BAB I PENDAHULUAN. 1.1 Latar Belakang

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN. 1.1 Latar Belakang"

Transkripsi

1 BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi yang begitu pesat mengakibatkan perkembangan pengetahuan tentang sistem dinamik juga pesat. Salah satu pengembangan sistem dinamik dalam kehidupan adalah pada bidang Ekologi yaitu cabang Biologi yang mempelajari ekosistem. Salah satu model yang merupakan sistem dinamika dalam bidang ini adalah model interaksi populasi, yaitu interaksi antara dua spesies atau lebih. Contoh model interaksi populasi adalah model sistem mangsa pemangsa. Karena model ini mempunyai peranan yang penting dalam perputaran dinamika populasi, maka hal ini merupakan sesuatu yang sangat menarik untuk dipelajari. Model mangsa pemangsa pertama kali dikemukakan oleh Lotka-Voltera (1926). Model dasar mangsa pemangsa LotkaVoltera dimodifikasi oleh banyak ilmuwan, salah satu modifikasi model dasar mangsa pemangsa Lotka-Voltera dikembangkan oleh Freedman (1980). Unsur penting dalam model ini adalah Fungsi Respon Holling (1959), fungsi yang menggambarkan banyak mangsa yang dikonsumsi oleh pemangsa per satuan waktu, dan fungsi logistik oleh Verhulst (1830) pada sistem mangsa. Kemudian model ini lebih dikenal dengan model mangsa pemangsa bergantung mangsa dalam interaksi populasi. Akan tetapi, ekosistem tidak hanya bergantung pada respon mangsa semata, melainkan juga ada faktor lain yang ada pada pemangsa itu sendiri. Selain itu, kebanyakan dari model yang ada belum memperhitungkan faktor faktor yang berkaitan dengan gender, seperti perkawinan, yang merupakan realitas kehidupan sebuah populasi. Oleh karena itu, sewajarnya penambahan fungsi logistik oleh Verhulst (1830) pada sistem pemangsa dan pemisahan gambaran perubahan populasi jantan dan populasi betina menjadi sangat penting. Masalah pemodelan yang berkaitan dengan pembentukan pasangan ini telah dikenalkan oleh A.H Pollard 1

2 (1948) (dalam Z.Tianran dan W.Wang (2005)) yang disebut juga dengan twosex problem. Berdasarkan uraian tersebut, penulisan tesis ini akan mengkaji model mangsa pemangsa dengan membedakan jenis kelamin. Namun, dalam penelitian ini pemisahan populasi berdasarkan jenis kelamin belum dilakukan untuk kedua obyek, melainkan hanya dibatasi pada populasi mangsa. Fokus dari penelitian ini adalah untuk membuat formula dan menganalisis model mangsa-pemangsa dimana populasi mangsa jantan dan populasi mangsa betina dipisah. Model mangsa-pemangsa dalam tesis ini telah dikemukakan oleh Zhang, dkk (2005) dalam jurnalnya yang berjudul Mathematical Models of Two-Sex Population Dynamics. Kontribusi penulis antara lain : menjelaskan konstruksi model dengan fungsi logistik dan fungsi respon Holling tipe II, melengkapi teorema, memberikan teorema, dan menuliskan kembali dengan bahasa sendiri. 1.2 Rumusan Masalah Berdasarkan latar belakang masalah di atas, maka dapat dirumuskan permasalahan sebagai berikut : 1) Bagaimana mengkonstruksi model mangsa-pemangsa dengan membedakan jenis kelamin pada populasi mangsa 2) Bagaimana kestabilan titik ekuilibrium dari model mangsa-pemangsa dengan 3) Bagaimana kepermanenan sistem model mangsa-pemangsa dengan 2

3 1.3 Tujuan Penelitian Penelitian ini bertujuan untuk : 1) Mengkonstruksi model mangsa-pemangsa dengan membedakan jenis kelamin pada populasi mangsa. 2) Menentukan titik ekuilibrium dari model mangsa-pemangsa dengan 3) Menganalisis sifat kestabilan titik ekuilibrium model mangsa-pemangsa dengan 4) Menyelidiki kepermanenan model mangsa-pemangsa dengan membedakan jenis kelamin pada populasi mangsa. 1.4 Manfaat Penelitian Manfaat dalam penelitian ini adalah sebagai berikut : 1) Secara umum diharapkan dapat memberikan sumbangan terhadap perkembangan ilmu pengetahuan serta untuk menambah wawasan pengetahuan dalam bidang matematika terapan, terutama dalam bidang pemodelan matematika serta ilmu ekologi. 2) Secara khusus memberikan gambaran tentang kestabilan titik ekuilibrium dari model mangsa-pemangsa dengan membedakan jenis kelamin pada populasi mangsa. 1.5 Tinjauan Pustaka Model mangsa-pemangsa dari Lotka-Volterra banyak dikembangkan oleh para ilmuan untuk mendapatkan model yang lebih relevan, diantaranya adalah Freedman (1980) menambahkan fungsi respon Holling (1959). Beberapa tipe dan hasil penelitian tentang mengenai fungsi respon Holling ini dijelaskan sangat baik oleh Dewi Anggraini (2012) dan Nelly, dkk (2000). Fungsi pertumbuhan logistik Verhulst (1830) pada mangsa menjadikan model mangsa pemangsa bergantung terhadap pertumbuhan mangsa. Sementara, A.H Pollard (1948) dalam 3

4 Z.Tianran dan W.Wang (2005) telah mengenalkan Masalah pemodelan yang berkaitan dengan pembentukan pasangan yang disebut two-sex problem. Perlu diketahui bahwa model mangsa-pemangsa disusun kedalam bentuk sistem persamaan diferensial nonlinear autonomous. Oleh karena itu, terlebih dahulu perlu dijamin eksistensi dan ketunggalan solusi dari sistem persamaan diferensial nonlinear yang dibentuk. Teorema yang menjamin eksistensi dan ketunggalan solusi dari sistem persamaan diferensial diberikan oleh Perko (2001). Selanjutnya akan diselidiki eksistensi titik (solusi) ekuilibrium dari sistem persamaan diferensial kemudian akan dianalisis perilaku solusi di sekitar titik ekuilibrium dengan melihat sifat kestabilan dari titik ekuilibrium, yang dijelaskan oleh Hale dan Kocak (1994). Selanjutnya, untuk mengetahui perilaku solusi di sekitar titik ekuilibrium akan dicari sifat kestabilan lokal dari titik ekuilibrium. Penentuan sifat kestabilan lokal dari titik ekuilibrium dilakukan dengan linearisasi di titik ekuilibrium dengan menggunakan matriks Jacobian, kemudian dicari nilai eigen dari matriks Jacobian seperti yang dijelaskan oleh Perko (2001). Sifat kestabilan lokal titik ekuilibrium yang diperoleh berdasarkan nilai eigen dari matriks Jacobian berlaku jika titik ekuilibrium yang ditinjau adalah titik ekuilibrium hiperbolik yang teoremanya diberikan oleh Tu (2001) dan Olsder (1994). Beberapa definisi lain yang diperlukan yaitu mengenai solusi periodik, himpunan invarian dan limit set diberikan oleh Wiggins (2003), definisi mengenai sistem dinamik dan limit cycle berturut-turut diberikan oleh Perko (2001) dan Kuznetsov (1998). Selain itu, juga dibutuhkan teorema Poincar'e-Bendixson oleh Wigins (2003) dan kepermanenan sitem oleh Xianning Liu and Lansun Chen (2002) sebagai bahan pendukung untuk menyelidiki sifat kestabilan titik ekuilibrium secara global. 4

5 1.6 Metodologi Penelitian Metode yang digunakan dalam penelitian ini adalah studi literatur dengan tahapan tahapan sebagai berikut : 1. Mengumpulkan bahan literatur serta studi pustaka sebagai bahan referensi model mangsa-pemangsa dengan membedakan jenis kelamin pada populasi mangsa. 2. Menentukan asumsi dan mengkonstruksi model mangsa-pemangsa dengan 3. Menentukan titik ekuilibrium, kestabilan, dan kepermanenan sistem model mangsa-pemangsa dengan 1.7 Sistematika Penelitian Sistematika penulisan dalam tesis ini terbagi menjadi empat bab yang dimulai dari bab pendahuluan dan diakhiri dengan bab penutup. BAB I PENDAHULUAN yang memuat latar belakang, rumusan masalah, tujuan penelitian, manfaat penelitian, tinjauan pustaka, metode penelitian dan sistematika penulisan. BAB II LANDASAN TEORI yang memuat teori yang menunjang pembahasan yaitu model logistik pertumbuhan populasi, model dasar mangsapemangsa, dan hasil eksperimen Holling. Selanjutnya teori bagaimana mencari titik ekuilibrium dan analisis kestabilan lokal dan kestabilan global titik ekuilibrium. BAB III PEMBAHASAN merupakan pembahasan tentang konstruksi model mangsa-pemangsa dengan membedakan jenis kelamin pada populasi mangsa, menentukan titik ekuilibrium, analisis kestabilan titik ekuilibrium dan kepermanenan sistem model mangsa-pemangsa tersebut. 5

6 BAB IV PENUTUP meliputi kesimpulan dan saran yang merupakan hasil yang telah didapatkan. 6

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Wereng batang cokelat (Nilaparvata lugens), biasa disebut hama WBC. Hama ini merupakan hama umum tanaman padi di Indonesia, yaitu sudah lebih dari 80 tahun menjadi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah yang telah

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem dinamik merupakan formalisasi Matematika untuk menggambarkan konsep-konsep ilmiah dari proses deterministik yang bergantung terhadap waktu (Kuznetsov,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN Bab ini memuat tentang latar belakang yang mendasari penelitian. Berdasarkan pada latar belakang tersebut, ditentukan tujuan penelitian yang ingin dicapai. Pada bab ini juga dijelaskan

Lebih terperinci

BAB I PENDAHULUAN. hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau

BAB I PENDAHULUAN. hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau 1 BAB I PENDAHULUAN A. LATAR BELAKANG Setiap mahluk hidup dituntut untuk senantiasa berinteraksi dengan mahluk hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau interaksi antara

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN Pada Bab I Pendahuluan ini dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN Dalam bab ini akan diberikan latar belakang permasalahan, tujuan penelitian, tinjauan pustaka, metode penelitian dan sistematika penulisan. 1.1. Latar Belakang Masalah Menurut Effendie

Lebih terperinci

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai nilai eigen dan vektor eigen, sistem dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan sistem dinamik, kriteria Routh-Hurwitz,

Lebih terperinci

BAB I PENDAHULUAN. masalah penyebaran penyakit menular yang mewabah. Berdasarkan pasal 3

BAB I PENDAHULUAN. masalah penyebaran penyakit menular yang mewabah. Berdasarkan pasal 3 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Salah satu masalah yang dijumpai dalam bidang kesehatan, yakni masalah penyebaran penyakit menular yang mewabah. Berdasarkan pasal 3 UU No.4 tahun 1984 tentang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kanker adalah penyakit yang memiliki karakteristik adanya gangguan mekanisme pengaturan multiplikasi pada organisme multiseluler sehingga tumbuh secara terus-menerus,

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Beberapa tahun belakangan ini, penyakit hati (liver diseases) muncul sebagai penyakit yang paling banyak menyebabkan morbiditas dan mortalitas diantara individu

Lebih terperinci

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika,

Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika, BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema dari nilai eigen, vektor eigen, dan diagonalisasi, sistem persamaan differensial, model predator prey lotka-voltera,

Lebih terperinci

BAB I PENDAHULUAN. Ekologi merupakan cabang ilmu yang mempelajari tentang interaksi antara

BAB I PENDAHULUAN. Ekologi merupakan cabang ilmu yang mempelajari tentang interaksi antara BAB I PENDAHULUAN 1.1 Latar Belakang Ekologi merupakan cabang ilmu yang mempelajari tentang interaksi antara organisme dengan organisme lain serta dengan lingkungannya. Pada dasarnya organisme tidak dapat

Lebih terperinci

MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT

MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT Vol 10 No 2, 2013 Jurnal Sains, Teknologi dan Industri MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT Mohammad Soleh 1, Siti Kholipah 2 1,2 Jurusan Matematika Fakultas Sains dan Teknologi

Lebih terperinci

T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf

T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf Rubono Setiawan Prodi Pendidikan Matematika, F.KIP

Lebih terperinci

PEMANENAN OPTIMAL PADA MODEL REAKSI DINAMIK SISTEM MANGSA-PEMANGSA DENGAN TAHAPAN STRUKTUR. Yuliani, Marwan Sam

PEMANENAN OPTIMAL PADA MODEL REAKSI DINAMIK SISTEM MANGSA-PEMANGSA DENGAN TAHAPAN STRUKTUR. Yuliani, Marwan Sam Jurnal Dinamika, September 2015, halaman 25-38 ISSN 2087-7889 Vol. 06. No. 2 PEMANENAN OPTIMAL PADA MODEL REAKSI DINAMIK SISTEM MANGSA-PEMANGSA DENGAN TAHAPAN STRUKTUR Yuliani, Marwan Sam Program StudiMatematika,

Lebih terperinci

BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II

BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Tumor adalah sel yang telah kehilangan pengendalian dan mekanisme normalnya, sehingga mengalami pertumbuhan yang tidak terkontrol. Sel-sel tumor terbentuk dari sel-sel

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Dalam kehidupan setiap makhluk hidup tidak dapat terlepas dengan yang namanya interaksi. Interaksi merupakan suatu jenis tindakan yang terjadi ketika dua atau lebih

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami

Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami Penerapan Teknik Serangga Steril Dengan Model Logistik Dalam Pemberantasan Nyamuk Aedes Aegypti Nida Sri Utami Program Studi Pendidikan Matematika FKIP UMS Lina Aryati Jurusan Matematika FMIPA UGM ABSTRAK

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

ANALISIS DINAMIK MODEL PREDATOR-PREY PADA POPULASI ECENG GONDOK DENGAN ADANYA IKAN GRASS CARP DAN PEMANENAN

ANALISIS DINAMIK MODEL PREDATOR-PREY PADA POPULASI ECENG GONDOK DENGAN ADANYA IKAN GRASS CARP DAN PEMANENAN ANALISIS DINAMIK MODEL PREDATOR-PREY PADA POPULASI ECENG GONDOK DENGAN ADANYA IKAN GRASS CARP DAN PEMANENAN Skripsi disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi

Lebih terperinci

KESTABILAN MODEL POPULASI SATU MANGSA-DUA PEMANGSA DENGAN PEMANENAN OPTIMAL PADA PEMANGSA

KESTABILAN MODEL POPULASI SATU MANGSA-DUA PEMANGSA DENGAN PEMANENAN OPTIMAL PADA PEMANGSA Seminar Nasional Matematika dan Aplikasinya 21 Oktober 2017 Surabaya Universitas Airlangga KESTABILAN MODEL POPULASI SATU MANGSA-DUA PEMANGSA DENGAN PEMANENAN OPTIMAL PADA PEMANGSA Muhammad Ikbal 1) Syamsuddin

Lebih terperinci

ANALISIS TITIK EKUILIBRIUM DAN SOLUSI MODEL INTERAKSI PEMANGSA-MANGSA MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN

ANALISIS TITIK EKUILIBRIUM DAN SOLUSI MODEL INTERAKSI PEMANGSA-MANGSA MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN ANALISIS TITIK EKUILIBRIUM DAN SOLUSI MODEL INTERAKSI PEMANGSA-MANGSA MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN TESIS diajukan untuk memenuhi salah satu syarat memperoleh gelar Magister Pendidikan Disusun

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan

Lebih terperinci

ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR

ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR Jurnal Euler, ISSN: 2087-9393 Januari 2014, Vol.2, No.1, Hal.1-12 ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR Hasan S. Panigoro 1 Diterima:

Lebih terperinci

MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK

MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK SEMIRATA MIPAnet 2017 24-26 Agustus 2017 UNSRAT, Manado MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK HASAN S. PANIGORO 1, EMLI RAHMI 2 1 Universitas

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Tuberkulosis adalah penyakit yang penularannya langsung dari penderita TB yang terinfeksi oleh strain TB yaitu Microbacterium tuberculosis. Menurut

Lebih terperinci

MODEL PERSAMAAN DIFERENSIAL PADA INTERAKSI DUA POPULASI

MODEL PERSAMAAN DIFERENSIAL PADA INTERAKSI DUA POPULASI MODEL PERSAMAAN DIFERENSIAL PADA INTERAKSI DUA POPULASI Supandi, Saifan Sidiq Abdullah Fakultas PMIPATI Universitas PGRI Semarang [email protected] Abstrak Persaingan kehidupan di alam dapat dikategorikan

Lebih terperinci

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan BAB II LANDASAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan matematika, teorema Taylor, nilai eigen,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Infeksi virus dengue adalah suatu insiden penyakit yang serius dalam kematian di kebanyakan negara yang beriklim tropis dan sub tropis di dunia. Virus dengue

Lebih terperinci

Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya

Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya JURNAL SAINS DAN SENI POMITS Vol 2, No 1, (2013) 2337-3520 (2301-928X Print) 1 Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya Nabila Asyiqotur Rohmah, Erna Apriliani Jurusan

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Influenza atau lebih dikenal dengan flu, merupakan salah satu penyakit yang menyerang pernafasan manusia. Penyakit ini disebabkan oleh virus influenza yang

Lebih terperinci

ANALISIS DINAMIKA MODEL KOMPETISI DUA POPULASI YANG HIDUP BERSAMA DI TITIK KESETIMBANGAN TIDAK TERDEFINISI

ANALISIS DINAMIKA MODEL KOMPETISI DUA POPULASI YANG HIDUP BERSAMA DI TITIK KESETIMBANGAN TIDAK TERDEFINISI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal 197 204. ANALISIS DINAMIKA MODEL KOMPETISI DUA POPULASI YANG HIDUP BERSAMA DI TITIK KESETIMBANGAN TIDAK TERDEFINISI Eka

Lebih terperinci

Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan

Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan Prosiding Matematika ISSN: 2460-6464 Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan 1 Ai Yeni, 2 Gani Gunawan, 3 Icih Sukarsih 1,2,3 Prodi Matematika, Fakultas Matematika

Lebih terperinci

Interaksi Antara Predator-Prey dengan Faktor Pemanen Prey

Interaksi Antara Predator-Prey dengan Faktor Pemanen Prey NATURALA Journal of Scientific Modeling & Computation Volume No. 03 58 ISSN 303035 Interaksi Antara PredatorPrey dengan Faktor Pemanen Prey Suzyanna Fakultas Sains dan Teknologi Universitas Airlangga Abstrak

Lebih terperinci

BAB I PENDAHULUAN. tidak dapat hidup sendiri, karena setiap organisme tersebut membutuhkan

BAB I PENDAHULUAN. tidak dapat hidup sendiri, karena setiap organisme tersebut membutuhkan BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan setiap organisme tidak terlepas dari adanya interaksi. Interaksi merupakan suatu jenis tindakan yang terjadi ketika dua atau lebih makhluk hidup mempengaruhi

Lebih terperinci

BIFURKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKRET

BIFURKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKRET Vol. 5, No., Juni 009: 54-60 BIFUKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKET ubono Setiawan Mahasiswa S Jurusan Matematika Universitas Gadah Mada Email : [email protected] Abstrak Di

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Tuberkulosis merupakan salah satu penyakit yang telah lama dikenal dan sampai saat ini masih menjadi penyebab utama kematian di dunia. Prevalensi tuberkulosis

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR Oleh: Drs. M. Setijo Winarko, M.Si Drs. I Gusti Ngurah Rai Usadha, M.Si Subchan, Ph.D Drs. Kamiran, M.Si Noveria

Lebih terperinci

BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit.

BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit. BAB I PENDAHULUAN A. Latar Belakang Masalah Sistem dinamik dapat dipandang sebagai suatu sistem yang bergantung terhadap waktu. Sistem dinamik yang menggunakan waktu kontinu disebut dengan sistem dinamik

Lebih terperinci

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna

Lebih terperinci

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya BAB II KAJIAN TEORI 2.1 Persamaan Diferensial Persamaan diferensial sangat penting dalam pemodelan matematika khususnya untuk pemodelan yang membutuhkan solusi dari sebuah permasalahan. Pemodelan matematika

Lebih terperinci

ANALISIS DINAMIK SKEMA EULER UNTUK MODEL PREDATOR-PREY DENGAN EFEK ALLEE KUADRATIK

ANALISIS DINAMIK SKEMA EULER UNTUK MODEL PREDATOR-PREY DENGAN EFEK ALLEE KUADRATIK ANALISIS DINAMIK SKEMA EULER UNTUK MODEL PREDATOR-PREY DENGAN EFEK ALLEE KUADRATIK (DYNAMICAL ANALYSIS OF EULER SCHEME FOR PREDATOR- PREY WITH QUADRATIC ALLEE EFFECT) Vivi Aida Fitria 1, S.Nurul Afiyah2

Lebih terperinci

SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS

SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya Nabila Asyiqotur Rohmah 1209 100 703 Dosen Pembimbing: Dr Erna Apriliani,

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

SKEMA NUMERIK PERSAMAAN LESLIE GOWER DENGAN PEMANENAN

SKEMA NUMERIK PERSAMAAN LESLIE GOWER DENGAN PEMANENAN Skema Numerik ersamaan Leslie Gower dengan emanenan SKEMA NUMERIK ERSAMAAN LESLIE GOWER DENGAN EMANENAN Trija Fayeldi Jurusan endidikan Matematika Universitas Kanjuruhan Malang Email: trija_fayeldi@yahoocom

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR TUGAS AKHIR ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR ( S TA B I L I T Y A N A LY S I S O F A P R E D AT O R - P R E Y M O D E L W I T H I N F E C T

Lebih terperinci

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial

Lebih terperinci

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 135-142 PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS Marisa Effendi,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Penyakit menular merupakan masalah kesehatan utama di hampir setiap negara, termasuk Indonesia. Beberapa penyakit dapat menyebar dalam populasi hingga menyebabkan

Lebih terperinci

Model Mangsa-Pemangsa dengan Dua Pemangsa dan Satu Mangsa di Lingkungan Beracun

Model Mangsa-Pemangsa dengan Dua Pemangsa dan Satu Mangsa di Lingkungan Beracun SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 05 Model Mangsa-Pemangsa dengan Dua Pemangsa dan Satu Mangsa di Lingkungan Beracun Irham Taufiq, Imam Solekhudin, Sumardi 3 Fakultas Keguruan dan

Lebih terperinci

KESTABILAN MODEL SATU MANGSA DUA PEMANGSA DENGAN FUNGSI RESPON TIPE HOLLING III DAN PEMANENAN

KESTABILAN MODEL SATU MANGSA DUA PEMANGSA DENGAN FUNGSI RESPON TIPE HOLLING III DAN PEMANENAN KESTABILAN MODEL SATU MANGSA DUA PEMANGSA DENGAN FUNGSI RESPON TIPE HOLLING III DAN PEMANENAN STABILITY OF ONE PREY TWO PREDATOR MODEL WITH HOLLING TYPE III FUNCTIONAL RESPONSE AND HARVESTING Didiharyono,

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HUTCHINSON DENGAN WAKTU TUNDA DAN PEMANENAN KONSTAN LILIS SAODAH

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HUTCHINSON DENGAN WAKTU TUNDA DAN PEMANENAN KONSTAN LILIS SAODAH ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HUTCHINSON DENGAN WAKTU TUNDA DAN PEMANENAN KONSTAN LILIS SAODAH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

UNNES Journal of Mathematics

UNNES Journal of Mathematics UJM 4 (1) (2015) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm ANALISIS MODEL PREDATOR-PREY DUA SPESIES DENGAN FUNGSI RESPON HOLLING TIPE III Putri Wijayanti, M. Kharis Jurusan

Lebih terperinci

BAB II KAJIAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II KAJIAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan

Lebih terperinci

ANALISIS MODEL S-I-P INTERAKSI DUA SPESIES PREDATOR-PREY DENGAN FUNGSI RESPON HOLLING TIPE II

ANALISIS MODEL S-I-P INTERAKSI DUA SPESIES PREDATOR-PREY DENGAN FUNGSI RESPON HOLLING TIPE II ANALISIS MODEL S-I-P INTERAKSI DUA SPESIES PREDATOR-PREY DENGAN FUNGSI RESPON HOLLING TIPE II skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh

Lebih terperinci

PENGARUH SCAVENGER (Pemakan Bangkai) TERHADAP KESTABILAN POPULASI MANGSA PEMANGSA PADA MODEL LOTKA VOLTERRA ELI WAHYUNI

PENGARUH SCAVENGER (Pemakan Bangkai) TERHADAP KESTABILAN POPULASI MANGSA PEMANGSA PADA MODEL LOTKA VOLTERRA ELI WAHYUNI PENGARUH SCAVENGER (Pemakan Bangkai) TERHADAP KESTABILAN POPULASI MANGSA PEMANGSA PADA MODEL LOTKA VOLTERRA ELI WAHYUNI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS

Lebih terperinci

KESTABILAN MODEL BIOEKONOMI SISTEM MANGSA PEMANGSA SUMBER DAYA PERIKANAN DENGAN PEMANENAN PADA POPULASI PEMANGSA

KESTABILAN MODEL BIOEKONOMI SISTEM MANGSA PEMANGSA SUMBER DAYA PERIKANAN DENGAN PEMANENAN PADA POPULASI PEMANGSA KESTABILAN MODEL BIOEKONOMI SISTEM MANGSA PEMANGSA SUMBER DAYA PERIKANAN DENGAN PEMANENAN PADA POPULASI PEMANGSA Rustam Jurusan Matematika Universitas Sembilanbelas November Kolaka Email: [email protected]/[email protected]

Lebih terperinci

Eksistensi dan Kestabilan Model SIR dengan Nonlinear Insidence Rate

Eksistensi dan Kestabilan Model SIR dengan Nonlinear Insidence Rate LEMMA VOL NO NOV 04 Eksistensi dan Kestabilan Model R dengan Nonlinear nsidence Rate Mohammad oleh ) dan Riry riningsih ) ) Jurusan Matematika Fakultas ains dan Teknologi UN uska Riau ) Jurusan Matematika

Lebih terperinci

MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT TUGAS AKHIR

MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT TUGAS AKHIR MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh : SITI KHOLIPAH 1854351 FAKULTAS

Lebih terperinci

Kestabilan Model SIRS dengan Pertumbuhan Logistik dan Non-monotone Incidence Rate

Kestabilan Model SIRS dengan Pertumbuhan Logistik dan Non-monotone Incidence Rate Kestabilan Model SIRS dengan Pertumbuhan Logistik dan Non-monotone Incidence Rate Mohammad soleh 1, Syamsuri 2 1,2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau Jln. HR. Soebrantas Km

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada bab III nanti, di antaranya model matematika penyebaran penyakit,

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa. Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup

IV. HASIL DAN PEMBAHASAN. 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa. Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup IV. HASIL DAN PEMBAHASAN 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup berdampingan. Diasumsikan habitat ini dibagi menjadi dua

Lebih terperinci

Local Stability of Predator Prey Models With Harvesting On The Prey. Abstract

Local Stability of Predator Prey Models With Harvesting On The Prey. Abstract Jurnal Ilmiah Pendidikan Matematika 99 Local Stability of Predator Prey Models With Harvesting On The Prey Oleh : Saiful Marom Pendidikan Matematika FKIP Universitas Pekalongan Abstract In this paper considered

Lebih terperinci

BAB I Pendahuluan Latar BelakangMasalah

BAB I Pendahuluan Latar BelakangMasalah BAB I Pendahuluan 1.1. Latar BelakangMasalah Model matematika merupakan representasi masalah dalam dunia nyata yang menggunakan bahasa matematika. Bahasa matematika yang digunakan dalam pemodelan meliputi

Lebih terperinci

UNIVERSITAS NEGERI SEMARANG

UNIVERSITAS NEGERI SEMARANG ANALISIS MODEL PREDATOR-PREY DUA SPESIES DENGAN FUNGSI RESPON HOLLING TIPE III skripsi disajikan sebagai salah satu syarat untuk mencapai gelar Sarjana Sains Program Studi Matematika oleh Putri Wijayanti

Lebih terperinci

ANALISIS MODEL MATEMATIKA TENTANG PENGARUH TERAPI GEN TERHADAP DINAMIKA PERTUMBUHAN SEL EFEKTOR DAN SEL TUMOR DALAM PENGOBATAN KANKER SKRIPSI

ANALISIS MODEL MATEMATIKA TENTANG PENGARUH TERAPI GEN TERHADAP DINAMIKA PERTUMBUHAN SEL EFEKTOR DAN SEL TUMOR DALAM PENGOBATAN KANKER SKRIPSI ANALISIS MODEL MATEMATIKA TENTANG PENGARUH TERAPI GEN TERHADAP DINAMIKA PERTUMBUHAN SEL EFEKTOR DAN SEL TUMOR DALAM PENGOBATAN KANKER SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Ruko Jambusari No. 7A Yogyakarta Telp. : ; Fax. :

Ruko Jambusari No. 7A Yogyakarta Telp. : ; Fax. : SPEMODELAN MATEMATIKA Aplikasi dan Terapannya Oleh : Ripno Juli Iswanto Edisi Pertama Cetakan Pertama, 2012 Hak Cipta 2012 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan

Lebih terperinci

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II INTAN SELVYA

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II INTAN SELVYA ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II INTAN SELVYA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2016 PERNYATAAN MENGENAI

Lebih terperinci

ANALISIS MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II DENGAN MANGSA YANG TERLINDUNG DAN ADANYA PEMANENAN POPULASI EKA PUJIYANTI

ANALISIS MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II DENGAN MANGSA YANG TERLINDUNG DAN ADANYA PEMANENAN POPULASI EKA PUJIYANTI ANALISIS MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II DENGAN MANGSA YANG TERLINDUNG DAN ADANYA PEMANENAN POPULASI EKA PUJIYANTI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

KESTABILAN POPULASI MODEL LOTKA-VOLTERRA TIGA SPESIES DENGAN TITIK KESETIMBANGAN ABSTRACT

KESTABILAN POPULASI MODEL LOTKA-VOLTERRA TIGA SPESIES DENGAN TITIK KESETIMBANGAN ABSTRACT KESTABILAN POPULASI MODEL LOTKA-VOLTERRA TIGA SPESIES DENGAN TITIK KESETIMBANGAN Ritania Monica, Leli Deswita, Rolan Pane Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika

Lebih terperinci

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa

Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk asus Pemangsa Tergantung Sebagian pada Mangsa Ipah Junaedi 1, a), Diny Zulkarnaen 2, b) 3, c), dan Siti Julaeha 1, 2, 3 Jurusan Matematika,

Lebih terperinci

Kestabilan Titik Ekuilibrium Model SIS dengan Pertumbuhan Logistik dan Migrasi

Kestabilan Titik Ekuilibrium Model SIS dengan Pertumbuhan Logistik dan Migrasi Kestabilan Titik Ekuilibrium Model SIS dengan Pertumbuhan Logistik Migrasi Mohammad soleh 1, Parubahan Siregar 2 1,2 Jurusan Matematika Fakultas Sains Teknologi Universitas Islam Negeri Sultan Syarif Kasim

Lebih terperinci

Bab 16. Model Pemangsa-Mangsa

Bab 16. Model Pemangsa-Mangsa Bab 16. Model Pemangsa-Mangsa Pada Bab ini akan dipelajari model matematis dari masalah dua spesies hidup dalam habitat yang sama, yang dalam hal ini keduanya berinteraksi dalam hubungan pemangsa dan mangsa.

Lebih terperinci

BAB I PENDAHULUAN ( )

BAB I PENDAHULUAN ( ) BAB I PENDAHULUAN 1.1. Latar Belakang Persamaan diferensial merupakan persamaan yang melibatkan turunan dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas dan dituliskan dengan

Lebih terperinci

Pengaruh Hukuman Mati terhadap Dinamika Jumlah Pengguna Narkoba di Indonesia

Pengaruh Hukuman Mati terhadap Dinamika Jumlah Pengguna Narkoba di Indonesia Pengaruh Hukuman Mati terhadap Dinamika Jumlah Pengguna Narkoba di Indonesia Riry Sriningsih Jurusan Matematika, Universitas Negeri Padang, Padang, Indonesia Email: [email protected] Abstrak. Tulisan

Lebih terperinci

ANALISIS KESTABILAN DAN LIMIT CYCLE PADA MODEL PREDATOR - PREY TIPE GAUSE SKRIPSI

ANALISIS KESTABILAN DAN LIMIT CYCLE PADA MODEL PREDATOR - PREY TIPE GAUSE SKRIPSI ANALISIS KESTABILAN DAN LIMIT CYCLE PADA MODEL PREDATOR - PREY TIPE GAUSE SKRIPSI Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Bidang Matematika Pada Fakultas Sains dan Teknologi Universitas

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu jenis penyakit menular yang hingga saat ini masih perhatian banyak negara di dunia adalah penyakit demam Chikungunya. Penyakit demam chikungunya

Lebih terperinci

MODEL DINAMIK INTERAKSI DUA POPULASI (Dynamic Model Interaction of Two Population)

MODEL DINAMIK INTERAKSI DUA POPULASI (Dynamic Model Interaction of Two Population) Jurnal Barekeng Vol. 5 No. 1 Hal. 9 13 (211) MODEL DINAMIK INTERAKSI DUA POPULASI (Dynamic Model Interaction of Two Population) FRANCIS Y. RUMLAWANG 1, TRIFENA SAMPELILING 2 1 Staf Jurusan Matematika,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Semakin berkembangnya ilmu pengetahuan dan ilmu pengobatan tidak menjamin manusia akan bebas dari penyakit. Hal ini disebabkan karena penyakit dan virus juga

Lebih terperinci

MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI

MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI Mohammmad Soleh 1, Siti Rahma 2 Universitas Islam Negeri Sultan Syarif Kasim Riau Jl HR Soebrantas No 155 KM 15 Simpang Baru Panam Pekanbaru muhammadsoleh@uin-suskaacid

Lebih terperinci

ANALISIS KESTABILAN PADA MODEL DUA MANGSA- SATU PEMANGSA DENGAN FUNGSI RESPON HOLLING DAN PEMANENAN

ANALISIS KESTABILAN PADA MODEL DUA MANGSA- SATU PEMANGSA DENGAN FUNGSI RESPON HOLLING DAN PEMANENAN Seminar Nasional Matematika dan Aplikasinya 21 Oktober 2017 Surabaya Universitas Airlangga ANALISIS KESTABILAN PADA MODEL DUA MANGSA- SATU PEMANGSA DENGAN FUNGSI RESPON HOLLING DAN PEMANENAN Armin 1) Syamsuddin

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Chemostat atau disebut juga bioreaktor adalah suatu alat laboratorium (fermentor) untuk budidaya mikroorganisme[18]. Alat tersebut disusun sedemikian rupa

Lebih terperinci

BAB I PENDAHULUAN. Besar Penelitian Tanaman Padi, tikus sawah merupakan hama utama penyebab

BAB I PENDAHULUAN. Besar Penelitian Tanaman Padi, tikus sawah merupakan hama utama penyebab BAB I PENDAHULUAN A. Latar Belakang Masalah Tikus sawah (Rattus argentiventer) merupakan salah satu spesies hewan pengerat yang mengganggu aktivitas manusia terutama petani. Menurut Balai Besar Penelitian

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem kejadian diskrit (SKD) adalah nama klasifikasi masalah tentang sistem dengan sumber daya berhingga yang digunakan oleh beberapa pengguna untuk mencapai

Lebih terperinci

DINAMIKA ORDE PERTAMA SISTEM NONLINIER TERKOPEL DENGAN RELASI PREDASI, MUTUAL, DAN SIKLIK (Tinjauan Kasus Mangsa-Pemangsa pada Sistem Ekologi)

DINAMIKA ORDE PERTAMA SISTEM NONLINIER TERKOPEL DENGAN RELASI PREDASI, MUTUAL, DAN SIKLIK (Tinjauan Kasus Mangsa-Pemangsa pada Sistem Ekologi) 1 DINAMIKA ORDE PERTAMA SISTEM NONLINIER TERKOPEL DENGAN RELASI PREDASI, MUTUAL, DAN SIKLIK (Tinjauan Kasus Mangsa-Pemangsa pada Sistem Ekologi) Oleh: MADA SANJAYA WS G74103018 DEPARTEMEN FISIKA FAKULTAS

Lebih terperinci

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta

Lebih terperinci

II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al.,

II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., II. TINJAUAN PUSTAKA 2.1 Sistem Dinamik Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., 2002). Salah satu tujuan utama dari sistem dinamik adalah mempelajari perilaku dari

Lebih terperinci

ANALISIS KESTABILAN HELICOVERPA ARMIGERA

ANALISIS KESTABILAN HELICOVERPA ARMIGERA ANALISIS KESTABILAN HELICOVERPA ARMIGERA (HAMA PENGGEREK BUAH) DAN PAEDERUS FUSCIPES SP (TOMCAT) DENGAN MODEL MANGSA-PEMANGSA DAN RESPON FUNGSIONAL MICHAELIS MENTEN DENGAN METODE BEDA HINGGA MAJU SKRIPSI

Lebih terperinci

Model Matematika Jumlah Perokok dengan Nonlinear Incidence Rate dan Penerapan Denda

Model Matematika Jumlah Perokok dengan Nonlinear Incidence Rate dan Penerapan Denda Model Matematika Jumlah Perokok dengan Nonlinear Incidence Rate dan Penerapan Denda Mohammad Soleh 1, Ifnur Haniva 2 1,2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl.

Lebih terperinci

KESTABILAN MODEL MANGSA PEMANGSA DENGAN FUNGSI RESPON HOLLING TIPE III DAN PENYAKIT PADA PEMANGSA SUPER

KESTABILAN MODEL MANGSA PEMANGSA DENGAN FUNGSI RESPON HOLLING TIPE III DAN PENYAKIT PADA PEMANGSA SUPER Seminar Nasional Matematika dan Aplikasinya 21 Oktober 217 KESTABILAN MODEL MANGSA PEMANGSA DENGAN FUNGSI RESPON HOLLING TIPE III DAN PENYAKIT PADA PEMANGSA SUPER A. Muh. Amil Siddik 1) Syamsuddin Toaha

Lebih terperinci