BAB I PENDAHULUAN. 1.1 Latar Belakang
|
|
|
- Harjanti Budiono
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi yang begitu pesat mengakibatkan perkembangan pengetahuan tentang sistem dinamik juga pesat. Salah satu pengembangan sistem dinamik dalam kehidupan adalah pada bidang Ekologi yaitu cabang Biologi yang mempelajari ekosistem. Salah satu model yang merupakan sistem dinamika dalam bidang ini adalah model interaksi populasi, yaitu interaksi antara dua spesies atau lebih. Contoh model interaksi populasi adalah model sistem mangsa pemangsa. Karena model ini mempunyai peranan yang penting dalam perputaran dinamika populasi, maka hal ini merupakan sesuatu yang sangat menarik untuk dipelajari. Model mangsa pemangsa pertama kali dikemukakan oleh Lotka-Voltera (1926). Model dasar mangsa pemangsa LotkaVoltera dimodifikasi oleh banyak ilmuwan, salah satu modifikasi model dasar mangsa pemangsa Lotka-Voltera dikembangkan oleh Freedman (1980). Unsur penting dalam model ini adalah Fungsi Respon Holling (1959), fungsi yang menggambarkan banyak mangsa yang dikonsumsi oleh pemangsa per satuan waktu, dan fungsi logistik oleh Verhulst (1830) pada sistem mangsa. Kemudian model ini lebih dikenal dengan model mangsa pemangsa bergantung mangsa dalam interaksi populasi. Akan tetapi, ekosistem tidak hanya bergantung pada respon mangsa semata, melainkan juga ada faktor lain yang ada pada pemangsa itu sendiri. Selain itu, kebanyakan dari model yang ada belum memperhitungkan faktor faktor yang berkaitan dengan gender, seperti perkawinan, yang merupakan realitas kehidupan sebuah populasi. Oleh karena itu, sewajarnya penambahan fungsi logistik oleh Verhulst (1830) pada sistem pemangsa dan pemisahan gambaran perubahan populasi jantan dan populasi betina menjadi sangat penting. Masalah pemodelan yang berkaitan dengan pembentukan pasangan ini telah dikenalkan oleh A.H Pollard 1
2 (1948) (dalam Z.Tianran dan W.Wang (2005)) yang disebut juga dengan twosex problem. Berdasarkan uraian tersebut, penulisan tesis ini akan mengkaji model mangsa pemangsa dengan membedakan jenis kelamin. Namun, dalam penelitian ini pemisahan populasi berdasarkan jenis kelamin belum dilakukan untuk kedua obyek, melainkan hanya dibatasi pada populasi mangsa. Fokus dari penelitian ini adalah untuk membuat formula dan menganalisis model mangsa-pemangsa dimana populasi mangsa jantan dan populasi mangsa betina dipisah. Model mangsa-pemangsa dalam tesis ini telah dikemukakan oleh Zhang, dkk (2005) dalam jurnalnya yang berjudul Mathematical Models of Two-Sex Population Dynamics. Kontribusi penulis antara lain : menjelaskan konstruksi model dengan fungsi logistik dan fungsi respon Holling tipe II, melengkapi teorema, memberikan teorema, dan menuliskan kembali dengan bahasa sendiri. 1.2 Rumusan Masalah Berdasarkan latar belakang masalah di atas, maka dapat dirumuskan permasalahan sebagai berikut : 1) Bagaimana mengkonstruksi model mangsa-pemangsa dengan membedakan jenis kelamin pada populasi mangsa 2) Bagaimana kestabilan titik ekuilibrium dari model mangsa-pemangsa dengan 3) Bagaimana kepermanenan sistem model mangsa-pemangsa dengan 2
3 1.3 Tujuan Penelitian Penelitian ini bertujuan untuk : 1) Mengkonstruksi model mangsa-pemangsa dengan membedakan jenis kelamin pada populasi mangsa. 2) Menentukan titik ekuilibrium dari model mangsa-pemangsa dengan 3) Menganalisis sifat kestabilan titik ekuilibrium model mangsa-pemangsa dengan 4) Menyelidiki kepermanenan model mangsa-pemangsa dengan membedakan jenis kelamin pada populasi mangsa. 1.4 Manfaat Penelitian Manfaat dalam penelitian ini adalah sebagai berikut : 1) Secara umum diharapkan dapat memberikan sumbangan terhadap perkembangan ilmu pengetahuan serta untuk menambah wawasan pengetahuan dalam bidang matematika terapan, terutama dalam bidang pemodelan matematika serta ilmu ekologi. 2) Secara khusus memberikan gambaran tentang kestabilan titik ekuilibrium dari model mangsa-pemangsa dengan membedakan jenis kelamin pada populasi mangsa. 1.5 Tinjauan Pustaka Model mangsa-pemangsa dari Lotka-Volterra banyak dikembangkan oleh para ilmuan untuk mendapatkan model yang lebih relevan, diantaranya adalah Freedman (1980) menambahkan fungsi respon Holling (1959). Beberapa tipe dan hasil penelitian tentang mengenai fungsi respon Holling ini dijelaskan sangat baik oleh Dewi Anggraini (2012) dan Nelly, dkk (2000). Fungsi pertumbuhan logistik Verhulst (1830) pada mangsa menjadikan model mangsa pemangsa bergantung terhadap pertumbuhan mangsa. Sementara, A.H Pollard (1948) dalam 3
4 Z.Tianran dan W.Wang (2005) telah mengenalkan Masalah pemodelan yang berkaitan dengan pembentukan pasangan yang disebut two-sex problem. Perlu diketahui bahwa model mangsa-pemangsa disusun kedalam bentuk sistem persamaan diferensial nonlinear autonomous. Oleh karena itu, terlebih dahulu perlu dijamin eksistensi dan ketunggalan solusi dari sistem persamaan diferensial nonlinear yang dibentuk. Teorema yang menjamin eksistensi dan ketunggalan solusi dari sistem persamaan diferensial diberikan oleh Perko (2001). Selanjutnya akan diselidiki eksistensi titik (solusi) ekuilibrium dari sistem persamaan diferensial kemudian akan dianalisis perilaku solusi di sekitar titik ekuilibrium dengan melihat sifat kestabilan dari titik ekuilibrium, yang dijelaskan oleh Hale dan Kocak (1994). Selanjutnya, untuk mengetahui perilaku solusi di sekitar titik ekuilibrium akan dicari sifat kestabilan lokal dari titik ekuilibrium. Penentuan sifat kestabilan lokal dari titik ekuilibrium dilakukan dengan linearisasi di titik ekuilibrium dengan menggunakan matriks Jacobian, kemudian dicari nilai eigen dari matriks Jacobian seperti yang dijelaskan oleh Perko (2001). Sifat kestabilan lokal titik ekuilibrium yang diperoleh berdasarkan nilai eigen dari matriks Jacobian berlaku jika titik ekuilibrium yang ditinjau adalah titik ekuilibrium hiperbolik yang teoremanya diberikan oleh Tu (2001) dan Olsder (1994). Beberapa definisi lain yang diperlukan yaitu mengenai solusi periodik, himpunan invarian dan limit set diberikan oleh Wiggins (2003), definisi mengenai sistem dinamik dan limit cycle berturut-turut diberikan oleh Perko (2001) dan Kuznetsov (1998). Selain itu, juga dibutuhkan teorema Poincar'e-Bendixson oleh Wigins (2003) dan kepermanenan sitem oleh Xianning Liu and Lansun Chen (2002) sebagai bahan pendukung untuk menyelidiki sifat kestabilan titik ekuilibrium secara global. 4
5 1.6 Metodologi Penelitian Metode yang digunakan dalam penelitian ini adalah studi literatur dengan tahapan tahapan sebagai berikut : 1. Mengumpulkan bahan literatur serta studi pustaka sebagai bahan referensi model mangsa-pemangsa dengan membedakan jenis kelamin pada populasi mangsa. 2. Menentukan asumsi dan mengkonstruksi model mangsa-pemangsa dengan 3. Menentukan titik ekuilibrium, kestabilan, dan kepermanenan sistem model mangsa-pemangsa dengan 1.7 Sistematika Penelitian Sistematika penulisan dalam tesis ini terbagi menjadi empat bab yang dimulai dari bab pendahuluan dan diakhiri dengan bab penutup. BAB I PENDAHULUAN yang memuat latar belakang, rumusan masalah, tujuan penelitian, manfaat penelitian, tinjauan pustaka, metode penelitian dan sistematika penulisan. BAB II LANDASAN TEORI yang memuat teori yang menunjang pembahasan yaitu model logistik pertumbuhan populasi, model dasar mangsapemangsa, dan hasil eksperimen Holling. Selanjutnya teori bagaimana mencari titik ekuilibrium dan analisis kestabilan lokal dan kestabilan global titik ekuilibrium. BAB III PEMBAHASAN merupakan pembahasan tentang konstruksi model mangsa-pemangsa dengan membedakan jenis kelamin pada populasi mangsa, menentukan titik ekuilibrium, analisis kestabilan titik ekuilibrium dan kepermanenan sistem model mangsa-pemangsa tersebut. 5
6 BAB IV PENUTUP meliputi kesimpulan dan saran yang merupakan hasil yang telah didapatkan. 6
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Wereng batang cokelat (Nilaparvata lugens), biasa disebut hama WBC. Hama ini merupakan hama umum tanaman padi di Indonesia, yaitu sudah lebih dari 80 tahun menjadi
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah yang telah
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem dinamik merupakan formalisasi Matematika untuk menggambarkan konsep-konsep ilmiah dari proses deterministik yang bergantung terhadap waktu (Kuznetsov,
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN Bab ini memuat tentang latar belakang yang mendasari penelitian. Berdasarkan pada latar belakang tersebut, ditentukan tujuan penelitian yang ingin dicapai. Pada bab ini juga dijelaskan
BAB I PENDAHULUAN. hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau
1 BAB I PENDAHULUAN A. LATAR BELAKANG Setiap mahluk hidup dituntut untuk senantiasa berinteraksi dengan mahluk hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau interaksi antara
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN Pada Bab I Pendahuluan ini dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN Dalam bab ini akan diberikan latar belakang permasalahan, tujuan penelitian, tinjauan pustaka, metode penelitian dan sistematika penulisan. 1.1. Latar Belakang Masalah Menurut Effendie
BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan
BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai nilai eigen dan vektor eigen, sistem dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan sistem dinamik, kriteria Routh-Hurwitz,
BAB I PENDAHULUAN. masalah penyebaran penyakit menular yang mewabah. Berdasarkan pasal 3
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Salah satu masalah yang dijumpai dalam bidang kesehatan, yakni masalah penyebaran penyakit menular yang mewabah. Berdasarkan pasal 3 UU No.4 tahun 1984 tentang
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kanker adalah penyakit yang memiliki karakteristik adanya gangguan mekanisme pengaturan multiplikasi pada organisme multiseluler sehingga tumbuh secara terus-menerus,
BAB I PENDAHULUAN 1.1. Latar Belakang
1 BAB I PENDAHULUAN 1.1. Latar Belakang Beberapa tahun belakangan ini, penyakit hati (liver diseases) muncul sebagai penyakit yang paling banyak menyebabkan morbiditas dan mortalitas diantara individu
Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika,
BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema dari nilai eigen, vektor eigen, dan diagonalisasi, sistem persamaan differensial, model predator prey lotka-voltera,
BAB I PENDAHULUAN. Ekologi merupakan cabang ilmu yang mempelajari tentang interaksi antara
BAB I PENDAHULUAN 1.1 Latar Belakang Ekologi merupakan cabang ilmu yang mempelajari tentang interaksi antara organisme dengan organisme lain serta dengan lingkungannya. Pada dasarnya organisme tidak dapat
MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT
Vol 10 No 2, 2013 Jurnal Sains, Teknologi dan Industri MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT Mohammad Soleh 1, Siti Kholipah 2 1,2 Jurusan Matematika Fakultas Sains dan Teknologi
T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf
T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf Rubono Setiawan Prodi Pendidikan Matematika, F.KIP
PEMANENAN OPTIMAL PADA MODEL REAKSI DINAMIK SISTEM MANGSA-PEMANGSA DENGAN TAHAPAN STRUKTUR. Yuliani, Marwan Sam
Jurnal Dinamika, September 2015, halaman 25-38 ISSN 2087-7889 Vol. 06. No. 2 PEMANENAN OPTIMAL PADA MODEL REAKSI DINAMIK SISTEM MANGSA-PEMANGSA DENGAN TAHAPAN STRUKTUR Yuliani, Marwan Sam Program StudiMatematika,
BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II
BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika
BAB I PENDAHULUAN 1.1 LATAR BELAKANG
BAB I PENDAHULUAN 1.1 LATAR BELAKANG Tumor adalah sel yang telah kehilangan pengendalian dan mekanisme normalnya, sehingga mengalami pertumbuhan yang tidak terkontrol. Sel-sel tumor terbentuk dari sel-sel
BAB I PENDAHULUAN A. Latar Belakang
BAB I PENDAHULUAN A. Latar Belakang Dalam kehidupan setiap makhluk hidup tidak dapat terlepas dengan yang namanya interaksi. Interaksi merupakan suatu jenis tindakan yang terjadi ketika dua atau lebih
BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.
BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa
Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami
Penerapan Teknik Serangga Steril Dengan Model Logistik Dalam Pemberantasan Nyamuk Aedes Aegypti Nida Sri Utami Program Studi Pendidikan Matematika FKIP UMS Lina Aryati Jurusan Matematika FMIPA UGM ABSTRAK
LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik
LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.
ANALISIS DINAMIK MODEL PREDATOR-PREY PADA POPULASI ECENG GONDOK DENGAN ADANYA IKAN GRASS CARP DAN PEMANENAN
ANALISIS DINAMIK MODEL PREDATOR-PREY PADA POPULASI ECENG GONDOK DENGAN ADANYA IKAN GRASS CARP DAN PEMANENAN Skripsi disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi
KESTABILAN MODEL POPULASI SATU MANGSA-DUA PEMANGSA DENGAN PEMANENAN OPTIMAL PADA PEMANGSA
Seminar Nasional Matematika dan Aplikasinya 21 Oktober 2017 Surabaya Universitas Airlangga KESTABILAN MODEL POPULASI SATU MANGSA-DUA PEMANGSA DENGAN PEMANENAN OPTIMAL PADA PEMANGSA Muhammad Ikbal 1) Syamsuddin
ANALISIS TITIK EKUILIBRIUM DAN SOLUSI MODEL INTERAKSI PEMANGSA-MANGSA MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN
ANALISIS TITIK EKUILIBRIUM DAN SOLUSI MODEL INTERAKSI PEMANGSA-MANGSA MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN TESIS diajukan untuk memenuhi salah satu syarat memperoleh gelar Magister Pendidikan Disusun
BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik
BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan
ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR
Jurnal Euler, ISSN: 2087-9393 Januari 2014, Vol.2, No.1, Hal.1-12 ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR Hasan S. Panigoro 1 Diterima:
MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK
SEMIRATA MIPAnet 2017 24-26 Agustus 2017 UNSRAT, Manado MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK HASAN S. PANIGORO 1, EMLI RAHMI 2 1 Universitas
BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan
BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Tuberkulosis adalah penyakit yang penularannya langsung dari penderita TB yang terinfeksi oleh strain TB yaitu Microbacterium tuberculosis. Menurut
MODEL PERSAMAAN DIFERENSIAL PADA INTERAKSI DUA POPULASI
MODEL PERSAMAAN DIFERENSIAL PADA INTERAKSI DUA POPULASI Supandi, Saifan Sidiq Abdullah Fakultas PMIPATI Universitas PGRI Semarang [email protected] Abstrak Persaingan kehidupan di alam dapat dikategorikan
BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan
BAB II LANDASAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan matematika, teorema Taylor, nilai eigen,
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Infeksi virus dengue adalah suatu insiden penyakit yang serius dalam kematian di kebanyakan negara yang beriklim tropis dan sub tropis di dunia. Virus dengue
Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya
JURNAL SAINS DAN SENI POMITS Vol 2, No 1, (2013) 2337-3520 (2301-928X Print) 1 Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya Nabila Asyiqotur Rohmah, Erna Apriliani Jurusan
BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi
BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Influenza atau lebih dikenal dengan flu, merupakan salah satu penyakit yang menyerang pernafasan manusia. Penyakit ini disebabkan oleh virus influenza yang
ANALISIS DINAMIKA MODEL KOMPETISI DUA POPULASI YANG HIDUP BERSAMA DI TITIK KESETIMBANGAN TIDAK TERDEFINISI
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal 197 204. ANALISIS DINAMIKA MODEL KOMPETISI DUA POPULASI YANG HIDUP BERSAMA DI TITIK KESETIMBANGAN TIDAK TERDEFINISI Eka
Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan
Prosiding Matematika ISSN: 2460-6464 Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan 1 Ai Yeni, 2 Gani Gunawan, 3 Icih Sukarsih 1,2,3 Prodi Matematika, Fakultas Matematika
Interaksi Antara Predator-Prey dengan Faktor Pemanen Prey
NATURALA Journal of Scientific Modeling & Computation Volume No. 03 58 ISSN 303035 Interaksi Antara PredatorPrey dengan Faktor Pemanen Prey Suzyanna Fakultas Sains dan Teknologi Universitas Airlangga Abstrak
BAB I PENDAHULUAN. tidak dapat hidup sendiri, karena setiap organisme tersebut membutuhkan
BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan setiap organisme tidak terlepas dari adanya interaksi. Interaksi merupakan suatu jenis tindakan yang terjadi ketika dua atau lebih makhluk hidup mempengaruhi
BIFURKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKRET
Vol. 5, No., Juni 009: 54-60 BIFUKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKET ubono Setiawan Mahasiswa S Jurusan Matematika Universitas Gadah Mada Email : [email protected] Abstrak Di
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Tuberkulosis merupakan salah satu penyakit yang telah lama dikenal dan sampai saat ini masih menjadi penyebab utama kematian di dunia. Prevalensi tuberkulosis
ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR
ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR Oleh: Drs. M. Setijo Winarko, M.Si Drs. I Gusti Ngurah Rai Usadha, M.Si Subchan, Ph.D Drs. Kamiran, M.Si Noveria
BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit.
BAB I PENDAHULUAN A. Latar Belakang Masalah Sistem dinamik dapat dipandang sebagai suatu sistem yang bergantung terhadap waktu. Sistem dinamik yang menggunakan waktu kontinu disebut dengan sistem dinamik
Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang
Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna
BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya
BAB II KAJIAN TEORI 2.1 Persamaan Diferensial Persamaan diferensial sangat penting dalam pemodelan matematika khususnya untuk pemodelan yang membutuhkan solusi dari sebuah permasalahan. Pemodelan matematika
ANALISIS DINAMIK SKEMA EULER UNTUK MODEL PREDATOR-PREY DENGAN EFEK ALLEE KUADRATIK
ANALISIS DINAMIK SKEMA EULER UNTUK MODEL PREDATOR-PREY DENGAN EFEK ALLEE KUADRATIK (DYNAMICAL ANALYSIS OF EULER SCHEME FOR PREDATOR- PREY WITH QUADRATIC ALLEE EFFECT) Vivi Aida Fitria 1, S.Nurul Afiyah2
SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS
SEMINAR HASIL TUGAS AKHIR Jurusan Matematika FMIPA ITS Pengendalian Populasi Hama pada Model Mangsa-Pemangsa dengan Musuh Alaminya Nabila Asyiqotur Rohmah 1209 100 703 Dosen Pembimbing: Dr Erna Apriliani,
BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data
A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:
SKEMA NUMERIK PERSAMAAN LESLIE GOWER DENGAN PEMANENAN
Skema Numerik ersamaan Leslie Gower dengan emanenan SKEMA NUMERIK ERSAMAAN LESLIE GOWER DENGAN EMANENAN Trija Fayeldi Jurusan endidikan Matematika Universitas Kanjuruhan Malang Email: trija_fayeldi@yahoocom
ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR
TUGAS AKHIR ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR ( S TA B I L I T Y A N A LY S I S O F A P R E D AT O R - P R E Y M O D E L W I T H I N F E C T
Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk
BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial
PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 135-142 PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS Marisa Effendi,
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Penyakit menular merupakan masalah kesehatan utama di hampir setiap negara, termasuk Indonesia. Beberapa penyakit dapat menyebar dalam populasi hingga menyebabkan
Model Mangsa-Pemangsa dengan Dua Pemangsa dan Satu Mangsa di Lingkungan Beracun
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 05 Model Mangsa-Pemangsa dengan Dua Pemangsa dan Satu Mangsa di Lingkungan Beracun Irham Taufiq, Imam Solekhudin, Sumardi 3 Fakultas Keguruan dan
KESTABILAN MODEL SATU MANGSA DUA PEMANGSA DENGAN FUNGSI RESPON TIPE HOLLING III DAN PEMANENAN
KESTABILAN MODEL SATU MANGSA DUA PEMANGSA DENGAN FUNGSI RESPON TIPE HOLLING III DAN PEMANENAN STABILITY OF ONE PREY TWO PREDATOR MODEL WITH HOLLING TYPE III FUNCTIONAL RESPONSE AND HARVESTING Didiharyono,
ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HUTCHINSON DENGAN WAKTU TUNDA DAN PEMANENAN KONSTAN LILIS SAODAH
ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HUTCHINSON DENGAN WAKTU TUNDA DAN PEMANENAN KONSTAN LILIS SAODAH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR
UNNES Journal of Mathematics
UJM 4 (1) (2015) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm ANALISIS MODEL PREDATOR-PREY DUA SPESIES DENGAN FUNGSI RESPON HOLLING TIPE III Putri Wijayanti, M. Kharis Jurusan
BAB II KAJIAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi
BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi
BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta
BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan
ANALISIS MODEL S-I-P INTERAKSI DUA SPESIES PREDATOR-PREY DENGAN FUNGSI RESPON HOLLING TIPE II
ANALISIS MODEL S-I-P INTERAKSI DUA SPESIES PREDATOR-PREY DENGAN FUNGSI RESPON HOLLING TIPE II skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh
PENGARUH SCAVENGER (Pemakan Bangkai) TERHADAP KESTABILAN POPULASI MANGSA PEMANGSA PADA MODEL LOTKA VOLTERRA ELI WAHYUNI
PENGARUH SCAVENGER (Pemakan Bangkai) TERHADAP KESTABILAN POPULASI MANGSA PEMANGSA PADA MODEL LOTKA VOLTERRA ELI WAHYUNI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS
KESTABILAN MODEL BIOEKONOMI SISTEM MANGSA PEMANGSA SUMBER DAYA PERIKANAN DENGAN PEMANENAN PADA POPULASI PEMANGSA
KESTABILAN MODEL BIOEKONOMI SISTEM MANGSA PEMANGSA SUMBER DAYA PERIKANAN DENGAN PEMANENAN PADA POPULASI PEMANGSA Rustam Jurusan Matematika Universitas Sembilanbelas November Kolaka Email: [email protected]/[email protected]
Eksistensi dan Kestabilan Model SIR dengan Nonlinear Insidence Rate
LEMMA VOL NO NOV 04 Eksistensi dan Kestabilan Model R dengan Nonlinear nsidence Rate Mohammad oleh ) dan Riry riningsih ) ) Jurusan Matematika Fakultas ains dan Teknologi UN uska Riau ) Jurusan Matematika
MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT TUGAS AKHIR
MODEL MATEMATIKA MANGSA-PEMANGSA DENGAN SEBAGIAN MANGSA SAKIT TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh : SITI KHOLIPAH 1854351 FAKULTAS
Kestabilan Model SIRS dengan Pertumbuhan Logistik dan Non-monotone Incidence Rate
Kestabilan Model SIRS dengan Pertumbuhan Logistik dan Non-monotone Incidence Rate Mohammad soleh 1, Syamsuri 2 1,2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau Jln. HR. Soebrantas Km
BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema
BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada bab III nanti, di antaranya model matematika penyebaran penyakit,
IV. HASIL DAN PEMBAHASAN. 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa. Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup
IV. HASIL DAN PEMBAHASAN 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup berdampingan. Diasumsikan habitat ini dibagi menjadi dua
Local Stability of Predator Prey Models With Harvesting On The Prey. Abstract
Jurnal Ilmiah Pendidikan Matematika 99 Local Stability of Predator Prey Models With Harvesting On The Prey Oleh : Saiful Marom Pendidikan Matematika FKIP Universitas Pekalongan Abstract In this paper considered
BAB I Pendahuluan Latar BelakangMasalah
BAB I Pendahuluan 1.1. Latar BelakangMasalah Model matematika merupakan representasi masalah dalam dunia nyata yang menggunakan bahasa matematika. Bahasa matematika yang digunakan dalam pemodelan meliputi
UNIVERSITAS NEGERI SEMARANG
ANALISIS MODEL PREDATOR-PREY DUA SPESIES DENGAN FUNGSI RESPON HOLLING TIPE III skripsi disajikan sebagai salah satu syarat untuk mencapai gelar Sarjana Sains Program Studi Matematika oleh Putri Wijayanti
ANALISIS MODEL MATEMATIKA TENTANG PENGARUH TERAPI GEN TERHADAP DINAMIKA PERTUMBUHAN SEL EFEKTOR DAN SEL TUMOR DALAM PENGOBATAN KANKER SKRIPSI
ANALISIS MODEL MATEMATIKA TENTANG PENGARUH TERAPI GEN TERHADAP DINAMIKA PERTUMBUHAN SEL EFEKTOR DAN SEL TUMOR DALAM PENGOBATAN KANKER SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam
Ruko Jambusari No. 7A Yogyakarta Telp. : ; Fax. :
SPEMODELAN MATEMATIKA Aplikasi dan Terapannya Oleh : Ripno Juli Iswanto Edisi Pertama Cetakan Pertama, 2012 Hak Cipta 2012 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan
ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II INTAN SELVYA
ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II INTAN SELVYA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2016 PERNYATAAN MENGENAI
ANALISIS MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II DENGAN MANGSA YANG TERLINDUNG DAN ADANYA PEMANENAN POPULASI EKA PUJIYANTI
ANALISIS MODEL MANGSA-PEMANGSA HOLLING-TANNER TIPE II DENGAN MANGSA YANG TERLINDUNG DAN ADANYA PEMANENAN POPULASI EKA PUJIYANTI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT
KESTABILAN POPULASI MODEL LOTKA-VOLTERRA TIGA SPESIES DENGAN TITIK KESETIMBANGAN ABSTRACT
KESTABILAN POPULASI MODEL LOTKA-VOLTERRA TIGA SPESIES DENGAN TITIK KESETIMBANGAN Ritania Monica, Leli Deswita, Rolan Pane Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika
Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa
Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk asus Pemangsa Tergantung Sebagian pada Mangsa Ipah Junaedi 1, a), Diny Zulkarnaen 2, b) 3, c), dan Siti Julaeha 1, 2, 3 Jurusan Matematika,
Kestabilan Titik Ekuilibrium Model SIS dengan Pertumbuhan Logistik dan Migrasi
Kestabilan Titik Ekuilibrium Model SIS dengan Pertumbuhan Logistik Migrasi Mohammad soleh 1, Parubahan Siregar 2 1,2 Jurusan Matematika Fakultas Sains Teknologi Universitas Islam Negeri Sultan Syarif Kasim
Bab 16. Model Pemangsa-Mangsa
Bab 16. Model Pemangsa-Mangsa Pada Bab ini akan dipelajari model matematis dari masalah dua spesies hidup dalam habitat yang sama, yang dalam hal ini keduanya berinteraksi dalam hubungan pemangsa dan mangsa.
BAB I PENDAHULUAN ( )
BAB I PENDAHULUAN 1.1. Latar Belakang Persamaan diferensial merupakan persamaan yang melibatkan turunan dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas dan dituliskan dengan
Pengaruh Hukuman Mati terhadap Dinamika Jumlah Pengguna Narkoba di Indonesia
Pengaruh Hukuman Mati terhadap Dinamika Jumlah Pengguna Narkoba di Indonesia Riry Sriningsih Jurusan Matematika, Universitas Negeri Padang, Padang, Indonesia Email: [email protected] Abstrak. Tulisan
ANALISIS KESTABILAN DAN LIMIT CYCLE PADA MODEL PREDATOR - PREY TIPE GAUSE SKRIPSI
ANALISIS KESTABILAN DAN LIMIT CYCLE PADA MODEL PREDATOR - PREY TIPE GAUSE SKRIPSI Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Bidang Matematika Pada Fakultas Sains dan Teknologi Universitas
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu jenis penyakit menular yang hingga saat ini masih perhatian banyak negara di dunia adalah penyakit demam Chikungunya. Penyakit demam chikungunya
MODEL DINAMIK INTERAKSI DUA POPULASI (Dynamic Model Interaction of Two Population)
Jurnal Barekeng Vol. 5 No. 1 Hal. 9 13 (211) MODEL DINAMIK INTERAKSI DUA POPULASI (Dynamic Model Interaction of Two Population) FRANCIS Y. RUMLAWANG 1, TRIFENA SAMPELILING 2 1 Staf Jurusan Matematika,
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Semakin berkembangnya ilmu pengetahuan dan ilmu pengobatan tidak menjamin manusia akan bebas dari penyakit. Hal ini disebabkan karena penyakit dan virus juga
MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI
MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI Mohammmad Soleh 1, Siti Rahma 2 Universitas Islam Negeri Sultan Syarif Kasim Riau Jl HR Soebrantas No 155 KM 15 Simpang Baru Panam Pekanbaru muhammadsoleh@uin-suskaacid
ANALISIS KESTABILAN PADA MODEL DUA MANGSA- SATU PEMANGSA DENGAN FUNGSI RESPON HOLLING DAN PEMANENAN
Seminar Nasional Matematika dan Aplikasinya 21 Oktober 2017 Surabaya Universitas Airlangga ANALISIS KESTABILAN PADA MODEL DUA MANGSA- SATU PEMANGSA DENGAN FUNGSI RESPON HOLLING DAN PEMANENAN Armin 1) Syamsuddin
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Chemostat atau disebut juga bioreaktor adalah suatu alat laboratorium (fermentor) untuk budidaya mikroorganisme[18]. Alat tersebut disusun sedemikian rupa
BAB I PENDAHULUAN. Besar Penelitian Tanaman Padi, tikus sawah merupakan hama utama penyebab
BAB I PENDAHULUAN A. Latar Belakang Masalah Tikus sawah (Rattus argentiventer) merupakan salah satu spesies hewan pengerat yang mengganggu aktivitas manusia terutama petani. Menurut Balai Besar Penelitian
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem kejadian diskrit (SKD) adalah nama klasifikasi masalah tentang sistem dengan sumber daya berhingga yang digunakan oleh beberapa pengguna untuk mencapai
DINAMIKA ORDE PERTAMA SISTEM NONLINIER TERKOPEL DENGAN RELASI PREDASI, MUTUAL, DAN SIKLIK (Tinjauan Kasus Mangsa-Pemangsa pada Sistem Ekologi)
1 DINAMIKA ORDE PERTAMA SISTEM NONLINIER TERKOPEL DENGAN RELASI PREDASI, MUTUAL, DAN SIKLIK (Tinjauan Kasus Mangsa-Pemangsa pada Sistem Ekologi) Oleh: MADA SANJAYA WS G74103018 DEPARTEMEN FISIKA FAKULTAS
BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI
BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta
II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al.,
II. TINJAUAN PUSTAKA 2.1 Sistem Dinamik Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., 2002). Salah satu tujuan utama dari sistem dinamik adalah mempelajari perilaku dari
ANALISIS KESTABILAN HELICOVERPA ARMIGERA
ANALISIS KESTABILAN HELICOVERPA ARMIGERA (HAMA PENGGEREK BUAH) DAN PAEDERUS FUSCIPES SP (TOMCAT) DENGAN MODEL MANGSA-PEMANGSA DAN RESPON FUNGSIONAL MICHAELIS MENTEN DENGAN METODE BEDA HINGGA MAJU SKRIPSI
Model Matematika Jumlah Perokok dengan Nonlinear Incidence Rate dan Penerapan Denda
Model Matematika Jumlah Perokok dengan Nonlinear Incidence Rate dan Penerapan Denda Mohammad Soleh 1, Ifnur Haniva 2 1,2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl.
KESTABILAN MODEL MANGSA PEMANGSA DENGAN FUNGSI RESPON HOLLING TIPE III DAN PENYAKIT PADA PEMANGSA SUPER
Seminar Nasional Matematika dan Aplikasinya 21 Oktober 217 KESTABILAN MODEL MANGSA PEMANGSA DENGAN FUNGSI RESPON HOLLING TIPE III DAN PENYAKIT PADA PEMANGSA SUPER A. Muh. Amil Siddik 1) Syamsuddin Toaha
