ERROR DALAM NUMERIK. Pertemuan Ke-2 Metode Numerik
|
|
|
- Ridwan Sugiarto
- 9 tahun lalu
- Tontonan:
Transkripsi
1 ERROR DALAM NUMERIK Pertemuan Ke-2 Metode Numerk
2 Tujuan Untuk memaham pengertan Error Untuk lebh memaham notas dan teknk dalam matakulah n
3 Approksmas dan Sgnkans 4 sgncant gures ,500? condence sgncant gures sgncant gures sgncant gures
4 Akuras dan Press Akuras : seberapa dekat nla yang dkomputas atau nla yang dukur dengan nla sebenarnya. Press : seberapa dekat nla yang dkomputas atau dukur secara ndvdual dengan nla komputas atau nla ukur lannya. Jumlah nla yang sgncant Dstrbus dalam nla komputas atau nla ukur
5 Menngkatnya Press Akuras dan Press Menngkatnya akuras
6 Deens Error Error Numerk : Penggunaan aproksmas yang melambangkan operas matematk eact dan jumlah true value = appromaton + error error, e t =true value - appromaton subscrpt t represents the true error
7 Deens Error. e t true true error value 100 True relatve percent error
8 Contoh Suatu pengukuran memlk nla sesungguhnya m. Jka kamu melaporkan nla tersebut sebaga 7.92 m, maka jawablah pertanyaan d bawah n: 1. Berapa angka sgncant yang kamu pake? 2. Apakah tu true error? 3. Apakah tu relatve error?
9 Error dentons cont. May not know the true answer apror e a appromate error appromaton 100
10 Deens Error Relatve Error e a appromate error appromaton 100 Dperlukan teratve method untuk mencapa relatve error yang convergence.
11 Deens Error Relatve Error e a appromate error 100 appromaton Dperlukan teratve method untuk mencapa relatve error yang convergence. e a appromate error 100 appromaton present appro. present prevous appro. appro. 100
12 Deens Error Tdak dtentukan dengan tanda, tap tolerans Hasl adalah koreks n angka sgnkan
13 Error dentons cont. Tdak dtentukan dengan tanda, tap tolerans Hasl adalah koreks n angka sgnkan e e a s e s n %
14 Eample Consder a seres epanson to estmate trgonometrc unctons sn ! 5! 7! Estmate snp/ 2 to three sgncant gures
15 Deens Error Round o error - orgnate rom the act that computers retan only a ed number o sgncant gures Truncaton errors - errors that result rom usng an appromaton n place o an eact mathematcal procedure
16 Deens Error Round o error - orgnate rom the act that computers retan only a ed number o sgncant gures Truncaton errors - errors that result rom usng an appromaton n place o an eact mathematcal procedure To gan nsght consder the mathematcal ormulaton that s used wdely n numercal methods - TAYLOR SERIES
17 DERET TAYLOR Alat untuk mempredks nla ungs pada suatu ttk nla ungs tersebut dan juga ungs dervatnya pada ttk lannya. Zero order appromaton
18 DERET TAYLOR Alat untuk mempredks nla ungs pada suatu ttk nla ungs tersebut dan juga ungs dervatnya pada ttk lannya. Zero order appromaton 1 Ths s good the uncton s a constant.
19 { EKSPANSI DERET TAYLOR Frst order appromaton 1 ' 1 slope multpled by dstance
20 EKSPANSI DERET TAYLOR Frst order appromaton 1 ' 1 slope multpled by dstance Stll a straght lne but capable o predctng an ncrease or decrease - LINEAR
21 EKSPANSI DERET TAYLOR Second order appromaton - captures some o the curvature
22 EKSPANSI DERET TAYLOR Second order appromaton - captures some o the curvature ! '' '
23 EKSPANSI DERET TAYLOR n n n sze step h where R h n h h h ! 3! ''' 2! '' '
24 EKSPANSI DERET TAYLOR !! 3! ''' 2! '' ' n n n n n n h n R sze step h where R h n h h h
25 () CONTOH Use zero through ourth order Taylor seres epanson to appromate (1) gven (0) = 1.2 (.e. h = 1) Note: (1) =
26 Soluton n=0 (1) = 1.2 e t = abs [( )/0.2] 100 = 500% n=1 '() = '(0) = (1) = h = 0.95 e t =375%
27 Soluton n=2 "= "(0) = -1 (1) = 0.45 e t = 125% n=3 "'= "'(0)=-0.9 (1) = 0.3 e t =50%
28 Soluton n=4 ""(0) = -2.4 (1) = 0.2 EXACT Why does the ourth term gve us an eact soluton? The 5th dervatve s zero In general, nth order polynomal, we get an eact soluton wth an nth order Taylor seres
29 () Soluton True Soluton Zero Order 1st Order 2nd Order 3rd Order
30 Eam Queston How many sgncant gures are n the ollowng numbers? A B C D. 23,000,000 E
31 y Taylor Seres Problem Use zero- through ourth-order Taylor seres epansons to predct (4) or () = ln usng a base pont at = 2. Compute the percent relatve error e t or each appromaton
32 ''' '' h h 1 ' h 2! 3! n n h Rn n! where h step sze Determne the step sze h = 4-2 = 2 2. Determne the analytcal soluton (4) = ln(4) = Determne the dervatves or (2)
PERSAMAAN DIFERENSIAL BIASA
http://starto.sta.ugm.ac.d PERSAMAAN DIFERENSIAL BIASA Ordnar Derental Equatons ODE Persamaan Derensal Basa http://starto.sta.ugm.ac.d Acuan Chapra, S.C., Canale R.P., 990, Numercal Methods or Engneers,
TEORI KESALAHAN (GALAT)
TEORI KESALAHAN GALAT Penyelesaan numerk dar suatu persamaan matematk hanya memberkan nla perkraan yang mendekat nla eksak yang benar dar penyelesaan analts. Berart dalam penyelesaan numerk tersebut terdapat
Deret Taylor & Diferensial Numerik. Matematika Industri II
Deret Taylor & Derensal Numerk Matematka Industr II Maclaurn Power Seres Deret Maclaurn adalah penaksran polnom derajat tak hngga 0 0! 0 n n 0 n! Notce: Deret nnte tak hngga menyatakan bahwa akhrnya deret
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION) M E T O D E E U L E R M E T O D E R U N G E - K U T T A
PERSAMAAN DIFERENSIAL DIFFERENTIAL EQUATION M E T O D E E U L E R M E T O D E R U N G E - U T T A PERSAMAAN DIFERENSIAL Persamaan palng pentng dalam bdang reaasa palng bsa menjelasan apa ang terjad dalam
BAB 4 PERHITUNGAN NUMERIK
Mata kulah KOMPUTASI ELEKTRO BAB PERHITUNGAN NUMERIK. Kesalahan error Pada Penelesaan Numerk Penelesaan secara numers dar suatu persamaan matemats kadang-kadang hana memberkan nla perkraan ang mendekat
Pertemuan ke-4 Analisa Terapan: Metode Numerik. 4 Oktober 2012
Pertemuan ke-4 Analsa Terapan: Metode Numerk 4 Oktober Persamaan Non Non--Lner: Metode NewtonNewton-Raphson Dr.Eng. Agus S. Muntohar Metode Newton Newton--Raphson f( f( f( + [, f(] + = α + + f( f ( Gambar
Analisis Regresi 2. Mendeteksi pencilan dan penanganannya
Analss Regres Pokok Bahasan : Mendeteks penclan dan penanganannya TUJUAN INSTRUKSIONAL KHUSUS : Mahasswa dapat mendeteks adanya penclan pada regres lner berganda Penclan Penclan adalah pengamatan yang
PENENTUAN KOEFISIEN MULTIPLE REGRESI DENGAN MENGGUNAKAN METODE LINIER PROGRAMMING
PENENTUAN KOEFISIEN MULTIPLE REGRESI DENGAN MENGGUNAKAN METODE LINIER PROGRAMMING SKRIPSI RINA ASTRY GINTING 060823031 PROGRAM STUDI SARJANA MATEMATIKA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU
MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM
MEREDUKSI SISTEM PERSAMAAN LINEAR FUZZY PENUH DENGAN BILANGAN FUZZY TRAPESIUM Tut Susant, Mashad, Sukamto Mahasswa Program S Matematka Dosen Jurusan Matematka Fakultas Matematka dan Ilmu Pengetahuan Alam
PRAKTIKUM 6 Penyelesaian Persamaan Non Linier Metode Newton Raphson Dengan Modifikasi Tabel
PRAKTIKUM 6 Penyelesaan Persamaan Non Lner Metode Newton Raphson Dengan Modfkas Tabel Tujuan : Mempelajar metode Newton Raphson dengan modfkas tabel untuk penyelesaan persamaan non lner Dasar Teor : Permasalahan
PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan
Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah
ANALISIS REGRESI REGRESI NONLINEAR REGRESI LINEAR REGRESI KUADRATIK REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUBIK
REGRESI NON LINIER ANALISIS REGRESI REGRESI LINEAR REGRESI NONLINEAR REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUADRATIK REGRESI KUBIK Membentuk gars lurus Membentuk Gars Lengkung Regres
Pemilihan Lokasi Kontinyu (1)
Pemlhan Lokas Kontnu 1 - Model Dasar - 6 Oleh : Debrna Puspta Andran Teknk Industr, Unverstas Brawjaa e-mal : [email protected] www.debrna.lecture.ub.ac.d Medan method Gravt method Contour-Lne method Weszfeld
SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA
ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA FI-500 Mekanka Statstk SEMESTER/ Sem. - 06/07 PR#4 : Dstrbus bose Ensten dan nteraks kuat Kumpulkan d Selasa 9 Aprl
SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN
SOLUSI SISTEM PERSAMAAN DIFERENSIAL PARSIAL DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI DAN METODE DEKOMPOSISI ADOMIAN Ita Rahmadayan 1, Syamsudhuha 2, Asmara Karma 2 1 Mahasswa Program Stud S1 Matematka
PEMAHAMAN METODE NUMERIK MENGGUNAKAN PEMPROGRMAN MATLAB (Studi Kasus : Metode Secant)
PEMAHAMAN METODE NUMERIK MENGGUNAKAN PEMPROGRMAN MATLAB (Stud Kasus : Metode Secant) Melda panjatan STMIK Bud Darma, Jln.SM.Raja No.338 Sp.Lmun, Medan Sumatera Utara Jurusan Teknk Informatka e-mal : [email protected]
EFISIENSI DAN AKURASI GABUNGAN METODE FUNGSI WALSH DAN MULTIGRID UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL FREDHOLM LINEAR
EFISIENSI DAN AKURASI GABUNGAN METODE FUNGSI WALSH DAN MULTIGRID UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL FREDHOLM LINEAR Masduk Jurusan Penddkan Matematka FKIP UMS Abstrak. Penyelesaan persamaan ntegral
TEKNIK KOMPUTASI TEI 116/A. Jurusan Teknik Elektro dan Teknologi Informasi Universitas Gadjah Mada 2011
TEKNIK KOMPUTASI TEI 116/A Jurusan Teknik Elektro dan Teknologi Informasi Universitas Gadjah Mada 2011 Why teknik komputasi? Komputasi or computation comes from the word compute that is make a mathematical
Bab 2 AKAR-AKAR PERSAMAAN
Analsa Numerk Bahan Matrkulas Bab AKAR-AKAR PERSAMAAN Pada kulah n akan dpelajar beberapa metode untuk mencar akar-akar dar suatu persamaan yang kontnu. Untuk persamaan polnomal derajat, persamaannya dapat
ANALISIS BENTUK HUBUNGAN
ANALISIS BENTUK HUBUNGAN Analss Regres dan Korelas Analss regres dgunakan untuk mempelajar dan mengukur hubungan statstk yang terjad antara dua varbel atau lebh varabel. Varabel tersebut adalah varabel
Analisis Regresi Linear Sederhana
Analss Regres Lnear Sederhana Al Muhson Pendahuluan Menggunakan metode statstk berdasarkan data yang lalu untuk mempredks konds yang akan datang Menggunakan pengalaman, pernyataan ahl dan surve untuk mempredks
KONSEP DASAR. Latar belakang Metode Numerik Ilustrasi masalah numerik Angka signifikan Akurasi dan Presisi Pendekatan dan Kesalahan
KONSEP DASAR Laar belakang Meode Numerk Ilusras masalah numerk Angka sgnfkan Akuras dan Press Pendekaan dan Kesalahan Laar Belakang Meode Numerk Tdak semua permasalahan maemas dapa dselesakan dengan mudah,
BAB II DASAR TEORI DAN METODE
BAB II DASAR TEORI DAN METODE 2.1 Teknk Pengukuran Teknolog yang dapat dgunakan untuk mengukur konsentras sedmen tersuspens yatu mekank (trap sampler, bottle sampler), optk (optcal beam transmssometer,
BAB III HIPOTESIS DAN METODOLOGI PENELITIAN
BAB III HIPOTESIS DAN METODOLOGI PENELITIAN III.1 Hpotess Berdasarkan kerangka pemkran sebelumnya, maka dapat drumuskan hpotess sebaga berkut : H1 : ada beda sgnfkan antara sebelum dan setelah penerbtan
Pendugaan Parameter Regresi. Itasia & Y Angraini, Dep Statistika FMIPA - IPB
Pendugaan Parameter Regres Menduga gars regres Menduga gars regres lner sederhana = menduga parameter-parameter regres β 0 dan β 1 : Penduga parameter yang dhaslkan harus merupakan penduga yang bak Software
1-x. dimana dan dihubungkan oleh teorema Pythagoras.
`2. Menyelesaikan persamaan dengan satu variabel Contoh: Berdasarkan Hukum Archimedes, suatu benda padat yang lebih ringan daripada air dimasukkan ke dalam air, maka benda tersebut akan mengapung. Berat
III. METODE PENELITIAN. Penelitian ini merupakan penelitian pengembangan (Research and
III. METODE PENELITIAN A. Desan Peneltan Peneltan n merupakan peneltan pengembangan (Research and Development). Peneltan pengembangan yang dlakukan adalah untuk mengembangkan penuntun praktkum menjad LKS
Bab 3 Analisis Ralat. x2 x2 x. y=x 1 + x 2 (3.1) 3.1. Menaksir Ralat
Mater Kulah Ekspermen Fska Oleh : Drs. Ishaft, M.S. Program Stud Penddkan Fska Unverstas Ahmad Dahlan, 07 Bab 3 Analss Ralat 3.. Menaksr Ralat Msalna suatu besaran dhtung dar besaran terukur,,..., n. Jka
P n e j n a j d a u d a u l a a l n a n O pt p im i a m l a l P e P m e b m a b n a g n k g i k t Oleh Z r u iman
OTIMISASI enjadualan Optmal embangkt Oleh : Zurman Anthony, ST. MT Optmas pengrman daya lstrk Dmaksudkan untuk memperkecl jumlah keseluruhan baya operas dengan memperhtungkan rug-rug daya nyata pada saluran
Pendeteksian Data Pencilan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Diagnostik
Pendeteksan Data Penclan dan Pengamatan Berpengaruh pada Beberapa Kasus Data Menggunakan Metode Dagnostk Sally Indra 1, Dod Vonanda, Rry Srnngsh 3 1 Student of Mathematcs Department State Unversty of Padang,
PENYELESAIAN MASALAH PANAS BALIK (BACKWARD HEAT PROBLEM)
PENYELESAIAN MASALAH PANAS BALIK (BACKWARD HEAT PROBLEM) Rcha Agustnngsh, Drs. Lukman Hanaf, M.Sc. Jurusan Matematka, Fakultas MIPA, Insttut Teknolog Sepuluh Nopember (ITS) Jl. Aref Rahman Hakm, Surabaya
Peramalan Memprediksi peristiwa masa depan Biasanya memerlukan kebiasaan selama jangka waktu tertentu metode kualitatif
Bab 3-4 Peramalan Peramalan Memprediksi peristiwa masa depan Biasanya memerlukan kebiasaan selama jangka waktu tertentu metode kualitatif Berdasarkan metode yang subjektif Metode kuantitatif Berdasarkan
PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP
JMP : Volume 1 Nomor 2, Oktober 2009 PELABELAN TOTAL SISI TAK BERATURAN PADA GRAF GABUNGAN BIPARTIT LENGKAP Tryan dan Nken Larasat Fakultas Sans dan Teknk, Unverstas Jenderal Soedrman Purwokerto, Indonesa
BAB II TEORI ALIRAN DAYA
BAB II TEORI ALIRAN DAYA 2.1 UMUM Perhtungan alran daya merupakan suatu alat bantu yang sangat pentng untuk mengetahu konds operas sstem. Perhtungan alran daya pada tegangan, arus dan faktor daya d berbaga
BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Neli Sulastri 1 ABSTRACT
BEBERAPA METODE ITERASI ORDE TIGA DAN ORDE EMPAT UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Neli Sulastri 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
Menemukan Akar-akar Persamaan Non-Linear
Menemukan Akar-akar Persamaan Non-Linear Muhtadin, ST. MT. Agenda Metode Tertutup Biseksi Regula Falsi Metode Terbuka Newton Method 3 Solusi untuk Persamaan Non Linear Akar-akar dari persamaan (y = f())
BAB 2 LANDASAN TEORI
2 LNDSN TEORI 2. Teor engamblan Keputusan Menurut Supranto 99 keputusan adalah hasl pemecahan masalah yang dhadapnya dengan tegas. Suatu keputusan merupakan jawaban yang past terhadap suatu pertanyaan.
DISTRIBUSI FREKUENSI
BAB DISTRIBUSI FREKUENSI Kompetens Mampu membuat penyajan data dalam dstrbus frekuens Indkator 1. Menjelaskan dstrbus frekuens. Membuat dstrbus frekuens 3. Menjelaskan macam-macam dstrbus frekuens 4. Membuat
PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT
Teknikom : Vol. No. (27) E-ISSN : 2598-2958 PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya Utama,
BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE
BAB VIB METODE BELAJAR Delta rule, ADALINE (WIDROW- HOFF), MADALINE 6B.1 Pelathan ADALINE Model ADALINE (Adaptve Lnear Neuron) dtemukan oleh Wdrow & Hoff (1960) Arstekturnya mrp dengan perseptron Perbedaan
Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient
Teknikom : Vol. No. (27) ISSN : 2598-2958 (online) Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient Dewi Erla Mahmudah, Muhammad Zidny Naf an 2 STMIK Widya
BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri I Tibawa pada semester genap
5 BAB III METODOLOGI PENELITIAN 3. Lokas Dan Waktu Peneltan Peneltan n dlaksanakan d SMA Neger I Tbawa pada semester genap tahun ajaran 0/03. Peneltan n berlangsung selama ± bulan (Me,Jun) mula dar tahap
Preferensi untuk alternatif A i diberikan
Bahan Kulah : Topk Khusus Metode Weghted Product (WP) menggunakan perkalan untuk menghubungkan ratng atrbut, dmana ratng setap atrbut harus dpangkatkan dulu dengan bobot atrbut yang bersangkutan. Proses
BAB 2 LANDASAN TEORI. Universitas Sumatera Utara
BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang
Dependent VS independent variable
Kuswanto-2012 !" #!! $!! %! & '% Dependent VS independent variable Indep. Var. (X) Dep. Var (Y) Regression Equation Fertilizer doses Yield y = b0 + b1x Evaporation Rain fall y = b0+b1x+b2x 2 Sum of Leave
Model Potensial Gravitasi Hansen untuk Menentukan Pertumbuhan Populasi Daerah
Performa (2004) Vol. 3, No.1: 28-32 Model Potensal Gravtas Hansen untuk Menentukan Pertumbuhan Populas Daerah Bambang Suhard Jurusan Teknk Industr, Unverstas Sebelas Maret, Surakarta Abstract Gravtaton
Penerapan Metode Runge-Kutta Orde 4 dalam Analisis Rangkaian RLC
Penerapan Metode Runge-Kutta Orde 4 dalam Analss Rangkaan RLC Rka Favora Gusa JurusanTeknk Elektro,Fakultas Teknk,Unverstas Bangka Beltung [email protected] ABSTRACT The exstence of nductor and capactor
METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI ABSTRACT
METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI Amelia Riski, Putra. Supriadi 2, Agusni 2 Mahasiswa Program Studi S Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas
FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR. Nurul Khoiromi ABSTRACT
FAMILI BARU METODE ITERASI BERORDE TIGA UNTUK MENEMUKAN AKAR GANDA PERSAMAAN NONLINEAR Nurul Khoiromi Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau
LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR
TNR 1 space 1.15 LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR LAPORAN RESMI MODUL IV TNR 1 Space.0 ANALISIS
Metode Numerik & Lab. Muhtadin, ST. MT. Metode Numerik & Komputasi. By : Muhtadin
Metode Numerik & Lab Muhtadin, ST. MT. Agenda Intro Rencana Pembelajaran Ketentuan Penilaian Deret Taylor & McLaurin Analisis Galat Metode Numerik & Lab - Intro 3 Tujuan Pembelajaran Mahasiswa memiliki
Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg
Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg Numerical Analysis of Double Integral of Trigonometric Function Using Romberg Method ABSTRAK Umumnya penyelesaian integral
RAY RA TRA C TRA ING dan RADIOSITY
RAY TRACING dan RADIOSITY Revew : 3D Photorealsm Ketepatan pemodelan objek Proeks secara perspektf Efek pencahaaan ang natural kepada permukaan tampak: pantulan, transparans, tekstur, dan baangan Revew
III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMP Al-Azhar 3 Bandar Lampung yang terletak di
III. METODE PENELITIAN A. Populas dan Sampel Peneltan n dlaksanakan d SMP Al-Azhar 3 Bandar Lampung yang terletak d Jl. Gn. Tanggamus Raya Way Halm, kota Bandar Lampung. Populas dalam peneltan n adalah
Penyelesaian Masalah Transshipmen Dengan Metoda Primal-Dual Wawan Laksito YS 2)
ISSN : 69 7 Penyelesaan Masalah Transshpmen Dengan Metoda Prmal-Dual Wawan Laksto YS ) Abstrak Masalah Pemndahan Muatan adalah masalah transportas yang melbatkan sambungan yang harus dlewat. Obektnya adalah
Hukum Termodinamika ik ke-2. Hukum Termodinamika ke-1. Prinsip Carnot & Mesin Carnot. FI-1101: Termodinamika, Hal 1
ERMODINAMIKA Hukum ermodnamka ke-0 Hukum ermodnamka ke-1 Hukum ermodnamka k ke-2 Mesn Kalor Prnsp Carnot & Mesn Carnot FI-1101: ermodnamka, Hal 1 Kesetmbangan ermal & Hukum ermodnamka ke-0 Jka dua buah
REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear
REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana
PERANCANGAN PARAMETER DENGAN PENDEKATAN TAGUCHI UNTUK DATA DISKRIT
BIAStatstcs (05) Vol. 9, No., hal. -7 PERANCANGAN PARAMETER DENGAN PENDEKATAN TAGUCHI UNTUK DATA DISKRIT Faula Arna Jurusan Teknk Industr, Unverstas Sultan Ageng Trtayasa Banten Emal : [email protected]
BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.
BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan
RANGKAIAN SERI. 1. Pendahuluan
. Pendahuluan ANGKAIAN SEI Dua elemen dkatakan terhubung ser jka : a. Kedua elemen hanya mempunya satu termnal bersama. b. Ttk bersama antara elemen tdak terhubung ke elemen yang lan. Pada Gambar resstor
Dua cara melakukan proyeksi risiko : 1. Probabilitas di mana risiko adalah nyata 2. Konsekuensi masalah yang berhubungan dengan risiko
PROYEKSI RISIKO / PERKIRAAN RISIKO Dua cara melakukan proyeks rsko : 1. Probabltas d mana rsko adalah nyata 2. Konsekuens masalah yang berhubungan dengan rsko Perencanaan proyek bersama dengan manajer
Perhitungan Kapasitas Kanal Pada Sistem CDMA. Arif Hidayat ST
Perhitungan Kapasitas Kanal Pada Sistem CDMA Arif Hidayat ST Overview System CDMA Kapasitas System CDMA tergantung dari bayaknya interferensi dari system tersebut Untuk memaksimalkan kapasitas dari system
PERANCANGAN JARINGAN AKSES KABEL (DTG3E3)
PERCG JRIG KSES KBEL (DTG3E3) Dsusun Oleh : Hafdudn,ST.,MT. (HFD) Rohmat Tulloh, ST.,MT (RMT) Prod D3 Teknk Telekomunkas Fakultas Ilmu Terapan Unverstas Telkom 015 Peramalan Trafk Peramalan Trafk Peramalan
BAB VB PERSEPTRON & CONTOH
BAB VB PERSEPTRON & CONTOH Model JST perseptron dtemukan oleh Rosenblatt (1962) dan Mnsky Papert (1969). Model n merupakan model yang memlk aplkas dan pelathan yang lebh bak pada era tersebut. 5B.1 Arstektur
JMP : Volume 5 Nomor 1, Juni 2013, hal SPEKTRUM PADA GRAF REGULER KUAT
JMP : Volume 5 Nomor, Jun 03, hal. 3 - SPEKTRUM PD GRF REGULER KUT Rzk Mulyan, Tryan dan Nken Larasat Program Stud Matematka, Fakultas Sans dan Teknk Unerstas Jenderal Soedrman Emal : [email protected] BSTRCT.
RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Design) Dr.Ir. I Made Sumertajaya, M.Si Departemen Statistika-FMIPA IPB 2007
RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Desgn) Dr.Ir. I Made Sumertajaya, M.S Departemen Statstka-FMIPA IPB 007 Revew Rancangan Acak Kelompok Kta ngn membandngkan t perlakuan Pengelompokan
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN. Latar Belakang Matematka sebaga bahasa smbol yang bersfat unversal memegang peranan pentng dalam perkembangan suatu teknolog. Matematka sangat erat hubungannya dengan kehdupan nyata.
TUGAS BROWSING. Diajukan untuk memenuhi salah satu tugas Eksperimen Fisika Dasar 1. Di susun oleh : INDRI SARI UTAMI PEND. FISIKA / B EFD-1 / C
TUGAS BROWSING Diajukan untuk memenuhi salah satu tugas Eksperimen Fisika Dasar 1 Di susun oleh : INDRI SARI UTAMI 060888 PEND. FISIKA / B EFD-1 / C JURUSAN PENDIDIKAN FISIKA FAKULTAS PENDIDIKAN MATEMATIKA
(1.1) maka matriks pembayaran tersebut dikatakan mempunyai titik pelana pada (r,s) dan elemen a
Lecture 2: Pure Strategy A. Strategy Optmum Hal pokok yang sesungguhnya menad nt dar teor permanan adalah menentukan solus optmum bag kedua phak yang salng bersang tersebut yang bersesuaan dengan strateg
CONTOH SOAL #: PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA. dx dengan nilai awal: y = 1 pada x = 0. Penyelesaian: KASUS: INITIAL VALUE PROBLEM (IVP)
PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA KASUS: INITIAL VALUE PROBLEM (IVP) by: st dyar kholsoh Mater Kulah: Pengantar; Metode Euler; Perbakan Metode Euler; Metode Runge-Kutta; Penyelesaan Sstem Persamaan
Grafika & Pengolahan Citra (CS3214)
Grafka & Pengolahan Ctra (CS324) 2 Renderng 20- 3D Photorealsm Ketepatan pemodelan objek Proeks secara perspektf Efek pencahaaan ang natural kepada permukaan tampak: pantulan, transparans, tekstur, dan
Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan
Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk
Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan :
Analss Regres Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Itasa & Y Angran Dep. Statstka FMIPA-IPB Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan
Kuliah 2 Metode Peramalan Deret Waktu
Kuliah 2 Metode Peramalan Deret Waktu [email protected] REVIEW Tentukan pola dari data deret waktu berikut: Gambar (1) Gambar (2) Gambar (3) Gambar (4) 2 Kriteria kebaikan peramalan data deret
Data Time Series. Time series merupakan data yang diperoleh dan disusun berdasarkan urutan waktu atau
Peramalan Data Time Series Data Time Series Time series merupakan data yang diperoleh dan disusun berdasarkan urutan waktu atau data yang dikumpulkan dari waktu ke waktu. Waktu yang digunakan dapat berupa
PENENTUAN PELUANG BERTAHAN DALAM MODEL RISIKO KLASIK DENGAN MENGGUNAKAN TRANSFORMASI LAPLACE AMIRUDDIN
PENENTUAN PELUANG BERTAHAN DALAM MODEL RISIKO KLASIK DENGAN MENGGUNAKAN TRANSFORMASI LAPLACE AMIRUDDIN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI
IMPLEMENTASI INTERPOLASI LAGRANGE UNTUK PREDIKSI NILAI DATA BERPASANGAN DENGAN MENGGUNAKAN MATLAB
Semnar Nasonal Teknolog 007 (SNT 007) ISSN : 1978 9777 Yogakarta, 4 November 007 IMPEMENTASI INTERPOASI AGRANGE UNTUK PREDIKSI NIAI DATA BERPASANGAN DENGAN MENGGUNAKAN MATAB Krsnawat STMIK AMIKOM Yogakarta
MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT. Yenni May Sovia 1, Agusni 2 ABSTRACT
MODIFIKASI METODE NEWTON DENGAN KEKONVERGENAN ORDE EMPAT Yenni May Sovia, Agusni 2 Mahasiswa Program Studi S Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau
EKONOMI SUMBERDAYA AIR: Piped Water Pricing. Yusman Syaukat Departemen Ekonomi Sumberdaya & Lingkungan Fakultas Ekonomi & Manajemen IPB
EKONOMI SUMBERDAYA AIR: Pped Water Prcng Yusman Saukat Departemen Ekonom Sumberdaa & Lngkungan Fakultas Ekonom & Manajemen IPB Ever human should have the dea of takng care of the envronment, of nature,
BAB III METODE PENELITIAN. Sebelum dilakukan penelitian, langkah pertama yang harus dilakukan oleh
BAB III METODE PENELITIAN 3.1 Desan Peneltan Sebelum dlakukan peneltan, langkah pertama yang harus dlakukan oleh penelt adalah menentukan terlebh dahulu metode apa yang akan dgunakan dalam peneltan. Desan
METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI Lely Jusnita 1
METODE MODIFIKASI NEWTON DENGAN ORDE KONVERGENSI 1 + Lely Jusnita 1 1 Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya
PENGEMBANGAN METODE ALGORITMA GENETIKA DAN DARWINIAN PARTICLE SWARM OPTIMIZATION UNTUK FUNGSI MULTIMODAL
Arad Retno TH, Pengembangan Metode Algortma Gen, Hal 93-0 PENGEMBANGAN METODE ALGORITMA GENETIKA DAN DARWINIAN PARTICLE SWARM OPTIMIZATION UNTUK FUNGSI MULTIMODAL Arad Retno Tr Hayat Abstrak Metode optmas
Penentuan Jumlah dan Lokasi Gudang Yang Optimal Dengan Menggunakan Metode Cluster
Performa (2004) Vol.3, No.1:1-8 Penentuan Jumlah dan Lokas Gudang Yang Optmal Dengan Menggunakan Metode Cluster Sulstyanngsh Jat Murt, Azzah Asyat dan Bambang Suhard Jurusan Teknk Industr, Unverstas Sebelas
ANALISIS PENENTUAN TARIF BIAYA OVERHEAD PABRIK PADA PT. XYZ OLEH: RELIK CANRA MANURUNG ABSTRAK
ANALISIS PENENTUAN TARIF BIAYA OVERHEAD PABRIK PADA PT. XYZ OLEH: RELIK CANRA MANURUNG 43205120102 ABSTRAK Penelitian ini mengenai analisis penentuan tarif biaya overhead pabrik pada PT. XYZ. Tujuan penelitian
