 Notasi : huruf besar tebal misalnya A, B, C Merupakan array dari bilangan, setiap bilangan disebut elemen matriks (entri matriks) Bentuk umum : m : jumlah baris (mendatar)
Matriks. Baris ke 2 Baris ke 3
Matriks A. Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegi panjang. Susunan bilangan itu diletakkan di dalam kurung
MATRIKS. kolom, sehingga dapat dikatakan matriks berordo 3 1 Penamaan suatu matriks biasa menggunakan huruf kapital
MATRIKS A. Pengertian, Notasi dan Ordo Suatu Matriks Matriks adalah susunan bilangan yang diatur berdasarkan baris dan kolom sehingga membentuk persegi panjang. Ukuran panjang dan lebar matriks ditentukan
MATRIKS Matematika Industri I
MATRIKS TIP FTP UB Mas ud Effendi Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu
MATRIKS Matematika Industri I
MATRIKS TIP FTP UB Mas ud Effendi Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu
Aljabar Linier Elementer. Kuliah 1 dan 2
Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut
LEMBAR AKTIVITAS SISWA MATRIKS
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel
Perluasan Teorema Cayley-Hamilton pada Matriks
Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan
MATEMATIKA. Sesi MATRIKS CONTOH SOAL A. MATRIKS SATUAN (MATRIKS IDENTITAS)
MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 10 Sesi N MATRIKS A. MATRIKS SATUAN (MATRIKS IDENTITAS) Masih ingat angka 1 kan, setiap bilangan yang dikali satu apakah berubah? Tentunya tidak. Matriks satuan
1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata
SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : MATEMATIKA INFORMATIKA 2 JURUSAN : S1-TEKNIK INFORMATIKA KODE MATA KULIAH : IT-045214 Referensi : [1]. Yusuf Yahya, D. Suryadi. H.S., Agus S., Matematika untuk
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor
Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:
Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri
02-Pemecahan Persamaan Linier (1)
-Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:
Definisi : det(a) Permutasi himpunan integer {1, 2, 3,, n}:
Definisi : Determinan dari matrik bujursangkar A berorde n adalah jumlah semua permutasi n (n!) hasil kali bertanda dari elemen-elemen matrik. Dituliskan : det(a) atau A (jr j r...j n ).a jr a j r...am
Matematika Teknik I: Matriks, Inverse, dan Determinan. Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015
Matematika Teknik I: Matriks, Inverse, dan Determinan Oleh: Dadang Amir Hamzah STT DR. KHEZ MUTTAQIEN 2015 Dadang Amir Hamzah (STT) Matematika Teknik I Semester 3, 2015 1 / 33 Outline 1 Matriks Dadang
JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA
CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER
Pertemuan 8 Aljabar Linear & Matriks
Pertemuan 8 Aljabar Linear & Matriks 1 Jika A adl matriks nxn yg invertible, untuk setiap matriks b dgn ukuran nx1, maka sistem persamaan linier Ax = b mempunyai tepat 1 penyelesaian, yaitu x = A -1 b
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan
(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66
MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi
Matematika Teknik INVERS MATRIKS
INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Repeated Measurement Dalam repeated measurement setiap perlakuan menunjukkan pengukuran terhadap satu sampel (unit eksperimen ) atau beberapa sampel yang memiliki karakter sama
03-Pemecahan Persamaan Linier (2)
-Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Matriks Invers Bagian : Eliminasi = Faktorisasi: A = LU Bagian : Transpos dan Permutasi Anny Bagian MATRIKS INVERS
Matematika Teknik DETERMINAN
DETERMINN da satu cara lagi dalam menentukan solusi SPL dengan bekerja pada matriks koefisiennya. Cara berikut hanya akan berlaku untuk matriks koefiien berupa matriks bujursangkar atau SPL mempunyai banyak
BAB 3 : INVERS MATRIKS
BAB 3 : INVERS MATRIKS PEMBAGIAN MATRIKS DAN INVERS MATRIKS Pada aljabar biasa, bila terdapat hubungan antara 2 besaran a dengan x sedemikian sehingga ax1, maka dikatakan x adalah kebalikan dari a dan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5
MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT)
MATRIKS DAN OPERASINYA Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Sub Pokok Bahasan Matriks dan Jenisnya Operasi Matriks Operasi Baris Elementer Matriks Invers (Balikan) Beberapa Aplikasi Matriks
BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas
BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian
Analisa Numerik. Matriks dan Komputasi
Analisa Numerik Matriks dan Komputasi M AT R I K S Matriks adalah suatu susunan angka atau bilangan, variabel, atau parameter yang berbentuk empat persegi dan biasanya ditutup dengan tanda kurung K O N
LEMBAR AKTIVITAS SISWA MATRIKS (WAJIB)
LEMBAR AKTIVITAS SISWA MATRIKS (WAJIB) Nama Siswa Kelas : : Kompetensi Dasar (Kurikulum 2013): 3.1 Menganalisis konsep, nilai determinan dan sifat operasi matriks serta menerapkannya dalam menentukan invers
Pengolahan Dasar Matriks Bagus Sartono
Pengolahan Dasar Matriks Bagus Sartono [email protected] Departemen Statistika FMIPA IPB Notasi Dasar Matriks A mxn, m A n, [a ij ] mxn : matriks berukuran m x n (m baris, n kolom) a ij adalah elemen matriks
1.1 MATRIKS DAN JENISNYA Matriks merupakan kumpulan bilangan yang berbentuk segi empat yang tersusun dalam baris dan kolom.
Bab MATRIKS DAN OPERASINYA Memahami matriks dan operasinya merupakan langkah awal dalam memahami buku ini. Beberapa masalah real dapat direpresentasikan dalam bentuk matriks. Masalah tersebut antara lain
Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3
MATRIKS a. Konsep Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegipanjang dan diletakkan di dalam kurung biasa ( ) atau
Part II SPL Homogen Matriks
Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a
M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR
M AT E M AT I K A E K O N O M I MATRIKS DAN SPL TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 1 2 Kesetimbangan Dua Pasar Permintaan kopi bergantung tidak hanya pada harganya tetapi juga pada harga
3 Langkah Determinan Matriks 3x3 Metode OBE
3 Langkah Determinan Matriks 3x3 Metode OBE Ogin Sugianto [email protected] penma2b.wordpress.com Majalengka, 10 Oktober 2016 Selain metode Sarrus dan Minor-Kofaktor, ada satu metode lain yang dapat
Matriks. Modul 1 PENDAHULUAN
Modul Matriks Dra. Sri Haryatmi Kartiko, M.Sc. I PENDAHULUAN lmu pengetahuan dewasa ini menjadi semakin kuantitatif. Data numerik dengan skala besar, hasil pengukuran berupa angka sering dijumpai oleh
Bab 2 LANDASAN TEORI
17 Bab 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga
BAB 2 LANDASAN TEORI. yang dibicarakan yang akan digunakan pada bab selanjutnya. Bentuk umum dari matriks bujur sangkar adalah sebagai berikut:
BAB 2 LANDASAN TEORI Pada bab ini dibicarakan mengenai matriks yang berbentuk bujur sangkar dengan beberapa definisi, teorema, sifat-sifat dan contoh sesuai dengan matriks tertentu yang dibicarakan yang
Invers Tergeneralisasi Matriks atas Z p
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Invers Tergeneralisasi Matriks atas Z p Evi Yuliza 1 1 Fakultas MIPA Universitas Sriwijaya evibc3@yahoocom PM A-1 - Abstrak Sebuah matriks
Kriteria Unjuk Kerja. Besaran vektor. Vektor satuan Menggambar Vektor
DESKRIPSI KOMPETENSI MATA KULIAH Mata Kuliah : Matematika Kode Mata Kuliah : TKF 201 SKS : 2 Unit Kompetensi : Memecahkan persoalan matematika dasar. Kompetensi 1. Menguasai teori a) Menggambar Vektor
BAB II TINJAUAN PUSTAKA
6 BAB II TINJAUAN PUSTAKA A. Bilangan Kompleks Bilangan merupakan suatu konsep dalam matematika yang digunakan untuk pencacahan dan pengukuran. Sistem bilangan yang dikenal saat ini merupakan hasil perkembangan
MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR
MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh: IRMA
Matriks. Matriks B A B. A. Pengertian Matriks. B. Operasi Hitung pada Matriks. C. Determinan dan Invers
Matriks B B 3. Pengertian Matriks B. Operasi Hitung pada Matriks C. Determinan dan Invers Matriks D. Penerapan Matriks dalam Sistem Persamaan Linear Sumber: www.smanela-bali.net Pernahkah kalian mengamati
Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa
Bab 7 Sistem Pesamaan Linier Oleh : Devie Rosa Anamisa Pendahuluan Bentuk umum dari aljabar linier sebagai berikut: a11x1 + a12a 12X2 +... + a1na 1nXn = b1b a21x1 + a22a 22X2 +... + a2na 2nXn = b2b...............
MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom.
Page- MATRIKS Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Notasi: Matriks dinyatakan dengan huruf besar, dan elemen elemennya
Institut Teknologi Sepuluh Nopember Surabaya. Keterkendalian (Controlability)
Institut Teknologi Sepuluh Nopember Surabaya Keterkendalian (Controlability) Contoh Soal Ringkasan Latihan Contoh Soal Ringkasan Latihan Vektor Bebas Linear Keterkendalian Keadaan Secara Sempurna dari
DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks
DIKTAT PERKULIAHAN EDISI 1 Aljabar Linear dan Matriks Penulis : Ednawati Rainarli, M.Si. Kania Evita Dewi, M.Si. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 011 IF/011 1 DAFTAR ISI
MODUL E LEARNING SEKSI -1 MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA 151 : 5099 : DRA ENDANG SUMARTINAH,MA
MODUL E LEARNING SEKSI - MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA DOSEN : : DRA ENDANG SUMARTINAH,MA TUJUAN MATA KULIAH : A.URAIAN DAN TUJUAN MATA KULIAH : Mahasiswa mempelajari Matriks, Determinan,
II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world).
5 II. TINJAUAN PUSTAKA 2.1. Pemodelan Matematika Definisi pemodelan matematika : Pemodelan matematika adalah suatu deskripsi dari beberapa perilaku dunia nyata (fenomena-fenomena alam) ke dalam bagian-bagian
SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi.
SILABUS Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMA NEGERI 2 LAHAT : MATEMATIKA : XII / IPA : GANJIL STANDAR KOMPETENSI: 3. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan
RENCANA PELAKSANAAN PEMBELAJARAN NO: 1
RENCANA PELAKSANAAN PEMBELAJARAN NO: 1 Materi Pokok : Integral Pertemuan Ke- : 1 dan Alokasi Waktu : x pertemuan (4 x 45 menit) Standar Kompetensi : Menggunakan konsep integral dalam pemecahan masalah
Metode Analisis Relasi Pemasukan dan Pengeluaran dalam Bisnis dan Ekonomi dengan Matriks Teknologi
Metode Analisis Relasi Pemasukan dan Pengeluaran dalam Bisnis dan Ekonomi dengan Matriks Teknologi Ginanjar Fahrul Muttaqin Teknik Informatika Institut Teknologi Bandung, Ganeca 10, Email [email protected]
