TRANFORMASI 2 DIMENSI
|
|
|
- Suhendra Hartanto
- 8 tahun lalu
- Tontonan:
Transkripsi
1 TRANFORMASI 2 DIMENSI Achmad Basuki Nana Ramadijanti Achmad Basuki, Nana Ramadijanti - Laboratorium Computer Vision Politeknik Elektronika Negeri Surabaya (PENS-ITS)
2 Materi Struktur titik dan vektor Perubahan struktur titik ke vektor Perubahan struktur vektor ke titik Translasi Scalling Rotasi Perkalian Matrik Komposisi Transformasi
3 Struktur Titik dan Vektor Struktur data dari titik 2D typedef struct { float x,y; } point2d_t; Struktur data dari vektor 2D typedef struct { float v[3]; } vector2d_t;
4 Perubahan Titik dan Vektor titik 2D Point2Vector v[] x v[2] y v[3] Vector2Point vektor 2D
5 Point2Vector Fungsi ini digunakan untuk memindahkan tipe data titik menjadi tipe data vektor. Hal ini sangat berguna untuk operasional matrik yang digunakan dalam melakukan transformasi dan pengolahan matrik pada grafika komputer. vector2d_t point2vector(point2d_t pnt) { vector2d_t vec; vec.v[]=pnt.x; vec.v[2]=pnt.y; vec.v[3]=.; }
6 Vector2Point Fungsi ini digunakan untuk memindahkan tipe data vektor menjadi tipe data titik. Hal ini sangat berguna untuk penyajian grafis setelah proses pengolahan matrik yang dikenakan pada obyek 2D. point2d_t vector2point(vector2d_t vec) { point2d_t pnt; pnt.x=vec.v[]; pnt.y=vec.v[2]; }
7 Transformasi 2D Translasi Scaling Rotasi
8 Matrik Transformasi 2D Matrik transformasi adalah matrik yang membuat sebuah obyek mengalami perubahan baik berupa perubahan posisi, maupun perubahan ukuran. Matrik transformasi 2D dinyatakan dalam ukuran 3x3, dimana kolom ke-3 digunakan untuk menyediakan tempat untuk proses translasi. a a a 2 3 a a a a a a
9 Translasi Translasi adalah perpindahan obyek dari titik P ke titik P secara linier. P (x,y ) x = x + dx y = y + dy P(x,y) dx dy Model Matrik: x' y' = x y + dx dy
10 Matrik Transformasi dari Translasi 2D Matrik Transformasi dari Translasi 2D = ˆ ˆ ˆ v v v d d v v v y x Proses translasi dengan menggunakan definisi vektor2d dapat dituliskan dengan Matrik Transformasi dari Translasi y x d d
11 Implementasi Matrik Tranformasi Untuk Translasi matrix2d_t translationmtx(float dx,float dy) { matrix2d_t trans=createidentity(); trans.m[][2]=dx; trans.m[][2]=dy; return trans; } Fungsi untuk membuat matrik identitas
12 Matrik Identitas Matrik identitas adalah matrik yang nilai diagonal utamanya sama dengan satu dan lainnya nol. matrix2d_t createidentity(void) { matrix2d_t u; int i,j; for (i=;i<3;i++) { for(j=;j<3;j++) u.m[i][j]=.; u.m[i][i]=.; } return u; }
13 Scaling Scaling m adalah perpindahan obyek dari titik P ke titik P, dimana jarak titik P adalah m kali titik P y P(x,y) P (x,y ) m y.y x = m x x y = m y y m x.x x
14 Matrik Transformasi dari Scaling 2D Matrik Transformasi dari Scaling 2D = ˆ ˆ ˆ v v v m m v v v y x Proses scaling dengan menggunakan definisi vektor2d dapat dituliskan dengan Matrik Transformasi dari Scaling y x m m
15 Implementasi Matrik Tranformasi Untuk Scaling matrix2d_t scalingmtx(float mx,float my) { matrix2d_t scale=createidentity(); scale.m[][]=mx; scale.m[][]=my; return scale; }
16 Rotasi Rotasi adalah perpindahan obyek dari titik P ke titik P, yang berupa pemindahan berputar sebesar sudut θ y θ P (x,y ) P(x,y) x = x cos(θ) - y sin(θ) y = x sin(θ) + y cos(θ) x
17 Matrik Transformasi dari Rotasi Proses Rotasi dengan menggunakan definisi vektor2d dapat dituliskan dengan vˆ vˆ vˆ 2 3 = cos( θ ) sin( θ ) sin( θ ) cos( θ ) v v v 2 3 cos( θ ) sin( θ ) sin( θ ) cos( θ ) Matrik Transformasi dari Rotasi
18 Implementasi Matrik Tranformasi Untuk Rotasi matrix2d_t rotationmtx(float theta) { matrix2d_t rotate=createidentity(); float cs=cos(theta); float sn=sin(theta); rotate.m[][]=cs; rotate.m[][]=-sn; rotate.m[][]=sn; rotate.m[][]=cs; return rotate; }
19 Perkalian Matrik Perkalian matrik dengan matrik menghasilkan matrik Perkalian matrik dengan vektor menghasilkan vektor Perkalian matrik ini digunakan untuk operasional transformasi dari obyek 2D dan untuk komposisi (menggabungkan) tranformasi
20 Perkalian Matrik dengan Matrik Perkalian matrik a dan matrik b menghasilkan matrik c yang dirumuskan dengan c ij = 2 k = a ik b dimana i dan j bernilai s/d 2 kj
21 Implementasi Perkalian Matrik dengan Matrik matrix2d_t operator * (matrix2d_t a, matrix2d_t b) { matrix2d_t c;//c=a*b int i,j,k; for (i=;i<3;i++) for (j=;j<3;j++) { c.m[i][j]=; for (k=;k<3;k++) c.m[i][j]+=a.m[i][k]*b.m[k][j]; } return c; }
22 Perkalian Matrik dengan Vektor Perkalian matrik a dan vektor b menghasilkan vektor c yang dirumuskan dengan c i = 2 k = a ik b dimana i bernilai s/d 2 k
23 Implementasi Perkalian Matrik dengan Vektor vector2d_t operator * (matrix2d_t a, vector2d_t b) { vector2d_t c;//c=a*b int i,j; for (i=;i<3;i++) { c.v[i]=; for (j=;j<3;j++) c.v[i]+=a.m[i][j]*b.v[j]; } return c; }
24 Komposisi Transformasi Komposisi transformasi adalah menggabungkan beberapa tranformasi, sehingga dapat menghasilkan bentuk transformasi yang lebih kompleks Komposisi tranformasi dapat dilakukan dengan mengalikan matrik-matrik transformasi
25 Contoh Komposisi Tranformasi Rotasi(θ) Translasi(d,) Komposisi transformasi dinyatakan dengan : Rotasi(θ).Translasi(d,)
26 Contoh Komposisi Tranformasi Rotasi(θ) Translasi(d,) Komposisi transformasi dinyatakan dengan : Translasi(d,). Rotasi(θ)
27 Tugas Grafika Komputer Menggambarkan Orbit Bumi dan Bulan
28 Tugas 2 Grafika Komputer Menggambar Gerakan Tutup Gelas Terbuka Gelas tertutup Gerakan terbuka dan tertutup Gelas terbuka
29 Tugas 3 Grafika Komputer Menggambar Osiloskop Sinyal berjalan Fungsi gelombang AM adalah: y sin( 2π f t). [ + m.sin(2πf t) ] = c fc = frekwensi pembawa f i = frekwensi informasi m= = konstanta modulasi i
Grafik 3 Dimensi. Achmad Basuki Nana R Politeknik Elektronika Negeri Surabaya Surabaya 2009
Grafik 3 Dimensi Achmad Basuki Nana R Politeknik Elektronika Negeri Surabaya Surabaya 29 Materi Sistem Koordinat 3D Definisi Obyek 3D Cara Menggambar Obyek 3D Konversi Vektor 3D menjadi Titik 2D Konversi
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB. SHEET PRAKTIKUM GRAFIKA KOMPUTER
No. : ST/EKA/PTI223/10 Revisi : 00 Senin 010509 Hal. 1 dari 23 hal. Pengantar Dalam pembuatan sebuah gambar obyek sebenarnya merupakan gabungan dari beberapa obyek sederhana. Misalnya sebuah gambar robot
FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA
No. : ST/EKA/PTI275/10 Revisi : 00 Senin/Selasa Hal. 1 dari 23 hal. Pengantar Dalam pembuatan sebuah gambar obyek sebenarnya merupakan gabungan dari beberapa obyek sederhana. Misalnya sebuah gambar robot
OBYEK GRAFIK 2 DIMENSI
OBYEK GRAFIK 2 DIMENSI Achmad Basuki Nana Ramadijanti Achmad Basuki, Nana Ramadijanti - Laboratorium Computer Vision Politeknik Elektronika Negeri Surabaya (PENS-ITS) Materi Definisi Obyek Grafik 2-D PolyLine
Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014
Transformasi Geometri Sederhana Farah Zakiyah Rahmanti 2014 Grafika Komputer TRANSFORMASI 2D Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut
8.3. Memberi Warna Pada Obyek 3 Dimensi
8.3. Memberi Warna Pada Obyek 3 Dimensi Pada pembahasan di atas, obyek 3 dimensi digambar dalam model wireframe (kerangka), padahal dalam pemakaian sebenarrnya setiap obyek diberi warna. Pada obyek 3 dimensi
BAB 9 SHADING DAN OPTICAL VIEW
BAB 9 SHADING DAN OPTICAL VIEW 9.1. Vektor Satuan Vektor satuan (unit vector) adalah vektor yang besarnya satu. Untuk mendapatkan vektor satuan maka setiap elemen vektor dibagi dengan besarnya vektor tersebut
Pengantar Kuliah: Grafika Komputer. By: Nana Ramadijanti
Pengantar Kuliah: Grafika Komputer By: Nana Ramadijanti Tujuan Perkuliahan Mahasiswa dapat membuat program untuk membangun grafik 2D dan 3D menggunakan bahasa pemrograman C++ dan grafik library OpenGL.
Transformasi Geometri Sederhana
Transformasi Geometri Sederhana Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut dengan manipulasi. Perubahan gambar dengan mengubah koordinat
OBYEK GRAFIK 2 DIMENSI
OBYEK GRAFIK 2 DIMENSI Achmad Basuki Nana Ramadijanti Achmad Basuki, Nana Ramadijanti - Laboratorium Computer Vision Politeknik Elektronika Negeri Surabaya (PENS-ITS) Materi Definisi Obyek Grafik 2-D PolyLine
Pengertian. Transformasi geometric transformation. koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan
Pengertian Transformasi geometric transformation Transformasi = mengubah deskripsi koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan Translasi Mengubah posisi objek: perpindahan lurus
Grafik 3 Dimensi. Achmad Basuki Nana Ramadijanti
Grfik 3 Dimensi Achmd Bsuki Nn Rmdijnti Achmd Bsuki, Nn Rmdijnti - Lortorium Computer Vision Politeknik Elektronik Negeri Sury (PENS-ITS) Mteri Sistem Koordint 3D Definisi Oyek 3D Cr Menggmr Oyek 3D Konversi
Fitur Bentuk Pada Citra. Achmad Basuki, Nana R PENS-ITS, 2008
Fitur Bentuk Pada Citra Achmad Basuki, Nana R PENS-ITS, 008 Materi Fitur Bentuk Deteksi Tepi Histogram Proyeksi Histogram Sudut Aplikasi Pengenalan Angka Fitur Bentuk Fitur bentuk adalah fitur dasar dalam
Primitive Drawing. Achmad Basuki Nana Ramadijanti
Primitive Drawing Achmad Basuki Nana Ramadijanti Achmad Basuki, Nana Ramadijanti - Laboratorium Computer Vision Politeknik Elektronika Negeri Surabaya (PENS-ITS) Materi Sistem Koordinat 2 Dimensi Menggambar
21. SOAL-SOAL TRANSFORMASI GOMETRI
21. SOAL-SOAL TRANSFORMASI GOMETRI Maka rotasi terhadap R[, 18 ] = cos18 sin18 sin18 cos18 UAN22 1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah: A. y = x + 1 C. y = 2 x - 1 E.
Image Filtering. Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS 2005
Image Filtering Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS 25 Materi Prinsip Filtering Di Dalam Image Processing Konvolusi Low-Pass Filter High-Pass Filter Prinsip Filter Dalam Image
Pendahuluan 9/7/2011. Overview. Deskripsi
Pertemuan : I Dosen Pembina : Sriyani Violina Danang Junaedi Pendahuluan Overview Deskripsi Tujuan Instruksional Kaitan Materi Urutan Bahasan Penilaian Grade Referensi 2 Deskripsi Tujuan Instruksional
Transformasi Datum dan Koordinat
Transformasi Datum dan Koordinat Sistem Transformasi Koordinat RG091521 Lecture 6 Semester 1, 2013 Jurusan Pendahuluan Hubungan antara satu sistem koordinat dengan sistem lainnya diformulasikan dalam bentuk
TE Teknik Numerik Sistem Linear
TE 9467 Teknik Numerik Sistem Linear Operator Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E. Objektif.
Pertemuan 6 Transformasi Linier
Pertemuan 6 Transformasi Linier Objektif: 1. Praktikan memahami definisi transformasi linier umum. 2. Praktikan memahami definisi dari transformasi linier dari R n ke R m. 3. Praktikan memahami invers
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0
TE Teknik Numerik Sistem Linear. Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember
TE9467 Teknik Numerik Sistem Linear Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF TEORI 3 CONTOH 4 SIMPULAN 5 LATIHAN OBJEKTIF
20. TRANSFORMASI. A. Translasi (Pergeseran) ; T = b. a y. a y. x atau. = b. = b
. TRANSFORMASI A. Translasi (Pergeseran) ; T b a + b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis, dan garis
Esther Wibowo
Esther Wibowo [email protected] Topik Hari Ini Dasar Transformasi Translation Pemindahan, Penggeseran Scaling Perubahan Ukuran Shear Distorsi? Rotation Pemutaran Representasi Matriks Transformasi
TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor)
Outline TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Drs. Antonius Cahya Prihandoko, M.App.Sc PS. Pendidikan Matematika PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline
, ω, L dan C adalah riil, tunjukkanlah
. Jika z j j PROBLEM SE# Sistem Bilangan Kompleks, tentukanlah bagian riil dan bagian imajiner dari bilangan kompleks z z. Carilah harga dan y yang memenuhi persamaan : y j y, j, ( ) ( ). Carilah bentuk
BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F
BAB IV TRANSFORMASI LINEAR 4.. Transformasi Linear Jika V dan W adalah ruang vektor dan F adalah sebuah fungsi yang mengasosiasikan sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka
PENGANTAR GRAFIKA KOMPUTER
PENGANTAR GRAFIKA KOMPUTER Achmad Basuki Nana Ramadijanti Achmad Basuki, Nana Ramadijanti - Laboratorium Computer Vision Politeknik Elektronika Negeri Surabaya (PENS-ITS) Materi Pengenalan grafika komputer
Materi Aljabar Linear Lanjut
Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: [email protected] JURUSAN PENDIDIKAN MATEMATIKA
7.6. Menggambar Bola. Gambar Bola adalah setengah lingkaran yang diputar. Pembentukan bola adalah: Y. Gambar 7.15.
7.6. Menggambar Bola Bola memunyai koordinat khusus, dimana setia titik ada bola memunyai jarak yang sama terhada titik usatnya. Bola adalah hasil utar dari setengah lingkaran. Gambar 7.14. Bola adalah
MODUL MATEMATIKA SMA IPA Kelas 11
SMA IPA Kelas DEFINISI Transformasi merupakan pemetaan titik, garis atau bidang ke titik, garis atau bidang lain pada bidang yang sama. Misalkan transformasi T memetakan titik P (, y) ke titik P(, y) dan
BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK
BAB III KONDUKSI ALIRAN SEDI - DIMENSI BANYAK Untuk aliran stedi tanpa pembangkitan panas, persamaan Laplacenya adalah: + y 0 (6-) Aliran kalor pada arah dan y bisa dihitung dengan persamaan Fourier: q
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012
Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)
Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket Oleh : Fendi Alfi Fauzi. Lingkaran x 6) 2 + y + ) 2 menyinggung garis y di titik a), ) b), ) c) 6, ) d) 6,
BAB 1 Vektor. Fisika. Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom
A 1 Vektor Fisika Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sub Pokok ahasan Definisi Vektor Penjumlahan Vektor Vektor Satuan
III HASIL DAN PEMBAHASAN
Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =
a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1
1. Koordinat Cartesius Sistem koordinat Cartesius terdiri dari dua garis yang saling tegak lurus yang disebut sumbu Sumbu horizontal disebut sumbu X dan sumbu vertikal disebut sumbu Y Tiap sumbu mempunyai
Penerapan Pemodelan Matematika untuk Visualisasi 3D Perpustakaan Universitas Mercu Buana
Penerapan Pemodelan Matematika untuk Visualisasi 3D Perpustakaan Universitas Mercu Buana Walid Dulhak 1, Abdusy Syarif 2 dan, Tri Daryanto 3 Jurusan Teknik Informatika, Fakultas Ilmu Komputer, Universitas
Bab III. 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku. Penghubung berputar terhadap satu titik tetap
Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno ab III KECEPTN RELTIF DN PERCEPTN RELTIF 3.1 KECEPTN RELTIF 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku Penghubung berputar
Hendra Gunawan. 5 Maret 2014
MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 Maret 014 Kuliah yang Lalu 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kurva di Bidang 10.5 SistemKoordinatPolar 11.1 Sistem
Fisika Dasar 9/1/2016
1 Sasaran Pembelajaran 2 Mahasiswa mampu mencari besaran posisi, kecepatan, dan percepatan sebuah partikel untuk kasus 1-dimensi dan 2-dimensi. Kinematika 3 Cabang ilmu Fisika yang membahas gerak benda
Sistem Bilangan Kompleks (Bagian Kedua)
Sistem Bilangan Kompleks (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:[email protected], [email protected] (Pertemuan Minggu II) Outline 1 Penyajian Secara Geometris
fi5080-by-khbasar BAB 1 Analisa Vektor 1.1 Notasi dan Deskripsi
BB 1 nalisa Vektor Vektor, dibedakan dari skalar, adalah suatu besaran yang memiliki besar dan arah. rtinya untuk mendeskripsikan suatu besaran vektor secara lengkap perlu disampaikan informasi tentang
TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017
A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011
Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u = (a, -, -) dan v = (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A.
KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom
KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran
Implementasi Simulated Annealing Untuk Menyelesaikan Traveling Salesman Problem (TSP)
Implementasi Simulated Annealing Untuk Menyelesaikan Traveling Salesman Problem (TSP) Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS Surabaya 2005 Materi Gambar Permasalahan TSP Definisi
1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan
. (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan
Metode Kekakuan Langsung (Direct Stiffness Method)
Metode Kekakuan angsung (Direct Stiffness Method) matriks kekakuan U, P U, P { P } = [ K ] { U } U, P U 4, P 4 gaya perpindahan P K K K K 4 U P K K K K 4 U P = K K K K 4 U P 4 K 4 K 4 K 4 K 44 U 4 P =
MATRIKS DAN TRANSFORTASI I. MATRIKS II. TRANSFORMASI MATRIKS & TRANSFORMASI. a b. a b DETERMINAN. maka determinan matriks A.
MATRIKS DAN TRANSFORTASI I. MATRIKS PENGERTIAN Matriks adalah kumpulan ilangan yang dinyatakan dalam aris kolom. Matriks A = 5 dengan ukuran (ordo) : X. Artinya matriks terseut tersusun atas aris kolom.
Kalkulus Multivariabel I
Maksimum, Minimum, dan Statistika FMIPA Universitas Islam Indonesia Titik Kritis Misalkan p = (x, y) adalah sebuah titik peubah dan p 0 = (x 0, y 0 ) adalah sebuah titik tetap pada bidang berdimensi dua
Sesi 2: Image Formation. Achmad Basuki PENS-ITS 2006
Sesi 2: Image Formation Achmad Basuki PENS-ITS 2006 Materi Representasi Penglihatan Model Kamera Sampling Dan Kuantisasi Jenis-JenisCitra Mdel Citra Berwarna Format Warna RGB Membaca dan Menampilkan Citra
Penerapan Transformasi Lanjar pada Proses Pengolahan Gambar
Penerapan Transformasi Lanjar pada Proses Pengolahan Gambar Pratama Nugraha Damanik 13513001 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10
19. TRANSFORMASI A. Translasi (Pergeseran) B. Refleksi (Pencerminan) C. Rotasi (Perputaran)
9. TRANSFORMASI A. Translasi (Pergeseran) ; T = b a b a atau b a B. Refleksi (Pencerminan). Bila M matriks refleksi berordo, maka: M atau M. Matriks M karena refleksi terhadap sumbu, sumbu, garis =, dan
BAB V TRANSFORMASI 2D
BAB V TRANSFORMASI 2D OBJEKTIF : Pada Bab ini mahasiswa mempelajari tentang : Transformasi Dasar 2D 1. Translasi 2. Rotasi 3. Scalling Transformasi Lain 1. Refleksi 2. Shear TUJUAN DAN SASARAN: Setelah
Bab 3 (3.1) Universitas Gadjah Mada
Bab 3 Sifat Penampang Datar 3.1. Umum Didalam mekanika bahan, diperlukan operasi-operasi yang melihatkan sifatsifat geometrik penampang batang yang berupa permukaan datar. Sebagai contoh, untuk mengetahui
SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521
SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 Sistem Koordinat Parameter SistemKoordinat Koordinat Kartesian Koordinat Polar Sistem Koordinat
QUATERNION DAN APLIKASINYA. Sangadji *
QUATERNION DAN APLIKASINYA Sangadji * ABSTRAK QUATERNION DAN APLIKASINYA.Dalam matematika, quaternion merupakan perluasan dari bilangan-bilangan kompleks yang tidak komutatif, dan diterapkan dalam mekanika
Bagian 2 Matriks dan Determinan
Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika
BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor
BAB 1 BESARAN VEKTOR Tujuan Pembelajaran 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahkan vektor secara grafis dan dengan vektor komponen 3. Melakukan
Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan
PEMODELAN OBYEK DENGAN METODE KURVA PARAMETRIK
PEMODELAN OBYEK DENGAN METODE KURVA PARAMETRIK Ina Agustina Jurusan Sistem Informasi, Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional Jl. Sawo Manila, Pejaten Pasar Minggu No.61, Jakarta
Bab 1 -Pendahuluan Hitung Vektor.
Bab 1 -Pendahuluan Hitung Vektor. Soal 1-0 Pada suatu benda bekerja dua gaya : 100 N pada 170 o dan 100 N pada 50 o. Tentukan resultannya. Pembahasan: Diketahui : 1 = 100 N pada 170 o = 100 N pada 50 o
Penerapan Aljabar Lanjar pada Grafis Komputer
Penerapan Aljabar Lanjar pada Grafis Komputer Joshua Atmadja 1351498 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 1 Bandung 4132, Indonesia
Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam
Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah
SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521
SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 Sistem Koordinat Parameter SistemKoordinat Koordinat Kartesian Koordinat Polar Sistem Koordinat Geosentrik Sistem Koordinat Toposentrik Sistem Koordinat
K13 Revisi Antiremed Kelas 11 Matematika
K3 Revisi Antiremed Kelas Matematika Turunan - Latihan Soal Doc. Name: RK3ARMATWJB080 Version: 06- halaman 0. Jika f(x) = 8x maka f'(x) =. (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui y = sin ( π x),
Bab 1 : Skalar dan Vektor
Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar
INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y
INDIKATOR : Menyelesaikan masalah program linear. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y 8 8 X x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x
Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS 2005
Image Filtering Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS 25 Materi Prinsip Filtering Di Dalam Image Processing Konvolusi Low-Pass Filter High-Pass Filter Prinsip Filter Dalam Image
Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.
i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak
Keep running VEKTOR. 3/8/2007 Fisika I 1
VEKTOR 3/8/007 Fisika I 1 BAB I : VEKTOR Besaran vektor adalah besaran yang terdiri dari dua variabel, yaitu besar dan arah. Sebagai contoh dari besaran vektor adalah perpindahan. Sebuah besaran vektor
Grafika Komputer. Evangs Mailoa
Grafika Komputer Evangs Mailoa Translasi Skala Rotasi/Putar Konsep yang terpenting dalam grafika komputer adalah Transformasi Affine. Pada dasarnya, transformasi ini adalah memindahkan objek tanpa merusak
BAB III OUTPUT PRIMITIF
BAB III OUTPUT PRIMITIF OBJEKTIF : Pada Bab ini mahasiswa mempelajari tentang : 1. Primitif Grafis. Algoritma Pembentukan Garis 3. Algoritma Pembentukan Lingkaran 4. Algoritma Pembentukan Ellips TUJUAN
Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan
C. Determinan dan Invers Matriks C.. Determinan Suatu matriks persegi selalu dapat dikaitkan dengan suatu bilangan yang disebut determinan. Determinan dari matriks persegi dinotasikan dengan. Untuk matriks
Minggu II Lanjutan Matriks
Minggu II Lanjutan Matriks Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum Tujuan Instruksional Khusus Jumlah Pertemuan : Matriks : A. Transformasi Elementer. Transformasi Elementer pada baris
PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A
PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan
BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor
BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor
Matematika Teknik Dasar-2 3 Bilangan Kompleks - 2. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya
Matematika Teknik Dasar-2 3 Bilangan Kompleks - 2 Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Rekap Dari materi sebelumnya telah dipelajari operasi dalam bilangan kompleks (penambahan,
Persamaan Diferensial
TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan
Bab V. Untuk menentukan besarnya kecepatan suatu titik yang bergerak. terhadap sebuah badan yang juga bergerak, perhatikan titik B yang
Oleh : Ir Ir. Erwin ulityo - Ir. Endi utikno. Bab V KECEPATAN DAN PERCEPATAN PADA DUA TITIK YANG BERIMPIT KOMPONEN CORIOLI DARI PERCEPATAN NORMAL 5.1 Kecepatan relatif dua titik berimpit Untuk menentukan
Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain :
Transformasi Linier Objektif:. definisi transformasi linier umum.. definisi transformasi linier dari R n ke R m. 3. invers transformasi linier. 4. matrix transformasi 5. kernel dan jangkauan 6. keserupaan.definisi
SOAL UN DAN PENYELESAIANNYA 2008
1. Ingkaran dari pernyataan, "Beberapa bilangan prima adalah bilangan genap." adalah... Semua bilangan prima adalah bilangan genap Semua bilangan prima bukan bilangan genap Beberapa bilangan prima bukan
BAB-7 TRANSFORMASI 2D
BAB-7 TRANSFORMASI 2D Kita dapat melakukan transformasi terhadap objek, pada materi ini akan dibahas transformasi 2D yaitu translasi, skala, rotasi. By: I Gusti Ngurah Suryantara, S.Kom., M.Kom 7.1. PENDAHULUAN
Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018
Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)
KINEMATIKA GERAK 1 PERSAMAAN GERAK
KINEMATIKA GERAK 1 PERSAMAAN GERAK Posisi titik materi dapat dinyatakan dengan sebuah VEKTOR, baik pada suatu bidang datar maupun dalam bidang ruang. Vektor yang dipergunakan untuk menentukan posisi disebut
BILANGAN KOMPLEKS. Dimana cara penyelesaiannya dengan menggunakan rumus abc, yang menghasilkan dua akar sekaligus ..(4)
BILANGAN KOMPLEKS A. Pengertian Bilangan Kompleks Himpunan bilangan yang terbesar di dalam matematika adalah himpunan bilangan komleks. Himpunan bilangan riil yang kita pakai sehari-hari merupakan himpunan
Komposisi Transformasi
Komposisi Transformasi Setelah menyaksikan tayangan ini anda dapat Menentukan peta atau bayangan suatu kurva hasil dari suatu komposisi transformasi Transformasi Untuk memindahkan suatu titik atau bangun
BAB III KECEPATAN RELATIF
III KECEPTN RELTIF 3.1. Indikator Kompetensi relatif. Setelah mengikuti mata kuliah ini, mahasiswa mempunyai pemahaman tentang kecepatan 3.2. Kecepatan Relatif dari Dua Titik erbeda Dua buah titik dan
Pembahasan Matematika IPA SNMPTN 2012 Kode 483
Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode 8 Oleh Tutur Widodo. Di dalam kotak terdapat bola biru, 6 bola merah dan bola putih. Jika diambil 8 bola tanpa pengembalian,
SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan
SP FISDAS I Perihal : Matriks, pengulturan, dimensi, dan sebagainya. Bisa baca sendiri di tippler..!! KINEMATIKA : Gerak benda tanpa diketahui penyebabnya ( cabang dari ilmu mekanika ) DINAMIKA : Pengaruh
Kalkulus Multivariabel I
Integral Lipat-Dua dalam Koordinat Kutub Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia 214 / 2 Integral Lipat-Dua dalam Koordinat Kutub Terdapat beberapa kurva tertentu pada suatu
Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut
Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen
Interpretasi Geometri Dari Sebuah Determinan
Jurnal Sains Matematika dan Statistika Vol No Juli 5 ISSN 46-454 Interpretasi Geometri Dari Sebuah Determinan Riska Yeni Syamsudhuha M D H Gamal 3 Jurusan Matematika Fakultas Mipa Universitas Riau Jl HR
Vektor. Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan.
Vektor Vektor memiliki besaran dan arah. Beberapa besaran fisika yang dinyatakan dengan vektor seperti : perpindahan, kecepatan dan percepatan. Skalar hanya memiliki besaran saja, contoh : temperatur,
BAB II BESARAN VEKTOR
BAB II BESARAN VEKTOR.1. Besaran Skalar Dan Vektor Dalam fisika, besaran dapat dibedakan menjadi dua kelompok yaitu besaran skalar dan besaran vektor. Besaran skalar adalah besaran yang dinyatakan dengan
BAB III ANALISIS DAN PERANCANGAN
BAB III ANALISIS DAN PERANCANGAN III.1. Analisis sistem Analisis sistem merupakan tahap yang paling penting dalam suatu pengembangan sebuah aplikasi, karena kesalahan pada tahap analisis sistem akan menyebabkan
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS
FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO
i FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO Departemen Fisika Universitas Airlangga, Surabaya E-mail address, P. Carlson: i an [email protected] URL: http://www.rosyidadrianto.wordpress.com Puji
MATEMATIKA. Sesi VEKTOR 2 CONTOH SOAL A. DEFINISI PERKALIAN TITIK
MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Sesi NGAN VEKTOR A. DEFINISI PERKALIAN TITIK Misal a a a a dan b b b b dua vektor di R. Perkalian titik dari a dan b, dinotasikan a badalah a b ab + ab + ab
