BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER
|
|
|
- Hendri Agusalim
- 8 tahun lalu
- Tontonan:
Transkripsi
1 BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER T - 2 Andini Putri Ariyani 1, Kus Prihantoso Krisnawan 2 Jurusan Pendidikan Matematika FMIPA UNY 1 [email protected], 2 [email protected]. Abstrak Pada makalah ini dibahas mengenai bifurkasi 1-parameter yang terjadi pada sistem flutter. Flutter merupakan fenomena ketidakstabilan dinamik suatu sistem yang diakibatkan oleh interaksi antara unsur inersia, redaman, dan fleksibilitas struktur, serta beban-beban aerodinamika yang bekerja pada struktur. Sistem flutter berbentuk sistem persamaan diferensial orde 2 dengan dua persamaan. Transformasi dilakukan untuk mereduksi orde sehingga diperoleh empat persamaan diferensial orde pertama. Analisis terhadap sistem flutter hasil transformasi dilakukan dengan melakukan reduksi dimensi sistem menggunakan teorema Manifold Center. Hasil analisis menunjukkan bahwa pada sistem flutter terjadi bifurkasi pitchfork superkritikal. Hal ini berakibat titik kesetimbangan sistem menjadi tidak stabil ketika dilakukan perubahan terhadap nilai parameter. Kata kunci: sistem flutter, manifold center, bifurkasi pitchfork A. PENDAHULUAN Menurut Novi Andria [6] flutter merupakan fenomena ketidakstabilan dinamik suatu sistem yang diakibatkan oleh interaksi antara unsur inersia, redaman, dan fleksibilitas struktur, serta beban-beban aerodinamika yang bekerja pada struktur. Apabila suatu struktur terkena aliran udara yang besar maka struktur tersebut akan bergetar dengan amplitudo yang meningkat. Getaran ini terjadi terus menerus sehingga struktur mengalami kegagalan. Jika fenomena ini terjadi pada pesawat terbang maka dapat dipastikan pesawat akan jatuh [3] Sebenarnya, fenomena flutter tidak pernah terjadi pada pesawat di masa masa awal diciptakannya pesawat terbang [4 ]. Hal ini dikarenakan, pada masa itu pesawat bergerak dengan kecepatan rendah dan sayap pesawat dibuat rigid, sehingga fenomena flutter tidak banyak diketahui. Namun seiring dengan perkembangan jaman, sayap pesawat dibuat lebih lentur. Hal ini dimaksudkan agar pesawat lebih ringan. Jika pesawat semakin ringan maka gerak pesawatpun menjadi lebih cepat. Namun dengan dibuatnya sayap pesawat yang lentur menyebabkan munculnya fenomena flutter ini. Penelitian terhadap fenomena flutter akan dilakukan secara matematis, yaitu dengan menganalisa model matematika dari sistem flutter pada sayap pesawat terbang. Analisis digunakan dengan menggunakan Teorema Manifold Center. Beberapa penelitian yang telah dilakukan terhadap fenomena flutter, diantaranya adalah Yang,1995 [9] dan liu, et, al,2[5]. Yang [9], menunjukkan bahwa pada sistem flutter muncul Osilasi Limit Cycle, sedangkan Liu,et,al [5] melakukan penelitian tentang sistem flutter berdimensi 8 dan memberikan prediksi dan frekuensi dasar dari Osilasi Limit Cycle yang terjadi. Makalah dipresentasikan dalam Seminar Nasional Matematika dan Pendidikan Matematika dengan tema Penguatan Peran Matematika dan Pendidikan Matematika untuk Indonesia yang Lebih Baik" pada tanggal 9 November 213 di Jurusan Pendidikan Matematika FMIPA UNY
2 Pada penelitian ini, model sistem flutter yang digunakan didasarkan pada model sistem flutter yang dinyatakan oleh Chen dan Liu[2]. Model ini terdiri dari dua persamaan diferensial orde dua. Persamaan tersebut adalah h +.25α +.1h +.2h +.1Qα =.25h +.5α +.1α + (k.4q)α + e α (1) = dengan h adalah plunge displacement of airfoil, α adalah pitch displacement of airfoil, Q adalah kecepatan udara yang tergeneralisasi, k adalah koefisien kekakuan linear, dan e > adalah koefisien kekakuan nonlinier Dalam makalahnya, Chen dan Liu menunjukkan bahwa pada saat parameter k bernilai, terjadi bifurkasi Hopf superkritikal maupun subkritikal. Di dalam makalah ini, ditunjukkan bahwa pada saat k bernilai, terjadi bifurkasi pitchfork superkritikal. B. PEMBAHASAN a. Transformasi Pertama Sistem (1) akan ditransformasi menjadi sistem berdimensi 4 berorde 1 dengan cara mensubstitusikan x = α, x = α, x = h, x = h, dan nilai k =, ke dalam sistem (1). Kemudian dilakukan penskalaan terhadap waktu t, yaitu t = 7τ didapatkan 7 = 4(.26Q ) e x + x (2) 7 4( Q) e x Ketika nilai Q akan didapatkan satu titik ekuilibrium yaitu u = (,,, ), dan ketika Q > akan didapat tiga titik ekuilibrium yaitu: u = (,,, ), u =....,,.5Q.., dan u =,,.5Q.., Adanya perubahan banyaknya titik ekuilibrium menandakan terjadinya bifurkasi pada saat Q = Selanjutnya, dilakukan translasi terhadap sistem agar bifurkasi terjadi pada saat Q =. Untuk itu dimisalkan Q = Q , kemudian nilai ini disubstitusikan ke persamaan (2) sehingga didapat 7 = Q x + x 16e x (3) e x.96q x b. Nilai Eigen dan Vektor Eigen Matriks Jacobian dari sistem (3) pada titik ekuilibrium (,,, ) pada saat Q = adalah 7 J = Matriks tersebut mempunyai nilai eigen, , i, dan i dengan vektor eigen yang bersesuaian adalah V =, V = , Yogyakarta, 9 November 213 MT - 8
3 PROSIDING ISBN : i V = i, dan i i i V = i i i c. Transformasi Kedua Berdasarkan vektor eigen yang telah diperoleh, dibentuk matriks P yang didefinisikan sebagai berikut P = Selanjutnya dimisalkan x = Pu, dan dilakukan substitusi ke persamaan (3) sehingga diperoleh u = u + P f(pu, Q ) (4) d. Penentuan Manifold Center Definisi (Wiggins [8]) Sebuah manifold invariant dikatakan manifold center jika x = Ax + f(x, y) y = By + g(x, y) (5) Dengan (x, y) R R jika memenuhi persamaan W () = {(x, y) R R y = h(x), x < δ, h() =, Dh() = } untuk δ cukup kecil Teorema (Wiggins [8]) Terdapat sebuah manifold center C untuk system (5). Keadaan dinamik dari system (5) dapat didekati oleh manifold center berikut u = Au + fu, h(u), u R (6) Untuk u cukup kecil yang diberikan oleh vektor lapangan berdimensi-c Bukti dapat dilihat pada Carr [1] Akibat selanjutnya menyatakan secara tidak langsung bahwa keadaan dinamik dari persamaan (6) mendekati u = menentukan keadaan dinamik dari system (5) mendekati (x, y) = (,) Teorema (Wiggins[8]) i. Andaikan solisi nol dari (6) adalah stabil (stabil asimtotis)(takstabil); maka solusi nol dari system (5) juga stabil (stabil asimtotis)(takstabil). ii. Andaikan solusi nol dari persamaan (6) adalah stabil. Maka, jika x(t), y(t) adalah solusi dari system (5) terdapat solusi u(t) dari persamaan (5) sedemikian sehingga untuk t x(t) = u(t) + O(e ), y(t) = hu(t) + O(e ), dengan y adalah suatu konstanta. Bukti dapat dilihat pada Carr [1] Secara lokal ( untuk u cukup kecil), manifold center dari sistem (4) mempunyai bentuk Yogyakarta, 9 November 213 MT - 9
4 W () = {(u, u, u, u, Q ): u = h (u, Q ), u = h (u, Q ), u = h (u, Q ), h (,) =, h (,) =, h (,) = h (,) =, h (,) =, h (,) = u u u Sehingga u = u u = u u = u Jika dimisalkan h (u, Q ) = a u + a u Q + a Q + O u Q h (u, Q ) = b u + b u Q + b Q + O u Q h (u, Q ) = c u + c u Q + c Q + O u Q Dengan mensubstitusikan h, h, h ke persamaan (7a), (7b), (7c). selanjutnya koefisien koefisien dari Q, Q u, dan u disamakan dengan koefisien koefisien dari u, u, u pada persamaan (4) maka i. untuk koefisien Q didapatkan a = b c = b c = ii. untuk koefisien Q u didapatkan a = b c = b c = iii. untuk koefisien u didapatkan a = b c = b c = Berdasarkan hasil diatas, didapat a = a = b = b = c = c =, a = , b = , dan c = Subtitusikan nilai nilai tersebut ke dalam persamaan h, h, h sehingga didapat u = h (u, Q ) = u Q + O u Q u = h (u, Q ) = u Q + O u Q u = h (u, Q ) = u Q + O u Q Selanjutnya mensubstitusikan persamaan (8a), (8b), (8c) ke dalam bentuk u pada persamaan (4) didapat u = μ (Q )u μ (Q )u dengan μ (Q ) = Q ( Q ) μ (Q ) = e ( Q ) (7a) (7b) (7b) (8a) (8b) (8c) Yogyakarta, 9 November 213 MT - 1
5 Untuk Q =, didapat μ (Q ) = dan μ (Q ), berarti ada daerah Q R yang cukup kecil yaitu Q < δ. dengan δ adalah bilangan positif kecil sedemikian sehingga μ (Q ) Q ( δ, δ) Misal θ = μ (Q )τ = μ (Q ) dengan Q cukup kecil, maka u = du dθ dθ dτ = μ (Q ) du dθ Untuk Q cukup kecil, jika Q < maka μ (Q ) < dan μ (Q ) >. Jika Q > maka μ (Q ) > dan μ (Q ) <, dan untuk Q = didapatkan μ () = dan μ () sehingga dengan μ = ( ) = μu u (9) dan μ() = Persamaan (9) merupakan bentuk normal dari sebuah sistem yang mengalami bifurkasi pitchfork (dapat dilihat di Perko[7]). u μ Diagram Bifurkasi Pitchfork e. Interpretasi Hasil Pada sistem flutter sayap pesawat ini, variabel k adalah tingkat kekakuan linier sayap pesawat, sedangkan Q adalah kecepatan angin yang tergeneralisasi (kecepatan angin ditambah kecepatan pesawat). Untuk nilai paramater k =,819668, titik ekuilibrium u = menalami bifurkasi pitchfork superkritikal terjadi pada saat Q = Titik ekuilibrium u = diartikan sebagai posisi normal sayap pesawat pada saat diam. Pada saat Q < ( kecepatan angin ditambah dengan kecepatan pesawat kurang dari satuan kecepatan angin), titik ekuilibrium u = stabil sehingga dapat dimaksudkan sayap pesawat stabil ( dapat kembali ke posisi normal walaupun ada gangguan). Sedangkan jika Q > ( kecepatan angin ditambah dengan kecepatan pesawat lebih dari satuan kecepatan angin), titik ekuilibrium u = tidak stabil atau posisi sayap pesawat bukan lagi merupakan titik yang stabil. Hal ini dimaksudkan setiap kali pesawat kembali ke posisi normal akan kembali terdorong lagi menjauhi posisi normal. Hal ini akan terjadi terus menerus dan geraknya akan semakin cepat. Kondisi seperti ini yang menyebabkan sayap pesawat patah. C. SIMPULAN Berdasarkan pengaruh parameter Q menunjukkan bahwa bifurkasi pitchfork superkritikal terjadi pada sistem flutter di titik ekuilibrium u = (,,, ) yang merupakan titik asal pada saat parameter kecepatan udara tergeneralisasi (Q) bernilai Yogyakarta, 9 November 213 MT - 11
6 D. DAFTAR PUSTAKA Carr, J Application of Center Manifold Theory. Springer-Verlag: New York, Heidelberg,Berlin. Chen, Y.M dan Liu, J.K. Supercritical as well as subcritical Hopf bifurcationin nonlinear flutter system. Jurnal Applied Mathematics and Mechanics-Engl. Ed., 28, 29(2): DOI 1.17/s x. FariduzzamanFluttw2d : A Software Tool For Flutter Prediction On Airplane Wings. Artikel 221 LITBANG,. (22). Hlm Hollmann, M Modern Aerodinamic Flutter Analisis. Building S Monterey: California. Liu L., Wong, Y.S, dan Lee, B.H.K. Application of the center manifoldtheory in nonlinear aeroelasticity. J Sound Vib, 2.234(4): Novi Andria. Analisis flutter sirip roket balistik rx-42 dengan Melibatkan modus gerak kaku struktur roket. Jurnal Universitas Indonesia, 211. Hlm Perko, Lawrence. 2. Differential Equations and Dynamical Sistem. Springer-Verlag: New York. Wiggins, S.199. Intoduction to Applied Nonlinear Dynamical System and Chaos. Springer-Verlag: New York. Yang, Y.R. KBM method of analyzing limit cycle flutter of a wing an external store and comparison with wind tunnel test. J Sound Vib, 1995, 187(2) Yogyakarta, 9 November 213 MT - 12
SISTEM FLUTTER PADA SAYAP PESAWAT TERBANG
SISTEM FLUTTER PADA SAYAP PESAWAT TERBANG SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana
BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya
BAB II KAJIAN TEORI 2.1 Persamaan Diferensial Persamaan diferensial sangat penting dalam pemodelan matematika khususnya untuk pemodelan yang membutuhkan solusi dari sebuah permasalahan. Pemodelan matematika
Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk
BAB I PENDAHULUAN 1.1 Latar Belakang Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk memeriksa kelakuan sistem dinamik kompleks, biasanya dengan menggunakan persamaan diferensial
T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf
T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf Rubono Setiawan Prodi Pendidikan Matematika, F.KIP
BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan
BAB II LANDASAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan matematika, teorema Taylor, nilai eigen,
BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan
BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai nilai eigen dan vektor eigen, sistem dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan sistem dinamik, kriteria Routh-Hurwitz,
BIFURKASI DARI HASIL MODIFIKASI SISTEM PERSAMAAN LORENZ
Jurnal Matematika Murni dan Terapan Vol. 6 No. Juni : - 8 BIFURKASI DARI HASIL MODIFIKASI SISTEM PERSAMAAN LOREN Faisal PS Matematika FMIPA Universitas Lambung Mangkurat Jl. Jend. A. ani km. 6 Kampus Unlam
BIFURKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKRET
Vol. 5, No., Juni 009: 54-60 BIFUKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKET ubono Setiawan Mahasiswa S Jurusan Matematika Universitas Gadah Mada Email : [email protected] Abstrak Di
Penentuan Kestabilan Sistem Hibrid melalui Trayektorinya pada Bidang. Oleh:
Penentuan Kestabilan Sistem Hibrid melalui Trayektorinya pada Bidang Sistem hibrid mempunyai bentuk: x& Oleh: Kus Prihantoso Krisnawan Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta
BENTUK NORMAL BIFURKASI HOPF PADA SISTEM UMUM DUA DIMENSI
Jurnal Matematika UNAND Vol. 5 No. 3 Hal. 15 23 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BENTUK NORMAL BIFURKASI HOPF PADA SISTEM UMUM DUA DIMENSI MELA PUSPITA Program Studi Matematika, Fakultas
MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK
SEMIRATA MIPAnet 2017 24-26 Agustus 2017 UNSRAT, Manado MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK HASAN S. PANIGORO 1, EMLI RAHMI 2 1 Universitas
ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR SKRIPSI
ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan
Penentuan Bifurkasi Hopf Pada Predator Prey
J. Math. and Its Appl. ISSN: 9-65X Vol., No., Nov 5, 5 Penentuan Bifurkasi Hopf Pada Predator Prey Dian Savitri Jurusan Teknik Sipil, Fakultas Teknik Universitas Negeri Surabaya d [email protected] Abstrak
BAB II TINJAUAN PUSTAKA
7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan
ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR
Jurnal Euler, ISSN: 2087-9393 Januari 2014, Vol.2, No.1, Hal.1-12 ANALISIS DINAMIK SISTEM PREDATOR-PREY MODEL LESLIE-GOWER DENGAN PEMANENAN SECARA KONSTAN TERHADAP PREDATOR Hasan S. Panigoro 1 Diterima:
Abstrak: Makalah ini bertujuan untuk mengkaji model SIR dari penyebaran
ANALISIS KESTABILAN PENYEBARAN PENYAKIT CAMPAK (MEASLES) DENGAN VAKSINASI MENGGUNAKAN MODEL ENDEMI SIR Marhendra Ali Kurniawan Fitriana Yuli S, M.Si Jurdik Matematika FMIPA UNY Abstrak: Makalah ini bertujuan
ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR Lia Listyana 1, Dr. Hartono 2, dan Kus Prihantoso Krisnawan,M.
1 Abstrak ANALISIS BIFURKASI PADA MODEL MATEMATIS PREDATOR PREY DENGAN DUA PREDATOR Lia Listyana 1, Dr. Hartono 2, Kus Prihantoso Krisnawan,M.Si 3 1 Mahasiswa Jurusan Pendidikan Matematika, Universitas
BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Pada bagian ini, akan dibahas system predator-prey dengan respon fungsi tak
BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bagian ini, akan dibahas system predator-prey dengan respon fungsi tak monoton, titik ekuilibrium, pelinieran, analisa kestabilan titik ekuilibriumnya dengan
BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II
BIFURKASI HOPF PADA SISTEM PREDATOR PREY DENGAN FUNGSI RESPON TIPE II SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan
BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI
BIFURKASI TRANSKRITIKAL PADA SISTEM DINAMIK SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memperoleh gelar
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sistem dinamik merupakan formalisasi Matematika untuk menggambarkan konsep-konsep ilmiah dari proses deterministik yang bergantung terhadap waktu (Kuznetsov,
BIFURKASI PITCHFORK PADA SISTEM DINAMIK DIMENSI-n SKRIPSI
BIFURKASI PITCHFORK PADA SISTEM DINAMIK DIMENSI-n SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memperoleh
SIFAT-SIFAT DINAMIK DARI MODEL INTERAKSI CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN
Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 50 55 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SIFAT-SIFAT DINAMIK DARI MODEL INTERAKSI CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN AIDA BETARIA Program
BIFURKASI HOPF PADA MODEL SILKUS BISNIS KALDOR-KALECKI TANPA WAKTU TUNDA
BIFURKASI HOPF PADA MODEL SILKUS BISNIS KALDOR-KALECKI TANPA WAKTU TUNDA NURRACHMAWATI 1) DAN A. KUSNANTO 2) 1) Mahasiswa Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut
BAB I PENDAHULUAN. hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau
1 BAB I PENDAHULUAN A. LATAR BELAKANG Setiap mahluk hidup dituntut untuk senantiasa berinteraksi dengan mahluk hidup lainnya. Interaksi yang terjadi antara individu dalam satu spesies atau interaksi antara
PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 135-142 PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS Marisa Effendi,
Teori Bifurkasi (3 SKS)
Teori Bifurkasi (3 SKS) Department of Mathematics Faculty of Mathematics and Natural Sciences Gadjah Mada University E-mail : [email protected] Sistem Dinamik PENGERTIAN UMUM : - Formalisasi matematika
BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data
A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:
BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi
BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi
Karena v merupakan vektor bukan nol, maka A Iλ = 0. Dengan kata lain, Persamaan (2.2) dapat dipenuhi jika dan hanya jika,
BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema dari nilai eigen, vektor eigen, dan diagonalisasi, sistem persamaan differensial, model predator prey lotka-voltera,
BAB I PENDAHULUAN. disebut dengan sistem dinamik kontinu dan sistem dinamik yang. menggunakan waktu diskrit disebut dengan sistem dinamik diskrit.
BAB I PENDAHULUAN A. Latar Belakang Masalah Sistem dinamik dapat dipandang sebagai suatu sistem yang bergantung terhadap waktu. Sistem dinamik yang menggunakan waktu kontinu disebut dengan sistem dinamik
BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.
BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa
BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik
BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud
MODEL NON LINEAR PENYAKIT DIABETES. Aminah Ekawati 1 dan Lina Aryati 2 ABSTRAK ABSTRACT
MODEL NON LINEAR PENYAKIT DIABETES Aminah Ekawati 1 dan Lina Aryati 2 1 Kopertis Wilayah XI 2 Program Studi Matematika FMIPA UGM ABSTRAK Model matematika penyakit diabetes yang dibentuk berupa persamaan
BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI
BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI Yolpin Durahim 1 Novianita Achmad Hasan S. Panigoro Diterima: xx xxxx 20xx, Disetujui: xx xxxx 20xx o Abstrak Dalam
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial merupakan persamaan yang melibatkan turunanturunan dari fungsi yang tidak diketahui (Waluya, 2006). Contoh 2.1 : Diberikan persamaan
Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami
Penerapan Teknik Serangga Steril Dengan Model Logistik Dalam Pemberantasan Nyamuk Aedes Aegypti Nida Sri Utami Program Studi Pendidikan Matematika FKIP UMS Lina Aryati Jurusan Matematika FMIPA UGM ABSTRAK
Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov
Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov Yuni Yulida 1, Faisal 2, Muhammad Ahsar K. 3 1,2,3 Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend.
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN Pada Bab I Pendahuluan ini dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah
KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSPECTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI
KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSPECTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI Mohammad soleh 1, Leni Darlina 2 1,2 Jurusan Matematika Fakultas Sains Teknologi Universitas Islam
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Chemostat atau disebut juga bioreaktor adalah suatu alat laboratorium (fermentor) untuk budidaya mikroorganisme[18]. Alat tersebut disusun sedemikian rupa
Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi
Seminar Matematika dan Pendidikan Matematika UNY 2017 Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi Sischa Wahyuning Tyas 1, Dwi Lestari 2 Universitas Negeri Yogyakarta 1 Universitas
ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR
ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR Oleh: Drs. M. Setijo Winarko, M.Si Drs. I Gusti Ngurah Rai Usadha, M.Si Subchan, Ph.D Drs. Kamiran, M.Si Noveria
Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa
Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk asus Pemangsa Tergantung Sebagian pada Mangsa Ipah Junaedi 1, a), Diny Zulkarnaen 2, b) 3, c), dan Siti Julaeha 1, 2, 3 Jurusan Matematika,
ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR
TUGAS AKHIR ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR ( S TA B I L I T Y A N A LY S I S O F A P R E D AT O R - P R E Y M O D E L W I T H I N F E C T
BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta
BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema
Penerapan Metode Multiple Scales untuk Masalah Galloping pada DuaSpans Kabel Transmisi
Penerapan Metode Multiple Scales untuk Masalah Galloping pada DuaSpans Kabel Transmisi Eristia Arfi 1 1 Prodi Matematika terapan Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim
T 3 Model Dinamika Sel Tumor Dengan Terapi Pengobatan Menggunakan Virus Oncolytic
T 3 Model Dinamika Sel Tumor Dengan Terapi Pengobatan Menggunakan Virus Oncolytic Oleh : Ali Kusnanto, Hikmah Rahmah, Endar H. Nugrahani Departemen Matematika FMIPA-IPB Email : [email protected] Abstrak
ANALISIS KESTABILAN SISTEM GERAK PESAWAT TERBANG DENGAN MENGGUNAKAN METODE NILAI EIGEN DAN ROUTH - HURWITZ (*) ABSTRAK
ISBN : 978-979-7763-3- ANALISIS KESTABILAN SISTEM GERAK PESAWAT TERBANG DENGAN MENGGUNAKAN METODE NILAI EIGEN DAN ROUTH - HURWITZ (*) Oleh Ahmadin Departemen Matematika, Fakultas Sains dan Teknologi, Universitas
Analisis Kestabilan dan Bifurkasi Solusi Sistem Autoparametrik dengan Osilator Tipe Rayleigh
J. Math. and Its Appl. ISSN: 89-605X Vol., No., Nov 005, 8 9 Analisis Kestabilan dan Bifurkasi Solusi Sistem Autoparametrik dengan Osilator Tipe Rayleigh Abadi Jurusan Matematika UNESA Universitas Negeri
METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT
METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika
ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG
Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 235-244 ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG Hidayu Sulisti, Evi Noviani, Nilamsari Kusumastuti
Mursyidah Pratiwi, Yuni Yulida*, Faisal Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat *
Jurnal Matematika Murni an Terapan εpsilon ANALISIS MODEL PREDATOR-PREY TERHADAP EFEK PERPINDAHAN PREDASI PADA SPESIES PREY YANG BERJUMLAH BESAR DENGAN ADANYA PERTAHANAN KELOMPOK Mursyiah Pratiwi, Yuni
OBSERVER UNTUK SISTEM KONTROL LINIER KONTINU
Jurnal Matematika UNAND Vol 5 No 1 Hal 96 12 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND OBSERVER UNTUK SISTEM KONTROL LINIER KONTINU SUKMA HAYATI, ZULAKMAL Program Studi Matematika, Fakultas Matematika
PERBANDINGAN SOLUSI MODEL GERAK ROKET DENGAN METODE RUNGE-KUTTA DAN ADAM- BASHFORD
Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 376 PERBANDINGAN SOLUSI MODEL GERAK ROKET DENGAN METODE RUNGE-KUTTA DAN ADAM- BASHFORD KUSBUDIONO 1, KOSALA DWIDJA PURNOMO 2,
PEMODELAN MATEMATIKA PENYEBARAN PENYAKIT VIRUS EBOLA DAN ANALISIS PENGARUH PARAMETER LAJU TRANSMISI TERHADAP PERILAKU DINAMISNYA TUGAS AKHIR SKRIPSI
PEMODELAN MATEMATIKA PENYEBARAN PENYAKIT VIRUS EBOLA DAN ANALISIS PENGARUH PARAMETER LAJU TRANSMISI TERHADAP PERILAKU DINAMISNYA TUGAS AKHIR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan
ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 163-172 ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA Auliah Arfani, Nilamsari Kusumastuti, Shantika
BARISAN HINGGA BIFURKASI PERIOD-DOUBLING PADA INTERAKSI NONLINEAR SEPASANG OSILATOR TESIS. Karya Tulis sebagai Salah Satu Syarat
BARISAN HINGGA BIFURKASI PERIOD-DOUBLING PADA INTERAKSI NONLINEAR SEPASANG OSILATOR TESIS Karya Tulis sebagai Salah Satu Syarat untuk Memperoleh Gelar Magister Matematika Institut Teknologi Bandung Oleh
II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:
5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi
ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER)
Jurnal Euclid, Vol.4, No.1, pp.646 ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER) Herri Sulaiman Program Studi Pendidikan Matematika
Bab II Teori Pendukung
Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu
Syarat Cukup Osilasi Persamaan Diferensial Linier Homogen Orde Dua Dengan Redaman
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 T - 10 Syarat Cukup Osilasi Persamaan Diferensial Linier Homogen Orde Dua Dengan Redaman Maulana Malik, Sri Mardiyati Departemen Matematika
MODEL DINAMIKA CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN
Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 96 103 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND MODEL DINAMIKA CINTA DENGAN MEMPERHATIKAN DAYA TARIK PASANGAN SUCI RAHMA NURA, MAHDHIVAN SYAFWAN Program
Eksistensi dan Kestabilan Model SIR dengan Nonlinear Insidence Rate
LEMMA VOL NO NOV 04 Eksistensi dan Kestabilan Model R dengan Nonlinear nsidence Rate Mohammad oleh ) dan Riry riningsih ) ) Jurusan Matematika Fakultas ains dan Teknologi UN uska Riau ) Jurusan Matematika
Jurnal Euclid, vol.3, No.2, p.501 MODEL MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI MANUSIA
Jurnal Euclid, vol.3, No.2, p.501 MODEL MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI MANUSIA Dian Permana Putri 1, Herri Sulaiman 2 FKIP, Pendidikan Matematika, Universitas
Analisis Bifurkasi Pitchfork pada Sistem Interaksi Non Linier Sepasang Osilator Melalui Metode Menifold Center
Jurnal Euler, ISSN: 2087-9393 Januari 2012, Vol.1, No.1, Hal.35-49 Analisis Bifurkasi Pitchfork pada Sistem Interaksi Non Linier Sepasang Osilator Melalui Metode Menifold Center Wahnin Tangahu 1 Abstrak
MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI
MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI Mohammmad Soleh 1, Siti Rahma 2 Universitas Islam Negeri Sultan Syarif Kasim Riau Jl HR Soebrantas No 155 KM 15 Simpang Baru Panam Pekanbaru muhammadsoleh@uin-suskaacid
BAB 3 DINAMIKA STRUKTUR
BAB 3 DINAMIKA STRUKTUR Gerakan dari struktur terapung akan dipengaruhi oleh keadaan sekitarnya, dimana terdapat gaya gaya luar yang bekerja pada struktur dan akan menimbulkan gerakan pada struktur. Untuk
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas tinjauan pustaka yang akan digunakan untuk tesis ini, yang selanjutnya akan di perlukan pada Bab 3. Tinjauan pustaka yang dibahas adalah mengenai yang mendukung
KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSCEPTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI TUGAS AKHIR
KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSCEPTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI TUGAS AKHIR Disusun sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika
ANALISA KESTABILAN PERSAMAAN GERAK ROKET TIGA DIMENSI TIPE RKX- 200 LAPAN DAN SIMULASINYA
ANALISA KESTABILAN PERSAMAAN GERAK ROKET TIGA DIMENSI TIPE RKX- 200 LAPAN DAN SIMULASINYA MOHAMMAD RIFA I 1208100703 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI
BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI
BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta
SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH. Jurusan Matematika FMIPA UT ABSTRAK
SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH Sugimin Jurusan Matematika FMIPA UT [email protected] ABSTRAK Suatu persamaan vektor berbentuk x & = f (x dengan variabel bebas t yang tidak dinyatakan
PERILAKU TEGANGAN SISTEM EKSITASI GENERATOR DENGAN METODA PENEMPATAN KUTUB DALAM DOMAIN WAKTU
PERILAKU TEGANGAN SISTEM EKSITASI GENERATOR DENGAN METODA PENEMPATAN KUTUB DALAM DOMAIN WAKTU Heru Dibyo Laksono 1, Noris Fredi Yulianto 2 Jurusan Teknik Elektro, Universitas Andalas Email : [email protected]
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI. Sistem Pendulum Terbalik Dalam penelitian ini diperhatikan sistem pendulum terbalik seperti pada Gambar di mana sebuah pendulum terbalik dimuat dalam motor yang bisa digerakkan.
MODEL PERSAMAAN DIFERENSIAL PADA INTERAKSI DUA POPULASI
MODEL PERSAMAAN DIFERENSIAL PADA INTERAKSI DUA POPULASI Supandi, Saifan Sidiq Abdullah Fakultas PMIPATI Universitas PGRI Semarang [email protected] Abstrak Persaingan kehidupan di alam dapat dikategorikan
STABILISASI SISTEM KONTROL LINIER DENGAN PENEMPATAN NILAI EIGEN
Jurnal Matematika UNAND Vol 2 No 3 Hal 126 133 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND STABILISASI SISTEM KONTROL LINIER DENGAN PENEMPATAN NILAI EIGEN FAURI Program Studi Matematika, Fakultas
ANALISIS STABILITAS PENYEBARAN VIRUS EBOLA PADA MANUSIA
ANALISIS STABILITAS PENYEBARAN VIRUS EBOLA PADA MANUSIA Mutholafatul Alim 1), Ari Kusumastuti 2) 1) Mahasiswa Jurusan Matematika, Universitas Islam Negeri Maulana Malik Ibrahim Malang 1) [email protected]
BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO
BAB 4 MODEL DINAMIKA NEURON FITZHUGH-NAGUMO 4.1 Model Dinamika Neuron Fitzhugh-Nagumo Dalam papernya pada tahun 1961, Fitzhugh mengusulkan untuk menerangkan model Hodgkin-Huxley menjadi lebih umum, yang
BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan
BAB II KAJIAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi
IV. HASIL DAN PEMBAHASAN. 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa. Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup
IV. HASIL DAN PEMBAHASAN 4.1 Asumsi yang digunakan dalam sistem mangsa-pemangsa Dimisalkan suatu habitat dimana spesies mangsa dan pemangsa hidup berdampingan. Diasumsikan habitat ini dibagi menjadi dua
PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG
PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG Dinita Rahmalia Universitas Islam Darul Ulum Lamongan, Abstrak. Di Indonesia terdapat banyak peternak unggas sebagai matapencaharian
Oleh Nara Riatul Kasanah Dosen Pembimbing Drs. Sri Suprapti H., M.Si
Oleh Nara Riatul Kasanah 1209100079 Dosen Pembimbing Drs. Sri Suprapti H., M.Si JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 PENDAHULUAN
II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)]
II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] Suatu sistem persamaan diferensial dinyatakan sebagai berikut: A adalah matriks koefisien konstan
BIFURKASI HOPF MODEL MANGSA-PEMANGSA DENGAN WAKTU TUNDA NI NYOMAN SURYANI
BIFURKASI HOPF MODEL MANGSA-PEMANGSA DENGAN WAKTU TUNDA NI NYOMAN SURYANI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI SKRIPSI
Unnes Journal of Mathematics SOLUSI SISTEM OSILASI DUA DERAJAT KEBEBASAN PADA RANGKAIAN PEGAS GANDENG DENGAN PEREDAM DAN GAYA LUAR
UJM 3 (1) (2014) Unnes Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm SOLUSI SISTEM OSILASI DUA DERAJAT KEBEBASAN PADA RANGKAIAN PEGAS GANDENG DENGAN PEREDAM DAN GAYA LUAR Zumrotul
Kestabilan Titik Ekuilibrium Model SIS dengan Pertumbuhan Logistik dan Migrasi
Kestabilan Titik Ekuilibrium Model SIS dengan Pertumbuhan Logistik Migrasi Mohammad soleh 1, Parubahan Siregar 2 1,2 Jurusan Matematika Fakultas Sains Teknologi Universitas Islam Negeri Sultan Syarif Kasim
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK
BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan
II. TINJAUAN PUSTAKA. Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al.,
II. TINJAUAN PUSTAKA 2.1 Sistem Dinamik Sistem dinamik adalah sistem yang berubah dari waktu ke waktu (Farlow,et al., 2002). Salah satu tujuan utama dari sistem dinamik adalah mempelajari perilaku dari
Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan
Prosiding Matematika ISSN: 2460-6464 Simulasi Kestabilan Model Predator Prey Tipe Holling II dengan Faktor Pemanenan 1 Ai Yeni, 2 Gani Gunawan, 3 Icih Sukarsih 1,2,3 Prodi Matematika, Fakultas Matematika
BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL
BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu
BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU
BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus
BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II
BIFURKASI HOPF PADA MODIFIKASI MODEL PREDATOR-PREY LESLIE GOWER DENGAN FUNGSI RESPON HOLLING TIPE II skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika
MODEL PELATIHAN ULANG (RETRAINING) PEKERJA PADA SUATU PERUSAHAAN BERDASARKAN PENILAIAN REKAN KERJA
ISSN: 288-687X 13 ODEL PELATIHAN ULANG (RETRAINING) PEERJA PADA SUATU PERUSAHAAN BERDASARAN PENILAIAN REAN ERJA Dwi Lestari Jurusan Pendidikan atematika FIPA Universitas Negeri Yogyakarta E-mail: [email protected]
BAB 4 MODEL RUANG KEADAAN (STATE SPACE)
BAB 4 MODEL RUANG KEADAAN (STATE SPACE) KOMPETENSI Kemampuan untuk menjelaskan pengertian tentang state space, menentukan nisbah alih hubungannya dengan persamaan ruang keadaan dan Mengembangkan analisis
Kestabilan Model SIRS dengan Pertumbuhan Logistik dan Non-monotone Incidence Rate
Kestabilan Model SIRS dengan Pertumbuhan Logistik dan Non-monotone Incidence Rate Mohammad soleh 1, Syamsuri 2 1,2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau Jln. HR. Soebrantas Km
SISTEM DINAMIK LINEAR KOEFISIEN KONSTAN. Caturiyati Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta (UNY)
1 SISTEM DINAMIK LINEAR KOEFISIEN KONSTAN Caturiyati Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta (UNY) Abstrak Dalam artikel ini, konsep sistem dinamik linear disajikan dengan sistem
I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.
I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk
BAB I PENDAHULUAN A. Latar Belakang
BAB I PENDAHULUAN A. Latar Belakang Dalam kehidupan setiap makhluk hidup tidak dapat terlepas dengan yang namanya interaksi. Interaksi merupakan suatu jenis tindakan yang terjadi ketika dua atau lebih
ANALISIS MODEL DENYUT JANTUNG DENGAN MENGGUNAKAN TEORI BIFURKASI
ANALISIS MODEL DENYUT JANTUNG DENGAN MENGGUNAKAN TEORI BIFURKASI Herlina D. Tendean ), Hanna A. Parhusip ), Bambang Susanto ) ) Mahasiswa Program Studi Matematika FSM UKSW ) Dosen Program Studi Matematika
