BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya"

Transkripsi

1 BAB II KAJIAN TEORI 2.1 Persamaan Diferensial Persamaan diferensial sangat penting dalam pemodelan matematika khususnya untuk pemodelan yang membutuhkan solusi dari sebuah permasalahan. Pemodelan matematika dalam bidang biologi khususnya untuk populasi, pada dasarnya terdiri dari sistem persamaan diferensial yang linier maupun nonlinier. Sistem predatorprey merupakan sistem persamaan diferensial tak linier yang memodelkan interaksi antara dua spesies yakni pemangsa dan mangsa. Definisi 2.1. Sistem persamaan diferensial tak linier (Tu,[8]) Diberikan sebuah sistem persamaan diferensial sebagai berikut : x 1 = f 1 (x 1, x 2,, x n ) x 2 = f 2 (x 1, x 2,, x n ) (2.1) x n = f n (x 1, x 2,, x n ) dengan f i : F R n R, i = 1,2,, n dan (x 1, x 2,, x n ) F R n. Sistem persamaan (2.1) dapat ditulis sebagai berikut : x = f(x) (2.2) dengan x = (x 1, x 2,, x n ) F R n dan f(x) = (f 1 (x), f 2 (x),, f n (x)). 5

2 Sistem ini disebut sistem persamaan diferensial tak linier dengan solusi x = f (x). 2.2 Sistem Predator-Prey Dua populasi, dalam hal ini predator (pemangsa) dan prey (mangsa) pada waktu t masing-masing dilambangkan dengan x(t), y(t). Fungsi x menunjukkan jumlah populasi predator (pemangsa) dan fungsi y menunjukkan jumlah populasi prey (mangsa), tapi dianggap fungsi kontinu. Perubahan dalam ukuran populasi dengan waktu dideskripsikan oleh waktu derivatif x dx dt dy dan y, dan model umum dt dari populasi yang saling berinterkasi ditulis dalam dua persamaan diferensial otonom : x = x f(x, y) (2.3) y = y g(x, y) (yaitu, waktu t tidak muncul secara eksplisit dalam fungsi x f(x, y) dan y g(x, y)). Fungsi f dan g menunjukkan tingkat pertumbuhan per kapita dari kedua spesies. Diasumsikan bahwa df(x,y) dy < 0 dan dg(x,y) dx > 0, artinya ketika predator (pemangsa) berkurang maka prey (mangsa) akan bertambah. Model umum ini sering disebut model Kolmogorov predator-prey. (Prihantoso, Kus [4]) Pada tahun 1920-an, model Lotka-Volterra mempunyai bentuk yang sangat sederhana. Hal ini didasarkan pada tingkat pertumbuhan linier per kapita. Model ini belum memperhitungkan adanya kompetisi antar prey (mangsa) karena terbatasnya sumber makanan dan juga belum memperhitungkan adanya kompetisi antar predator (pemangsa). Bentuk dari model Lotka-Volterra ditulis sebagai : 6

3 x = ax + P(x)y (2.4) y = δy + Q(x)y dengan x > 0 adalah populasi predator (pemangsa), y > 0 adalah populasi prey (mangsa), a > 0 adalah tingkat pertumbuhan predator (pemangsa), dan δ > 0 adalah tingkat kematian alami prey (mangsa). Fungsi P(x) dan Q(x) disebut sebagai fungsi respon. (Prihantoso, Kus [4]) Pada tahun 2000, Zhu, Campbell, dan Wolkwowicz meneliti system : x = αx x 2 P(x)y (2.5) y = δy + Q(x)y dengan P(x) = mx αx 2 +βx+1, Q(x) = cp(x) nilai α, m, c > 0 dan 2 α < β < 2 α. Dengan nilai α, β, m dan c tersebut, maka fungsi P(x) dan Q(x) selalu bernilai positif. Sistem (2.5) ini telah menggunakan respon fungsi tak monoton. (Prihantoso, Kus [4]) Dalam (Prihantoso, Kus [4]), terhadap sistem (2.5) dilakukan penskalaan berikut : t = 1 a τ, x = x, y = a y, = cm, δ = aδ, μ = mμ, α = c2 m 2 α, dan β = cm β. a cm m a 2 a 7

4 Sehingga dengan membuang tanda tilde variabel baru, didapatkan sistem predatorprey dengan respon fungsi tak monoton : x = x(1 x) y = δy μy 2 + xy αx 2 + βx + 1 xy αx 2 + βx + 1 (2.6) 2.3 Sistem Dinamik Sistem dinamik membahas tentang perilaku jangka panjang untuk meningkatkan sistem. Teori modern dari sistem dinamik berasal dari abad ke-19 mengenai stabilitas dan evolusi dari tata surya. Secara analogi, evolusi keadaan tertentu dari suatu sistem dinamik disebut orbit. Pada sebarang waktu yang diberi, satu system dinamik memiliki keadaan yang ditentukan oleh suatu himpunan bilangan real (suatu vector) yang diwakili oleh suatu titik dalam ruang yang bersesuaian. Sebarang perubahan kecil dalam keadaan sistem adalah bergantung pada perubahan kecil dalam himpunan tersebut. Definisi 2.2. Sistem dinamik adalah tiga variable {T, X, φ t }, dimana T adalah waktu yang ditetapkan, X adalah ruang fase, dan φ t : X X himpunan dari operator evolusi parameter oleh t T dan memenuhi sifat (φ 0 = id) dan (φ t+s = φ t φ s ). (Kuznetsov, [3]) 8

5 2.4 Titik Ekuilibrium Misalkan diberikan sistem persamaan diferensial (sistem dinamik kontinu) autonomos atau sistem yang tidak bergantung secara eksplisit terhadap waktu, sebagai berikut : x = F(x), x E R n (2.7) dengan x = (x 1, x 2, x 3,, x n ), f: E R n, f = (f 1, f 2, f 3,, f n ). Titik ekuilibrium dari sistem (2.7) adalah suatu solusi x R n sedemikian sehingga f(x ) = 0. (Wiggins, [9]) Definisi 2.3. Sebuah titik ekuilibrium dikatakan hiperbolik jika bagian real nilai eigen dari matriks jakobi J(u, v) adalah tidak nol. Jika bagian manapun nilai eigen dari matriks jakobi adalah nilai nol, maka titik ekuilibrium disebut nonhiperbolik. (Wiggins, [9]) Dari definisi (2.3) apabila dari sistem persamaan diferensial autonomous diatas diperoleh nilai eigen dengan bagian real tak nol maka dapat dikatakan bahwa titik ekuilibrium x adalah titik ekuilibrium hiperbolik, sedangkan apabila terdapat nilai eigen dengan bagian real yang nol maka titik ekuilibrium x disebut titik ekuilibrium nonhiperbolik. (Wiggins, [9]) Dalam analisis kestabilan titik ekuilibrium dengan menggunakan nilai eigen dari matriks A, mensyaratkan bahwa x haruslah titik ekuilibrium hiperbolik. Definisi 2.4. Titik ekuilibrium x (t) dikatakan stabil liapunov jika, untuk ε > 0 terdapat δ = δ(ε) > 0 sehingga untuk setiap solusi y(t) dari sistem (2.7) yang 9

6 memenuhi x (t 0 ) y(t 0 ) < δ berakibat x (t) y(t) < ε untuk t > t 0, t 0 R. (Wiggins, [9]) Definisi 2.5. Titik ekuilibrium x (t) dikatakan stabil asimtotik jika memenuhi definisi 2.4 dan jika terdapat b R + sehingga jika x (t 0 ) y(t 0 ) < b berakibat lim x (t) y(t) = 0. (Wiggins, [9]) t Untuk menganalisa perilaku disekitar titik ekuilibrium yang tidak hiperbolik dapat dilakukan dengan metode manifold center. Metode ini juga dapat digunakan untuk menganalisa perubahan struktur orbit pada sistem yang bergantung pada parameter. 2.5 Pelinieran Pelinieran adalah proses dimana sistem yang nonlinier dapat dilinearkan secara lokal, yaitu suatu penyelesaian di sekitar pertubasi kecil dan mempnuyai perilaku yang sama seperti sistem nonlinier. (Subiono,[6]) Sistem (2.7) adalah bentuk sistem non linier yang masih sulit untuk di analisa, sehingganya untuk lebih memudahkan dalam menganalisis sistem (2.7), perlu dilakukan pelinieran di titik ekuilibrium x (t). Misalkan, x = x (t) + y (2.8) dengan mensubtitusi (2.8) ke (2.7) maka diperoleh persamaan sebagai berikut : x = x + y (2.9) kemudian melalu ekspansi taylor di sekitar titik ekuilibrium x (t). Maka diperoleh: 10

7 x = f(x(t))y + O( y 2 ) (2.10) x (t) + y = f(x(t)) + Df(x(t))y + O( y 2 ) Oleh karena x (t) = f(x (t)). maka persamaan (2.10) dapat disederhanakan menjadi persamaan berikut : y = Df(x (t))y + O( y 2 ) (2.11) Jika T = Df(x (t)), maka system (2.11) dapat dituliskan menjadi : y = Ty + O( y 2 ) (2.12) Dengan demikian, untuk mempelajari dinamik disekitar titik ekuilibrium dari system (2.7), maka kita hanya akan mempelajari bagian linier dari (2.12), yaitu: y = Ty, y R n (2.13) 2.6 Metode Manifold Center Bergantung Pada Parameter Sebuah system persamaan diferensial difenisikan sebagai berikut : x = Ax + f(x, y) (2.14) y = By + g(x, y), (x, y) R s R c dimana : f(0,0) = 0, Df(0,0) = 0 (2.15) g(0,0) = 0, Dg(0,0) = 0 11

8 dengan A matriks c c dengan nilai eigen tidak hiperbolik, B matriks s s dengan niali eigen hiperbolik negatif, dimana f dan g adalah fungsi C r (r 2). (Wiggins, [9]) Misalkan persamaan (2.14) bergantung pada parameter, ε R p, maka system persamaan diferensial dapat ditulis sebagai berikut : x = Ax + f(x, y, ε) (2.16) y = By + g(x, y, ε) dimana f(0,0,0) = 0, Df(0,0,0) = 0 (2.17) g(0,0,0) = 0, Dg(0,0,0) = 0 dengan A matriks c c dengan nilai eigen tidak hiperbolik, B matriks s s dengan niali eigen hiperbolik negatif, dimana f dan g adalah fungsi C r (r 2). (Wiggins, [9]) Untuk menyelesaikan system (2.16) kita menyertakan parameter ε sebagai variable dependen baru sebagai berikut : x = Ax + f(x, y, ε) ε = 0, (x, y, ε) R c R p R s (2.18) y = By + g(x, y, ε) Dinamik dari (2.16) dibatasi oleh manifold center untuk u yang cukup kecil : 12 (u, ε) R c R p s (2.19)

9 u = Ax + f(u, h(u, ε), ε) ε = 0, (2.19) Selanjutnya, akan diturunkan persamaan h(x) yang harus dipenuhi sehingga dapat kita menggambarkan manifold center dari (2.16). Misalnya kita memiliki persamaan manifold center : W c loc (0) = {(x, ε, y) R c R p R s y = h(x, ε), x < δ, ε < δ, (2.20) h(0,0) = 0, Dh(0,0) = 0} c untuk δ dan δ cukup kecil. Dengan menggunakan invariant dari W loc terhadap dinamik (2.16), kita dapat menurunkan persamaan diferensial parsial yang harus dipenuhi oleh h(x, ε) : y = D x h(x, ε)x + D ε h(x, ε)ε = Bh(x, ε) + g(x, h(x, ε), ε) (2.21) Dengan demikian, kita subtitusi : x = Ax + f(x, h(x, ε), ε) ε = 0 (2.22) (2.23) ke persamaan (2.21) sehingga diperoleh : ℵ(h(x, ε)) = D x h(x, ε)[ax + f(x, h(x, ε), ε)] Bh(x, ε) g(x, h(x, ε), ε) = 0 Dengan mempertimbangkan ε sebagai variable dependen baru, kondisi seperti x i ε j, 1 i c, 1 j p atau 13

10 yε j, 1 i s, 1 j p menjadi kondisi non-linier. (Wiggins, [9]) 2.7 Bifurkasi Definisi 2.6. Bifurkasi adalah perubahan kestabilan yang terjadi pada penyelesaian persamaan diferensial ketika melewati sebuah titik kritis. Bifurkasi terjadi pada penyelesaian titik setimbang yang mempunyai paling sedikit satu nilai eigen sama dengan nol pada bagian realnya. Nilai dari parameter = 0 yang menyebabkan bagian real dari nilai-nilai eigen D x f adalah nol, disebut nilai bifurkasi. (Thomas,[7]) Bifurkasi yang paling sederhana untuk dipelajari adalah bifurkasi dimensi-1 dari ekuilibria dengan parameter berdimensi-1. Pada kasus ini, diasumsikan persamaan normal dipelajari disekitar solusi-solusi ekuibrium dari sistem. Bifurkasi ini dikenal dengan bifurkasi satu parameter dari sistem. Beberapa jenis bifurkasi satu parameter adalah sebagai berikut (Fatimah,[1]): 1. Bifurkasi saddle-nodes, digambarkan dengan y = y 2. Jika > 0 tidak ada solusi ekuilibrium, pada saat = 0 terdapat dua solui ekuilibrium, satu stabil dan yang lainnya tak-stabil. Hal ini dapat ditunjukkan oleh gambar berikut (Seydel, [5]): 14

11 Gambar 2.1: Bifurkasi Saddle Nodes 2. Bifurkasi transkritikal, digambarkan dengan y = y y 2. Terdapat dua solusi ekuilibrium yaitu y = 0 dan y =, keduanya mengalami perubahan kestabilan pada saat melewati 0. Hal ini dapat ditunjukkan oleh gambar berikut (Seydel, [5]): Gambar 2.2: Bifurkasi Transkritikal 3. Bifurkasi pitchfork, digambarkan dengan y = y y 3. Jika < 0 tidak ada solusi ekuilibrium, yaitu y = 0 yang merupakan solusi yang stabil. Jika > 0 ada tiga buah solusi, yaitu solusi tak-stabil y = 0, dan dua buah solusi stabil y = ±. Hal ini dapat ditunjukkan oleh gambar berikut (Seydel, [5]): 15

12 Gambar 2.3: Bifurkasi Superkritikal Pitchfork Gambar 2.4: Bifurkasi Subkritikal Pitchfork 4. Bifurkasi Hopf dapat terjadi jika memiliki nilai eigen berupa pasangan bilangan kompleks θ ± iω( )yang menjadi bilangan imajiner murni di titik kritis 0 sehingga nilai bilangan realnya θ( ) = 0 dan nilai eigen bagian imajiner ω = 0. Hal ini dapat ditunjukkan oleh gambar berikut (Seydel, [5]): 16

13 Gambar 2.5: Bifurkasi Hopf Superkritikal Gambar 2.6: Bifurkasi Hopf Subkritikal 17

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai nilai eigen dan vektor eigen, sistem dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan sistem dinamik, kriteria Routh-Hurwitz,

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Pada bagian ini, akan dibahas system predator-prey dengan respon fungsi tak

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Pada bagian ini, akan dibahas system predator-prey dengan respon fungsi tak BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bagian ini, akan dibahas system predator-prey dengan respon fungsi tak monoton, titik ekuilibrium, pelinieran, analisa kestabilan titik ekuilibriumnya dengan

Lebih terperinci

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika,

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika, BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema dari nilai eigen, vektor eigen, dan diagonalisasi, sistem persamaan differensial, model predator prey lotka-voltera,

Lebih terperinci

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan BAB II LANDASAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan matematika, teorema Taylor, nilai eigen,

Lebih terperinci

MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK

MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK SEMIRATA MIPAnet 2017 24-26 Agustus 2017 UNSRAT, Manado MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK HASAN S. PANIGORO 1, EMLI RAHMI 2 1 Universitas

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER

BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER T - 2 Andini Putri Ariyani 1, Kus Prihantoso Krisnawan 2 Jurusan Pendidikan Matematika FMIPA UNY 1 e-mail:andiniputri_ariyani@yahoo.com, 2 e-mail:

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Dalam kehidupan setiap makhluk hidup tidak dapat terlepas dengan yang namanya interaksi. Interaksi merupakan suatu jenis tindakan yang terjadi ketika dua atau lebih

Lebih terperinci

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II

BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

BAB I PENDAHULUAN. hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau

BAB I PENDAHULUAN. hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau 1 BAB I PENDAHULUAN A. LATAR BELAKANG Setiap mahluk hidup dituntut untuk senantiasa berinteraksi dengan mahluk hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau interaksi antara

Lebih terperinci

Penentuan Bifurkasi Hopf Pada Predator Prey

Penentuan Bifurkasi Hopf Pada Predator Prey J. Math. and Its Appl. ISSN: 9-65X Vol., No., Nov 5, 5 Penentuan Bifurkasi Hopf Pada Predator Prey Dian Savitri Jurusan Teknik Sipil, Fakultas Teknik Universitas Negeri Surabaya d savitri@yahoo.com Abstrak

Lebih terperinci

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI Yolpin Durahim 1 Novianita Achmad Hasan S. Panigoro Diterima: xx xxxx 20xx, Disetujui: xx xxxx 20xx o Abstrak Dalam

Lebih terperinci

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI

BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memperoleh gelar

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf

T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf Rubono Setiawan Prodi Pendidikan Matematika, F.KIP

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem dinamik merupakan formalisasi Matematika untuk menggambarkan konsep-konsep ilmiah dari proses deterministik yang bergantung terhadap waktu (Kuznetsov,

Lebih terperinci

Teori Bifurkasi (3 SKS)

Teori Bifurkasi (3 SKS) Teori Bifurkasi (3 SKS) Department of Mathematics Faculty of Mathematics and Natural Sciences Gadjah Mada University E-mail : f_adikusumo@gadjahmada.edu Sistem Dinamik PENGERTIAN UMUM : - Formalisasi matematika

Lebih terperinci

BAB IV PENUTUP. Berdasarkan hasil analisis bifurkasi pada model predator-prey dengan dua

BAB IV PENUTUP. Berdasarkan hasil analisis bifurkasi pada model predator-prey dengan dua BAB IV PENUTUP A. Kesimpulan Berdasarkan hasil analisis bifurkasi pada model predator-prey dengan dua predator diperoleh kesimpulan sebagai berikut. 1. Diperoleh model predator-prey dengan dua predator

Lebih terperinci

ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR SKRIPSI

ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR SKRIPSI ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

BARISAN HINGGA BIFURKASI PERIOD-DOUBLING PADA INTERAKSI NONLINEAR SEPASANG OSILATOR TESIS. Karya Tulis sebagai Salah Satu Syarat

BARISAN HINGGA BIFURKASI PERIOD-DOUBLING PADA INTERAKSI NONLINEAR SEPASANG OSILATOR TESIS. Karya Tulis sebagai Salah Satu Syarat BARISAN HINGGA BIFURKASI PERIOD-DOUBLING PADA INTERAKSI NONLINEAR SEPASANG OSILATOR TESIS Karya Tulis sebagai Salah Satu Syarat untuk Memperoleh Gelar Magister Matematika Institut Teknologi Bandung Oleh

Lebih terperinci

Analisis Bifurkasi Pitchfork pada Sistem Interaksi Non Linier Sepasang Osilator Melalui Metode Menifold Center

Analisis Bifurkasi Pitchfork pada Sistem Interaksi Non Linier Sepasang Osilator Melalui Metode Menifold Center Jurnal Euler, ISSN: 2087-9393 Januari 2012, Vol.1, No.1, Hal.35-49 Analisis Bifurkasi Pitchfork pada Sistem Interaksi Non Linier Sepasang Osilator Melalui Metode Menifold Center Wahnin Tangahu 1 Abstrak

Lebih terperinci

Penentuan Kestabilan Sistem Hibrid melalui Trayektorinya pada Bidang. Oleh:

Penentuan Kestabilan Sistem Hibrid melalui Trayektorinya pada Bidang. Oleh: Penentuan Kestabilan Sistem Hibrid melalui Trayektorinya pada Bidang Sistem hibrid mempunyai bentuk: x& Oleh: Kus Prihantoso Krisnawan Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR

ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR Jurnal Euler, ISSN: 2087-9393 Januari 2014, Vol.2, No.1, Hal.1-12 ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR Hasan S. Panigoro 1 Diterima:

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini dibahas mengenai tinjauan pustaka yang digunakan dalam penelitian ini, khususnya yang diperlukan dalam Bab 3. Teori yang dibahas adalah teori yang mendukung pembentukan

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS

SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya Nabila Asyiqotur Rohmah 1209 100 703 Dosen Pembimbing: Dr Erna Apriliani,

Lebih terperinci

ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR Lia Listyana 1, Dr. Hartono 2, dan Kus Prihantoso Krisnawan,M.

ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR Lia Listyana 1, Dr. Hartono 2, dan Kus Prihantoso Krisnawan,M. 1 Abstrak ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR Lia Listyana 1, Dr. Hartono 2, Kus Prihantoso Krisnawan,M.Si 3 1 Mahasiswa Jurusan Pendidikan Matematika, Universitas

Lebih terperinci

STABILITAS GLOBAL MODEL HOLLING-TANNER TIPE II LAZUARDI RAMADHAN

STABILITAS GLOBAL MODEL HOLLING-TANNER TIPE II LAZUARDI RAMADHAN STABILITAS GLOBAL MODEL HOLLING-TANNER TIPE II LAZUARDI RAMADHAN DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 013 ABSTRAK LAZUARDI RAMADHAN. Stabilitas

Lebih terperinci

Bab 16. Model Pemangsa-Mangsa

Bab 16. Model Pemangsa-Mangsa Bab 16. Model Pemangsa-Mangsa Pada Bab ini akan dipelajari model matematis dari masalah dua spesies hidup dalam habitat yang sama, yang dalam hal ini keduanya berinteraksi dalam hubungan pemangsa dan mangsa.

Lebih terperinci

BAB II KAJIAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II KAJIAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5.

SISTEM DINAMIK KONTINU LINEAR. Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. SISTEM DINAMIK KONTINU LINEAR Oleh: 1. Meirdania Fitri T 2. Siti Khairun Nisa 3. Grahani Ayu Deca F. 4. Fira Fitriah 5. Lisa Risfana Sari Sistem Dinamik D Sistem dinamik adalah sistem yang dapat diketahui

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Definisi KALKULUS MULTIVARIABEL II (Minggu ke-7) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Definisi 1 Definisi 2 ontoh Soal Definisi Integral Garis Fungsi f K R 2 R di Sepanjang Kurva

Lebih terperinci

BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit.

BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit. BAB I PENDAHULUAN A. Latar Belakang Masalah Sistem dinamik dapat dipandang sebagai suatu sistem yang bergantung terhadap waktu. Sistem dinamik yang menggunakan waktu kontinu disebut dengan sistem dinamik

Lebih terperinci

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk asus Pemangsa Tergantung Sebagian pada Mangsa Ipah Junaedi 1, a), Diny Zulkarnaen 2, b) 3, c), dan Siti Julaeha 1, 2, 3 Jurusan Matematika,

Lebih terperinci

Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan

Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan Prosiding Matematika ISSN: 2460-6464 Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan 1 Ai Yeni, 2 Gani Gunawan, 3 Icih Sukarsih 1,2,3 Prodi Matematika, Fakultas Matematika

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Wereng batang cokelat (Nilaparvata lugens), biasa disebut hama WBC. Hama ini merupakan hama umum tanaman padi di Indonesia, yaitu sudah lebih dari 80 tahun menjadi

Lebih terperinci

ANALISIS MODEL MANGSA PEMANGSA PADA PENANGKAPAN IKAN YANG DIPENGARUHI OLEH KONSERVASI

ANALISIS MODEL MANGSA PEMANGSA PADA PENANGKAPAN IKAN YANG DIPENGARUHI OLEH KONSERVASI ANALISIS MODEL MANGSA PEMANGSA PADA PENANGKAPAN IKAN YANG DIPENGARUHI OLEH KONSERVASI Eka Yuniarti 1, Abadi 1 Jurusan Matematika, Fakultas MIPA, Universitas Negeri Surabaya Jurusan Matematika, Fakultas

Lebih terperinci

BAB I KAJIAN TEORI. meningkatkan sistem. Teori moderen dari sistem dinamik berasal dari abad. ke-19 mengenai stabilitas dan evolusi dari tata surya.

BAB I KAJIAN TEORI. meningkatkan sistem. Teori moderen dari sistem dinamik berasal dari abad. ke-19 mengenai stabilitas dan evolusi dari tata surya. BAB I KAJIAN TEORI 1.1 Sistem Dinamik Sistem dinamik membahas tentang perilaku jangka panjang untuk meningkatkan sistem. Teori moderen dari sistem dinamik berasal dari abad ke-19 mengenai stabilitas dan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN Pada Bab I Pendahuluan ini dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah

Lebih terperinci

BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II

BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika

Lebih terperinci

BAB I PENDAHULUAN. Besar Penelitian Tanaman Padi, tikus sawah merupakan hama utama penyebab

BAB I PENDAHULUAN. Besar Penelitian Tanaman Padi, tikus sawah merupakan hama utama penyebab BAB I PENDAHULUAN A. Latar Belakang Masalah Tikus sawah (Rattus argentiventer) merupakan salah satu spesies hewan pengerat yang mengganggu aktivitas manusia terutama petani. Menurut Balai Besar Penelitian

Lebih terperinci

BENTUK NORMAL BIFURKASI HOPF PADA SISTEM UMUM DUA DIMENSI

BENTUK NORMAL BIFURKASI HOPF PADA SISTEM UMUM DUA DIMENSI Jurnal Matematika UNAND Vol. 5 No. 3 Hal. 15 23 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BENTUK NORMAL BIFURKASI HOPF PADA SISTEM UMUM DUA DIMENSI MELA PUSPITA Program Studi Matematika, Fakultas

Lebih terperinci

Variabel Banyak Bernilai Real 1 / 1

Variabel Banyak Bernilai Real 1 / 1 Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

BIFURKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKRET

BIFURKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKRET Vol. 5, No., Juni 009: 54-60 BIFUKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKET ubono Setiawan Mahasiswa S Jurusan Matematika Universitas Gadah Mada Email : rubono_4869@yahoo.co.id Abstrak Di

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas tinjauan pustaka yang akan digunakan untuk tesis ini, yang selanjutnya akan di perlukan pada Bab 3. Tinjauan pustaka yang dibahas adalah mengenai yang mendukung

Lebih terperinci

BIFURKASI DARI HASIL MODIFIKASI SISTEM PERSAMAAN LORENZ

BIFURKASI DARI HASIL MODIFIKASI SISTEM PERSAMAAN LORENZ Jurnal Matematika Murni dan Terapan Vol. 6 No. Juni : - 8 BIFURKASI DARI HASIL MODIFIKASI SISTEM PERSAMAAN LOREN Faisal PS Matematika FMIPA Universitas Lambung Mangkurat Jl. Jend. A. ani km. 6 Kampus Unlam

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

BIFURKASI PITCHFORK PADA SISTEM DINAMIK DIMENSI-n SKRIPSI

BIFURKASI PITCHFORK PADA SISTEM DINAMIK DIMENSI-n SKRIPSI BIFURKASI PITCHFORK PADA SISTEM DINAMIK DIMENSI-n SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memperoleh

Lebih terperinci

ANALISIS MODEL MATEMATIKA TENTANG PENGARUH TERAPI GEN TERHADAP DINAMIKA PERTUMBUHAN SEL EFEKTOR DAN SEL TUMOR DALAM PENGOBATAN KANKER SKRIPSI

ANALISIS MODEL MATEMATIKA TENTANG PENGARUH TERAPI GEN TERHADAP DINAMIKA PERTUMBUHAN SEL EFEKTOR DAN SEL TUMOR DALAM PENGOBATAN KANKER SKRIPSI ANALISIS MODEL MATEMATIKA TENTANG PENGARUH TERAPI GEN TERHADAP DINAMIKA PERTUMBUHAN SEL EFEKTOR DAN SEL TUMOR DALAM PENGOBATAN KANKER SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB I Pendahuluan Latar BelakangMasalah

BAB I Pendahuluan Latar BelakangMasalah BAB I Pendahuluan 1.1. Latar BelakangMasalah Model matematika merupakan representasi masalah dalam dunia nyata yang menggunakan bahasa matematika. Bahasa matematika yang digunakan dalam pemodelan meliputi

Lebih terperinci

Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami

Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami Penerapan Teknik Serangga Steril Dengan Model Logistik Dalam Pemberantasan Nyamuk Aedes Aegypti Nida Sri Utami Program Studi Pendidikan Matematika FKIP UMS Lina Aryati Jurusan Matematika FMIPA UGM ABSTRAK

Lebih terperinci

Interaksi Antara Predator-Prey dengan Faktor Pemanen Prey

Interaksi Antara Predator-Prey dengan Faktor Pemanen Prey NATURALA Journal of Scientific Modeling & Computation Volume No. 03 58 ISSN 303035 Interaksi Antara PredatorPrey dengan Faktor Pemanen Prey Suzyanna Fakultas Sains dan Teknologi Universitas Airlangga Abstrak

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi yang begitu pesat mengakibatkan perkembangan pengetahuan tentang sistem dinamik juga pesat. Salah satu pengembangan sistem dinamik dalam kehidupan

Lebih terperinci

SISTEM DINAMIK DISKRET. Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan

SISTEM DINAMIK DISKRET. Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan SISTEM DINAMIK DISKRET Anggota Kelompok: 1. Inggrid Riana C. 2. Kharisma Madu B. 3. Solehan SISTEM DINAMIK Kontinu Sistem Dinamik Diskret POKOK BAHASAN SDD OTONOMUS NON-OTONOMUS 1-D MULTI-D LINEAR NON-LINEAR

Lebih terperinci

PEMODELAN MATEMATIKA PENYEBARAN PENYAKIT VIRUS EBOLA DAN ANALISIS PENGARUH PARAMETER LAJU TRANSMISI TERHADAP PERILAKU DINAMISNYA TUGAS AKHIR SKRIPSI

PEMODELAN MATEMATIKA PENYEBARAN PENYAKIT VIRUS EBOLA DAN ANALISIS PENGARUH PARAMETER LAJU TRANSMISI TERHADAP PERILAKU DINAMISNYA TUGAS AKHIR SKRIPSI PEMODELAN MATEMATIKA PENYEBARAN PENYAKIT VIRUS EBOLA DAN ANALISIS PENGARUH PARAMETER LAJU TRANSMISI TERHADAP PERILAKU DINAMISNYA TUGAS AKHIR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Kuliah 3: TURUNAN. Indah Yanti

Kuliah 3: TURUNAN. Indah Yanti Kuliah 3: TURUNAN Indah Yanti Turunan Parsial DEFINISI Misalkan fungsi f: A R, dengan A R n adalah himpunan buka. Untuk setiap x = (x 1,..., x n ) A dan setiap j = 1,..., n limit f x j x 1,, x n f x 1,,

Lebih terperinci

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)]

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] Suatu sistem persamaan diferensial dinyatakan sebagai berikut: A adalah matriks koefisien konstan

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 4 (1) (2015) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm ANALISIS MODEL PREDATOR-PREY DUA SPESIES DENGAN FUNGSI RESPON HOLLING TIPE III Putri Wijayanti, M. Kharis Jurusan

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR Oleh: Drs. M. Setijo Winarko, M.Si Drs. I Gusti Ngurah Rai Usadha, M.Si Subchan, Ph.D Drs. Kamiran, M.Si Noveria

Lebih terperinci

BIFURKASI HOPF MODEL MANGSA-PEMANGSA DENGAN WAKTU TUNDA NI NYOMAN SURYANI

BIFURKASI HOPF MODEL MANGSA-PEMANGSA DENGAN WAKTU TUNDA NI NYOMAN SURYANI BIFURKASI HOPF MODEL MANGSA-PEMANGSA DENGAN WAKTU TUNDA NI NYOMAN SURYANI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI SKRIPSI

Lebih terperinci

Mursyidah Pratiwi, Yuni Yulida*, Faisal Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat *

Mursyidah Pratiwi, Yuni Yulida*, Faisal Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat * Jurnal Matematika Murni an Terapan εpsilon ANALISIS MODEL PREDATOR-PREY TERHADAP EFEK PERPINDAHAN PREDASI PADA SPESIES PREY YANG BERJUMLAH BESAR DENGAN ADANYA PERTAHANAN KELOMPOK Mursyiah Pratiwi, Yuni

Lebih terperinci

II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al.,

II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., II. TINJAUAN PUSTAKA 2.1 Sistem Dinamik Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., 2002). Salah satu tujuan utama dari sistem dinamik adalah mempelajari perilaku dari

Lebih terperinci

BIFURKASI PADA MODEL INTERAKASI TUMBUHAN DAN HERBIVORA IRMA SAHARA

BIFURKASI PADA MODEL INTERAKASI TUMBUHAN DAN HERBIVORA IRMA SAHARA i BIFURKASI PADA MODEL INTERAKASI TUMBUHAN DAN HERBIVORA IRMA SAHARA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2013 ii iii PERNYATAAN MENGENAI SKRIPSI

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan

Lebih terperinci

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B

Lebih terperinci

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear)

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear) 3 II. LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Biasa Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Misalkan suatu sistem persamaan diferensial biasa dinyatakan sebagai = + ; =, R (1) dengan

Lebih terperinci

SKEMA NUMERIK PERSAMAAN LESLIE GOWER DENGAN PEMANENAN

SKEMA NUMERIK PERSAMAAN LESLIE GOWER DENGAN PEMANENAN Skema Numerik ersamaan Leslie Gower dengan emanenan SKEMA NUMERIK ERSAMAAN LESLIE GOWER DENGAN EMANENAN Trija Fayeldi Jurusan endidikan Matematika Universitas Kanjuruhan Malang Email: trija_fayeldi@yahoocom

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan

BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan BAB II KAJIAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Pengertian dari persamaan diferensial biasa (PDB) yaitu suatu

BAB II TINJAUAN PUSTAKA. Pengertian dari persamaan diferensial biasa (PDB) yaitu suatu 5 BAB II TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Biasa Pengertian dari persamaan diferensial biasa (PDB) yaitu suatu persamaan yang melibatkan turunan pertama atau lebih dari suatu fungsi yang telah

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR TUGAS AKHIR ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR ( S TA B I L I T Y A N A LY S I S O F A P R E D AT O R - P R E Y M O D E L W I T H I N F E C T

Lebih terperinci

ANALISA KESEIMBANGAN INTERAKSI POPULASI TERUMBU KARANG, SIPUT DRUPELLA DAN PREDATORNYA MELALUI PHASE PORTRAIT

ANALISA KESEIMBANGAN INTERAKSI POPULASI TERUMBU KARANG, SIPUT DRUPELLA DAN PREDATORNYA MELALUI PHASE PORTRAIT JIMT Vol. 11 No. 1 Juni 2014 (Hal. 82 93) Jurnal Ilmiah Matematika dan Terapan ISSN : 2450 766X ANALISA KESEIMBANGAN INTERAKSI POPULASI TERUMBU KARANG, SIPUT DRUPELLA DAN PREDATORNYA MELALUI PHASE PORTRAIT

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN Matematika merupakan ilmu pengetahuan yang diperoleh dengan bernalar dan melakukan pengamatan-pengamatan. Matematika juga merupakan salah satu disiplin ilmu yang dapat

Lebih terperinci

Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya

Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya JURNAL SAINS DAN SENI POMITS Vol 2, No 1, (2013) 2337-3520 (2301-928X Print) 1 Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya Nabila Asyiqotur Rohmah, Erna Apriliani Jurusan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal Bab 2 TEORI DASAR 2.1 Linearisasi Persamaan Air Dangkal Persamaan air dangkal merupakan persamaan untuk gelombang permukaan air yang dipengaruhi oleh kedalaman air tersebut. Kedalaman air dapat dikatakan

Lebih terperinci

SISTEM FLUTTER PADA SAYAP PESAWAT TERBANG

SISTEM FLUTTER PADA SAYAP PESAWAT TERBANG SISTEM FLUTTER PADA SAYAP PESAWAT TERBANG SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana

Lebih terperinci

Lecture Notes: Discrete Dynamical System and Chaos. Johan Matheus Tuwankotta

Lecture Notes: Discrete Dynamical System and Chaos. Johan Matheus Tuwankotta Lecture Notes: Discrete Dynamical System and Chaos Johan Matheus Tuwankotta Departemen Matematika, FMIPA, Institut Teknologi Bandung, jl. Ganesha no., Bandung, Indonesia. mailto:theo@dns.math.itb.ac.id.

Lebih terperinci

ANALISIS SISTEM PERSAMAAN DIFERENSIAL MODEL PREDATOR-PREY DENGAN PERLAMBATAN

ANALISIS SISTEM PERSAMAAN DIFERENSIAL MODEL PREDATOR-PREY DENGAN PERLAMBATAN ANALISIS SISTEM PERSAMAAN DIFERENSIAL MODEL PREDATOR-PREY DENGAN PERLAMBATAN Vivi Aida Fitria Dosen STMI STIE Asia Malang e-mail: v_dz@yahoocom ABSTRA Model predator-prey dengan perlambatan merupakan model

Lebih terperinci

BAB 2 PDB Linier Order Satu 2

BAB 2 PDB Linier Order Satu 2 BAB Konsep Dasar BAB 2 PDB Linier Order Satu 2 BAB 3 Aplikasi PDB Order Satu 3 BAB 4 PDB Linier Order Dua 4 BAB 5 Aplikasi PDB Order Dua 5 BAB 6 Sistem PDB 6 BAB 7 PDB Nonlinier dan Kesetimbangan Dalam

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II KALKULUS MULTIVARIABEL II Integral Garis Medan Vektor dan (Minggu ke-8) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia 1 Integral Garis Medan Vektor 2 Terkait Lintasan Teorema Fundamental untuk

Lebih terperinci

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO

BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO 4.1 Model Dinamika Neuron Fitzhugh-Nagumo Dalam papernya pada tahun 1961, Fitzhugh mengusulkan untuk menerangkan model Hodgkin-Huxley menjadi lebih umum, yang

Lebih terperinci

KESTABILAN MODEL MANGSA PEMANGSA DENGAN FUNGSI RESPON TIPE HOLLING II DAN WAKTU TUNDA

KESTABILAN MODEL MANGSA PEMANGSA DENGAN FUNGSI RESPON TIPE HOLLING II DAN WAKTU TUNDA KESTABILAN MODEL MANGSA PEMANGSA DENGAN FUNGSI RESPON TIPE HOLLING II DAN WAKTU TUNDA STABILITY OF PREDATOR PREY MODEL WITH HOLLING TYPE II FUNCTIONAL RESPONSE AND TIME DELAY Budyanita Asrun, Syamsuddin

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Sistem Pendulum Terbalik Dalam penelitian ini diperhatikan sistem pendulum terbalik seperti pada Gambar di mana sebuah pendulum terbalik dimuat dalam motor yang bisa digerakkan.

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

Bab 15. Interaksi antar dua spesies (Model Kerjasama)

Bab 15. Interaksi antar dua spesies (Model Kerjasama) Bab 15. Interaksi antar dua spesies (Model Kerjasama) Dalam hal ini diberikan dua spesies yang hidup bersama dalam suatu habitat tertutup. Kita ketahui bahwa terdapat beberapa jenis hubungan interaksi

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

ANALISIS MODEL DENYUT JANTUNG DENGAN MENGGUNAKAN TEORI BIFURKASI

ANALISIS MODEL DENYUT JANTUNG DENGAN MENGGUNAKAN TEORI BIFURKASI ANALISIS MODEL DENYUT JANTUNG DENGAN MENGGUNAKAN TEORI BIFURKASI Herlina D. Tendean ), Hanna A. Parhusip ), Bambang Susanto ) ) Mahasiswa Program Studi Matematika FSM UKSW ) Dosen Program Studi Matematika

Lebih terperinci

Suatu sistem persamaan diferensial dinyatakan sebagai berikut : Misalkan suatu sistem persamaan diferensial (SPD) dinyatakan sebagai

Suatu sistem persamaan diferensial dinyatakan sebagai berikut : Misalkan suatu sistem persamaan diferensial (SPD) dinyatakan sebagai 11. TINJAUAN PUSTAKA 2.1 Sistem Persamaan Diferensial Definisi 1 [ Sistem Persamaan Diferensial Linear (SPDL) ] Jika suatu sistem persamaan diferensial dinyatakan sebagai berikut : x=ax+b,x(0)=x0,x~%"

Lebih terperinci