Minggu II Lanjutan Matriks
|
|
|
- Shinta Jayadi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Minggu II Lanjutan Matriks Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum Tujuan Instruksional Khusus Jumlah Pertemuan : Matriks : A. Transformasi Elementer. Transformasi Elementer pada baris dan kolom. Matriks Ekivalen. Rank Matriks : Agar mahasiswa dapat memahami apa yang dimaksud dengan inverse matriks. : Agar mahasiswa mampu menjelaskan dan dapat menyelesaikan masalah yang terkait dengan : A. Transformasi Elementer. Transformasi Elementer pada baris dan kolom. Matriks Ekivalen. Rank Matriks : (satu)
2 Minggu II Lanjutan Matriks A. Transformasi Elementer. Transformasi Elementer pada Baris dan Kolom Matriks Terhadap elemen-elemen suatu matriks dapat dilakukan transformasi atau penukaran atau perpindahan menurut baris dan kolom matriks. Kaidah-kaidah transformasi elementer : i. Apabila ada matriks A = (a ij ), maka transformasi elemenelemen pada baris ke-i dengan baris ke-j ditulis H ij (A), yang merupakan penukaran semua elemen baris ke-i dengan baris ke-j atau baris ke-i dijadikan baris ke-j dan baris ke-j dijadikan baris ke-i. A maka H (A) = dan H (A) = ii. Transformasi elemen-elemen pada kolom ke-i dengan kolom ke-j, ditulis K ij (A), adalah penukaran semua elemen kolom ke-i dengan kolom ke-j atau kolom ke-i dijadikan kolom ke-j.
3 A K (A) =, K (A) = iii. Mengalikan baris ke-i dengan ( ), ditulis H i ( ) (A) dan mengalikan kolom ke-i dengan ditulis K i ( ) (A).. A =, maka H (-) (A) = dan H (/) (A) =. Sedangkan K () (A) = 8, dan K (-) (A) = iv. Menambah baris ke-i dengan kali baris ke-j, ditulis H ij ( ) (A). Hi + Hj
4 A =, maka H () (A) = dan 6 H (-) (A) = v. Menambah kolom ke-i dengan kali kolom ke-j ditulis K ij ( ) (A). 7 A =, maka K (-) (A) = dan 7 K () (A) = 6 vi. Bila diketahui B adalah matriks transformasi elementer dari A maka matriks A dicari dengan mengambil invers dari matriks B. B = H () (A) =, maka A = = H ()- (B) = H (-) (B) = H H
5 . Matriks Ekivalen Dua matriks A dan B disebut ekivalen, ditulis A B, jika B diperoleh dari A dengan melakukan transformasi elementer, dan sebaliknya A diperoleh dari B dengan melakukan invers transformasi elementer. A = dan B =, adalah ekivalen sebab B = H (A). Rank Matriks Rank baris dari matriks A adalah dimensi dari ruang baris matriks A. Rank kolom dari matriks A adalah dimensi dari ruang kolom matriks A. Bila rank baris = rank kolom maka rank matriks A yaitu r (A) adalah harga atau nilai dari rank baris/ rank kolom matriks A tersebut. Dengan kata lain rank dari matriks menyatakan jumlah maksimum vektor-vektor baris/kolom yang bebas linear. Untuk mencari rank matriks dapat dilakukan dengan transformasi elementer, yaitu dengan cara sebanyak mungkin mengubah baris kolom menjadi vektor nol. Tentukan rank dari matriks A =, Lakukanlah tranformasi elementer baris:
6 H (-) =, H (-) = H (-) = Baris ke adalah vector nol ; rank (A) = Petunjuk menentukan rank matriks : i. Bila matriks hanya mempunyai dua baris, maka cukup diperiksa apakah elemen-elemen pada baris ke- dan baris ke- saling berkelipatan. Jika A =, baris - dan baris- tidak berkelipatan. Rank (A) = Jika A =, baris- dan baris- berkelipatan, rank (A) = ii. Secara umum :. Pilih baris / kolom yang bukan vektor nol, dan pilih elemen pada baris/kolom tersebut yang tidak sama 6
7 dengan nol sebagai elemen pivot. Pada contoh transformasi baris a = ( ), kemudian pilih baris yang mengandung elemen atau sebagai elemen pivot.. Jadikan nol semua elemen yang sekolom dengan elemen pivot melalui transformasi baris oleh elemen pivot tersebut. Pada contoh diatas a, a dan a dijadikan nol.. Selanjutnya tidak perlu lagi memeperhatikan baris pivot diatas. Perhatikan baris-baris yang tinggal. Pada contoh diatas adalah baris. Kerjakan langkah () terhadap mereka. Pada contoh diatas pilih baris dengan elemen pivot a =. Seterusnya kembali lagi pada langkah a dan b.. Proses ini akan berakhir bila langkah a tidak dapat dikerjakan lagi, yaitu bila telah menjadi baris nol. 7
TRANSFORMASI MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
TRANSFORMAS MATRKS Agustina Pradjaningsih, M.Si. Jurusan Matematika FMPA UNEJ [email protected] Definisi : BEBAS LNER Suatu himpunan vektor-vektor v, v, v k dikatakan bebas linier jika persamaan
Pertemuan 2 Matriks, part 2
Pertemuan 2 Matriks, part 2 Beberapa Jenis Matriks Khusus 1. Matriks Bujur Sangkar Suatu matriks dengan banyak baris = banyak kolom = n disebut matriks bujur sangkar berukuran n (berordo n). Barisan elemen
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor
Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut
Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen
Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij)
MATRIKS a a a... a n a a a... an A a a a... a n............... am am am... a mn Matriks A dengan m baris dan n kolom (A m n). Notasi Matriks : a, dimana a adalah elemen pada baris ke i kolom ke j Kesamaan
ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III
ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS Dosen Pengampu: DARMADI, SSi, MPd Oleh: Kelompok III 1 Andik Dwi S (06411008) 2 Indah Kurniawati (06411090) 3 Mahfuat M (06411104)
LEMBAR AKTIVITAS SISWA MATRIKS (WAJIB)
LEMBAR AKTIVITAS SISWA MATRIKS (WAJIB) Nama Siswa Kelas : : Kompetensi Dasar (Kurikulum 2013): 3.1 Menganalisis konsep, nilai determinan dan sifat operasi matriks serta menerapkannya dalam menentukan invers
SISTEM PERSAMAAN LINEAR
Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan
BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =
BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam
MATRIKS. Matriks adalah himpunan skalar (bilangan riil/kompleks) yang disusun secara empat persegi panjang (menurut baris dan kolom)
MTRIKS DEFINISI Bentuk umum =(aij),i=,,...m J=,,...m a a a n baris a a..a n baris MTRIKS Matriks adalah himpunan skalar (bilangan riil/kompleks) yang disusun secara empat persegi panjang (menurut baris
BAB II TINJAUAN PUSTAKA
5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1
Matriks Jawab:
Matriks A. Operasi Matriks 1) Penjumlahan Matriks Jika A dan B adalah sembarang Matriks yang berordo sama, maka penjumlahan Matriks A dengan Matriks B adalah Matriks yang diperoleh dengan cara menjumlahkan
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier
PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier
LEMBAR AKTIVITAS SISWA MATRIKS
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Suatu matriks A C m n dikatakan memiliki faktorisasi LU jika matriks tersebut dapat dinyatakan sebagai A = LU dengan L C m m matriks invertibel segitiga bawah
Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse
Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam
BAB I MATRIKS DEFINISI : NOTASI MATRIKS :
BAB I MATRIKS DEFINISI : Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun/dijajarkan berbentuk persegi panjang (menurut baris dan kolom). Skalar-skalar itu disebut elemen matriks.
Pertemuan 2 & 3 DEKOMPOSISI SPEKTRAL DAN DEKOMPOSISI NILAI SINGULAR
Pertemuan 2 & 3 DEKOMPOSISI SPEKTRAL DAN DEKOMPOSISI NILAI SINGULAR Ingat : Vektor dan Matriks Ortogonal vektor dan a dan b saling ortogonal jika a dan b saling ortonormal jika a dan b di normalisasi (normalized)
6 Sistem Persamaan Linear
6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus
MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1
Mata : MATEMATIKA TEKNIK 1 Jurusan : TEKNIK ELEKTRO SKS : 2 Sks Kode Mata : KD-041205 MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Minggu Ke Pokok Bahasan dan TIU 1 Vektor tentang pengertian
Lampiran 1 Pembuktian Teorema 2.3
LAMPIRAN 16 Lampiran 1 Pembuktian Teorema 2.3 Sebelum membuktikan Teorema 2.3, terlebih dahulu diberikan beberapa definisi yang berhubungan dengan pembuktian Teorema 2.3. Definisi 1 (Matriks Eselon Baris)
Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 5
Aljabar Linear & Matriks Pert. 5 Evangs Mailoa Pengantar Determinan Menurut teorema 1.4.3, matriks 2 x 2 dapat dibalik jika ad bc 0. Pernyataan ad bc disebut sebagai determinan (determinant) dari matriks
Pertemuan 6 Transformasi Linier
Pertemuan 6 Transformasi Linier Objektif: 1. Praktikan memahami definisi transformasi linier umum. 2. Praktikan memahami definisi dari transformasi linier dari R n ke R m. 3. Praktikan memahami invers
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan
Aljabar Linier Elementer. Kuliah 27
Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi
Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain :
Transformasi Linier Objektif:. definisi transformasi linier umum.. definisi transformasi linier dari R n ke R m. 3. invers transformasi linier. 4. matrix transformasi 5. kernel dan jangkauan 6. keserupaan.definisi
S I L A B U S. Kode Mata Kuliah : SKS : 3. Dosen Pembimbing : M. Soenarto
081316373780 S I L A B U S Mata Kuliah : ALJABAR LINIER Kode Mata Kuliah : SKS : 3 Prasyarat : MATEMAA DASAR Dosen Pembimbing : M. Soenarto Prodi / Jenjang : MATEMAA / S1 Buku Sumber : Singapore : Mc-Graw-
2. MATRIKS. 1. Pengertian Matriks. 2. Operasi-operasi pada Matriks
2. MATRIKS 1. Pengertian Matriks Matriks adalah himpunan skalar yang disusun secara empat persegi panjang menurut baris dan kolom. Matriks diberi nama huruf besar, sedangkan elemen-elemennya dengan huruf
1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata
SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : MATEMATIKA INFORMATIKA 2 JURUSAN : S1-TEKNIK INFORMATIKA KODE MATA KULIAH : IT-045214 Referensi : [1]. Yusuf Yahya, D. Suryadi. H.S., Agus S., Matematika untuk
KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN
KS96 KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mencari ruang baris, ruang kolom,
MODUL IV SISTEM PERSAMAAN LINEAR
MODUL IV SISTEM PERSAMAAN LINEAR 4.. Pendahuluan. Sistem Persamaan Linear merupakan salah satu topik penting dalam Aljabar Linear. Sistem Persamaan Linear sering dijumpai dalam semua bidang penyelidikan
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.
Program Studi Teknik Mesin S1
SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMAA TEKNIK 1 KODE / SKS : IT042220 / 2 SKS Pokok Bahasan Pertemuan dan 1 Vektor : pengertian vektor, operasi aljabar vektor ruang, vektor cross product serta
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi
Kumpulan Soal,,,,,!!!
Kumpulan Soal,,,,,!!! Materi: Matriks & Ruang Vektor 1. BEBAS LINEAR S 3. BASIS DAN DIMENSI O A L 2. KOMBINASI LINEAR NeXt FITRIYANTI NAKUL Page 1 1. BEBAS LINEAR Cakupan materi ini mengkaji tentang himpunan
03-Pemecahan Persamaan Linier (2)
-Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Matriks Invers Bagian : Eliminasi = Faktorisasi: A = LU Bagian : Transpos dan Permutasi Anny Bagian MATRIKS INVERS
Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini.
. INVERS MTRIKS Sebelum pembahasan tentang invers matriks lebih lanjut, kita bahas dahulu beberapa pengertian-pengertian berikut ini. a. RNK MTRIKS Matriks tak nol dikatakan mempunyai rank r jika paling
Matematika Teknik INVERS MATRIKS
INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dipaparkan mengenai konsep dasar tentang matriks meliputi definisi matriks, jenis-jenis matriks, operasi matriks, determinan, kofaktor, invers suatu matriks, serta
BAB 2. DETERMINAN MATRIKS
BAB. DETERMINAN MATRIKS DETERMINAN MATRIKS . Definisi DETERMINAN Determinan : produk (hasil kali) bertanda dari unsur-unsur matriks sedemikian hingga berasal dari baris dan kolom yang berbeda, kemudian
6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1
6- Operasi Matriks Contoh 6-1 : Budi diminta tolong oleh ibunya untuk membeli 2 kg gula dan 1 kg kopi. Dengan uang Rp. 10.000,- Budi mendapatkan uang kembali Rp. 3.000,-. Dihari yang lain, Budi membeli
Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan
C. Determinan dan Invers Matriks C.. Determinan Suatu matriks persegi selalu dapat dikaitkan dengan suatu bilangan yang disebut determinan. Determinan dari matriks persegi dinotasikan dengan. Untuk matriks
MATERI 8 MATRIKS. Contoh vektor kolom : Pengoperasian matriks dan vektor. Penjumlahan dan pengurangan matriks
MATERI 8 MATRIKS Sub Materi : 1. Pengertian matriks dan vector 2. Kesamaan matriks dan kesamaan vector 3. Bentuk-bentuk khas matriks 4. Pengubahan matriks 5. Matriks bersekat 6. Determinan matriks 7. Adjoin
Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER
UNIVERSITAS GADJAH MADA FAKULTAS MIPA, JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara Yogyakarta Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER
Aljabar Linier Elementer. Kuliah 7
Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan
MODUL E LEARNING SEKSI -1 MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA 151 : 5099 : DRA ENDANG SUMARTINAH,MA
MODUL E LEARNING SEKSI - MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA DOSEN : : DRA ENDANG SUMARTINAH,MA TUJUAN MATA KULIAH : A.URAIAN DAN TUJUAN MATA KULIAH : Mahasiswa mempelajari Matriks, Determinan,
II. TINJAUAN PUSTAKA. Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A,
II. TINJAUAN PUSTAKA 2.1 Konsep-konsep Matriks Definisi Matriks Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A, B, X, Y. Elemen-elemen di dalamnya disebut skalar yang berasal
Aljabar Linear Elementer
BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk
MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI
MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan
8 MATRIKS DAN DETERMINAN
8 MATRIKS DAN DETERMINAN Matriks merupakan pengembangan lebih lanjut dari sistem persamaan linear. Oleh karenanya aljabar matriks sering juga disebut dengan aljabar linear. Matriks dapat digunakan untuk
Definisi : det(a) Permutasi himpunan integer {1, 2, 3,, n}:
Definisi : Determinan dari matrik bujursangkar A berorde n adalah jumlah semua permutasi n (n!) hasil kali bertanda dari elemen-elemen matrik. Dituliskan : det(a) atau A (jr j r...j n ).a jr a j r...am
BAB II DETERMINAN DAN INVERS MATRIKS
BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau
BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Sub bab ini membahas tentang faktorisasi matriks A berorde nxn ke dalam hasil
BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Diagonalisasi Sub bab ini membahas tentang faktorisasi matriks A berorde nn ke dalam hasil kali berbentuk PDP, di mana D adalah matriks diagonal. Jika diperoleh
TEKNIK INFORMATIKA FENI ANDRIANI
EKNIK INFORMIK FENI NDRINI Definisi: Matriks adalah sekumpulan bilangan yang disusun dalam sebuah empat persegi panjang, secara teratur, di dalam baris-baris dan kolom-kolom. a a... a n a a... a n... a
BAB 4 : SISTEM PERSAMAAN LINIER
BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x
KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 279 284. KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Adrianus Sumitro, Nilamsari Kusumastuti, Shantika Martha
MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI
214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar
Rivised Simpleks Method (metode simpleks yang diperbaiki)
Rivised impleks Method (metode simpleks yang diperbaiki) Metode simpleks yang sudah kita pelajari, menunjukkan bahwa setiap perpindahan tabel baru selalu membawa semua elemen yang terdapat dalam tabel.
PROGRAM MAGISTER TEKNIK SIPIL UNLAM
Bahan kuliah Riset Operasional ASSIGNMENT MODELING Oleh: Darmansyah Tjitradi, MT. PROGRAM MAGISTER TEKNIK SIPIL UNLAM 2005 1 Background Assignment Modeling Metode ini dikembangkan oleh seorang berkebangsaan
DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks
DIKTAT PERKULIAHAN EDISI 1 Aljabar Linear dan Matriks Penulis : Ednawati Rainarli, M.Si. Kania Evita Dewi, M.Si. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 011 IF/011 1 DAFTAR ISI
Solusi Persamaan Linier Simultan
Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem
LEMBAR AKTIVITAS SISWA MATRIKS
Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel
uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg
Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2
Determinan Determinan Setiap matriks bujur sangkar A yang berukuran (nxn) dapat dikaitkan dengan suatu skalar yang disebut determinan matriks tersebut dan ditulis dengan det(a) atau A. Untuk menghitung
Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT
Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui
Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor
Bab RUANG VEKTOR. Ruang Vektor DEFINISI.. Suatu ruang vektor (V, +,, F) atas field (F, +), ditulis singkat V(F), adalah suatu himpunan tak kosong V dengan elemenelemennya disebut vektor, yang dilengkapi
Aljabar Linear Elementer MUG1E3 3 SKS
// ljabar Linear Elementer MUGE SKS // 9:7 Jadwal Kuliah Hari I Selasa, jam. Hari II Kamis, jam. Sistem Penilaian UTS % US % Quis % // 9:7 M- ljabar Linear // Silabus : Bab I Matriks dan Operasinya Bab
Matriks. Baris ke 2 Baris ke 3
Matriks A. Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegi panjang. Susunan bilangan itu diletakkan di dalam kurung
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5
BAB 5 RUANG VEKTOR A. PENDAHULUAN
BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan
Program Studi Sistem Informasi
FIK / SI /S- 24-0-204 Pengesahan Nama Dokumen : SILABUS ALJABAR LINIER No Dokumen : FIK/SI/S- No Diajukan oleh ISO 900:2008/IWA 2 dari 5 Ir. Hastha Sunardi, MT (Dosen Pengampu) Diperiksa oleh Ir. Dedy
8.3 Inverse Linear Transformations
8.3 Inverse Linear Transformations Definition One to One Transformasi linear T:V W dikatakan one-to-one jika T memetakan vektor-vektor berbeda pada V ke vektorvektor berbeda pada W. Jika A adalah suatu
II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world).
5 II. TINJAUAN PUSTAKA 2.1. Pemodelan Matematika Definisi pemodelan matematika : Pemodelan matematika adalah suatu deskripsi dari beberapa perilaku dunia nyata (fenomena-fenomena alam) ke dalam bagian-bagian
Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta
BASIS DAN DIMENSI Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta Basis dan Dimensi Ruang vektor V dikatakan mempunyai dimensi terhingga n (ditulis dim V = n) jika ada vektor-vektor e, e,,
Ruang Vektor. Adri Priadana. ilkomadri.com
Ruang Vektor Adri Priadana ilkomadri.com MEDAN SKLAR Misalkan diketahui bahwa K adalah himpunan, dan didefinisikan 2 buah operasi penjumlahan (+) dan perkalian (*). Maka K dikatakan medan skalar jika dipenuhi
Matriks. Modul 1 PENDAHULUAN
Modul Matriks Dra. Sri Haryatmi Kartiko, M.Sc. I PENDAHULUAN lmu pengetahuan dewasa ini menjadi semakin kuantitatif. Data numerik dengan skala besar, hasil pengukuran berupa angka sering dijumpai oleh
Part III DETERMINAN. Oleh: Yeni Susanti
Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)
3 Langkah Determinan Matriks 3x3 Metode OBE
3 Langkah Determinan Matriks 3x3 Metode OBE Ogin Sugianto [email protected] penma2b.wordpress.com Majalengka, 10 Oktober 2016 Selain metode Sarrus dan Minor-Kofaktor, ada satu metode lain yang dapat
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II. A. 1 Matriks didefinisikan sebagai susunan segi empat siku- siku dari bilangan- bilangan yang diatur dalam baris dan kolom (Anton, 1987:22).
MENENTUKAN INVERS MOORE PENROSE DARI MATRIKS KOMPLEKS
MENENTUKAN INVERS MOORE PENROSE DARI MATRIKS KOMPLEKS skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Astin Wita Yunihapsari 4150407021 JURUSAN
Trihastuti Agustinah
TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN
Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank
Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar
Analisa Numerik. Matriks dan Komputasi
Analisa Numerik Matriks dan Komputasi M AT R I K S Matriks adalah suatu susunan angka atau bilangan, variabel, atau parameter yang berbentuk empat persegi dan biasanya ditutup dengan tanda kurung K O N
BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu
BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 5 Ruang Vektor Ruang Vektor Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem Kontrol
MATRIKS A = ; B = ; C = ; D = ( 5 )
MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.
ALJABAR LINIER DAN MATRIKS
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya
02-Pemecahan Persamaan Linier (1)
-Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:
PROGRAM STUDI TEKNIK KOMPUTER
12-08-28 Pengesahan Nama Dokumen : SILABUS No Dokumen : FIK/TK-III/S-1 No Diajukan oleh ISO 90:2008/IWA 2 1dari 5 Ir. Hastha Sunardi, MT (Dosen Pengampu) Diperiksa oleh Ir. Dedy Hermanto, MT (GKM) Disetujui
MENENTUKAN INVERS SUATU MATRIKS DENGAN MENGGUNAKAN METODE AUGMENTASI DAN REDUKSI ABSTRACT
MENENTUKAN INVERS SUATU MATRIKS DENGAN MENGGUNAKAN METODE AUGMENTASI DAN REDUKSI S. E. Wati 1, M. Imran 2, A. Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika
Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity
Chapter 5 GENERAL VECTOR SPACE 5.5. Row Space, Column Space, Nullspace 5.6. Rank & Nullity 5.5. Row Space, Column Space, Nullspace Vektor-Vektor Baris & Kolom Vektor baris A (dalam R n ) Vektor kolom A
GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2
GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 Berlaku mulai: Genap/2011 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR NOMOR KODE / SKS : 410202051/ 3 SKS PRASYARAT
Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)
Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,
BAB II DASAR DASAR TEORI
BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian
MODUL V EIGENVALUE DAN EIGENVEKTOR
MODUL V EIGENVALUE DAN EIGENVEKTOR 5.. Pendahuluan Biasanya jika suatu matriks A berukuran mm dan suatu vektor pada R m, tidak ada hubungan antara vektor dan vektor A. Tetapi seringkali kita menemukan
TINJAUAN PUSTAKA Analisis Biplot Biasa
TINJAUAN PUSTAKA Analisis Biplot Biasa Analisis biplot merupakan suatu upaya untuk memberikan peragaan grafik dari matriks data dalam suatu plot dengan menumpangtindihkan vektor-vektor dalam ruang berdimensi
Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ)
Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) OBE dan
Matriks biasanya dituliskan menggunakan kurung dan terdiri dari baris dan kolom: A =
Bab 2 cakul fi080 by khbasar; sem1 2010-2011 Matriks Dalam BAB ini akan dibahas mengenai matriks, sifat-sifatnya serta penggunaannya dalam penyelesaian persamaan linier. Matriks merupakan representasi
