BAB 2 LANDASAN TEORI
|
|
|
- Suparman Budiman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB LANDASAN TEORI. Aalss Regres Perubaha la suatu varabel tda selalu terjad dega sedrya amu perubaha la varabel tu dapat pula dsebaba oleh berubahya varabel la yag berhubuga dega varabel tersebut. Utu megetahu pola la suatu varabel yag dsebaba oleh varabel la dperlua alat aalss yag memuga ta utu membuat perraa la varabel tersebut pada la tertetu varabel yag mempegaruhya. Te yag umum dguaa utu megaalss hubuga atara dua atau lebh varabel dalam lmu statst adalah aalss regres. Aalss regres adalah te statst yag bergua utu memersa da memodela hubuga datara varabel-varabel. Aalss regres bergua dalam meelaah hubuga dua varabel atau lebh da terutama utu meelusur pola hubuga yag modelya belum detahu dega sempura sehgga dalam peerapaya lebh bersfat esploratf. Persamaa regres yag dguaa utu membuat tasra megea la varabel terat dsebut persamaa regres estmas yatu suatu formula matemats yag meujua hubuga eterata atara satu atau beberapa varabel yag laya sudah detahu dega satu varabel yag laya belum detahu. Sfat hubuga atarvarabel dalam persamaa regres merupaa hubuga sebab abat. Regres yag berart peramala peasra atau pedugaa pertama al dpereala pada tahu 877 oleh Sr Fracs Galto (8 9) sehubuga Uverstas Sumatera Utara
2 dega peeltaya terhadap mausa. Peelta tersebut membadga atara tggg aa la-la da tgg bada orag tuaya. Istlah regres pada mulaya bertujua utu membuat perraa la suatu varabel (tgg bada aa) terhadap suatu varabel yag la (tgg bada orag tua). Pada perembaga selajutya aalss regres dapat dguaa sebaga alat utu membuat perraa la suatu varabel dega megguaa beberapa varabel la yag berhubuga dega varabel tersebut... Regres Ler Sederhaa Regres ler sederhaa adalah aalss regres yag melbata hubuga fugsoal atara satu varabel terat dega satu varabel bebas. Varabel terat merupaa varabel yag laya selalu bergatug dega la varabel la. Dalam hal varabel terat yag laya selalu dpegaruh oleh varabel bebas sedaga varabel bebas adalah varabel yag laya tda bergatug pada la varabel la. Da basaya varabel terat dotasa dega sedaga varabel bebas dotasa dega X. Hubuga-hubuga tersebut dyataa dalam model matemats yag membera persamaa-persamaa tertetu. Betu umum persamaa regres ler sederhaa yag meujua hubuga atara dua varabel yatu varabel X sebaga varabel bebas da varabel sebaga varabel terat adalah dmaa: X varabel terat e- varabel bebas e- a (.) bx a tersep (tt potog urva terhadap sumbu ) b emrga (slope) urva ler Uverstas Sumatera Utara
3 Gambar. Dagram pecar Metode uadrat terecl adalah suatu metode utu meghtug a da b sebaga perraa A da B sedema rupa sehgga jumlah devas uadrat ( e ) SSD meml la terecl. Model sebearya Model perraa : A BX ε : a bx e Dmaa a b merupaa perraa / tasra atas A B. Ja X durag dega rata-rataya ( X X ) baru dega. Maa persamaaya mejad: aa dperoleh varabel a b e e ( a b ) [ ( a b )] e SSD (.) Metode memmuma jumlah devas uadrat (regres uadrat terecl) yag ddasara pada pemlha a da b sehgga memmala jumlah uadrat devas tt-tt data dar gars yag dcocoa. Uverstas Sumatera Utara
4 Gambar. Suatu pegamata (data) yag tda tepat pada gars regres Kemuda aa dtasr a da b sehgga ja tasra dsubsttusa e dalam persamaa (.) maa jumlah devas uadrat mejad mmum. Dega medfferesala persamaa (.) terhadap a da b dega meetapa dervatf parsal yag dhasla sama dega ol dperoleh: e a a ( a b ) a b aˆ (.3) e b b ( a b ) a b ˆ b (.4) Nla â da bˆ yag dperoleh dega cara dsebut tasra uadrat terecl masg-masg dar a da b. Dega dema tasra persamaa regres dapat dtuls sebaga ˆ aˆ bˆ X yag dsebut persamaa preds. Gars regres bergua utu meetua hubuga pegaruh perubaha varabel yag satu terhadap varabel yag laya. Selajutya dar hubuga dua varabel dapat dembaga utu aalsa tga varabel atau lebh. Uverstas Sumatera Utara
5 .. Multple Regres Multple regres (regres ler gada) merupaa regres ler yag melbata hubuga fugsoal atara sebuah varabel terat dega dua atau lebh varabel bebas. Sema baya varabel bebas yag terlbat dalam suatu persamaa regres sema rumt meetua la statst yag dperlua hgga dperoleh persamaa regres estmas. Regres ler bergada bergua utu medapata pegaruh dua varabel rterumya atau utu mecar hubuga fugsoal dua varabel predtor atau lebh dega varabel rterumya atau utu meramala dua varabel predtor atau lebh terhadap varabel rterumya. Hubuga ler lebh dar dua varabel yag bla dyataa dalam betu persamaa matemats adalah: dmaa: X X ε varabel terat X X varabel bebas pada varabel e-sampa varabel e-... parameter regres ε la esalaha (error) Metode uadrat terecl dar estmas yag terdr dar mmum ε yag bereaa dega dmaa mmum ε ' ε X megea yatu: ' ε ε ( X )'( X ) ' ' X ' ' X ' X ε ' ε Perbedaa ε ' ε megea da persamaa dperoleh: X ' X ' X atau X ' X X ' (.5) Uverstas Sumatera Utara
6 ( X ' X ) X ' ˆ (.6) Kemuda utu ( X )'( X ) [ X X ( ˆ ˆ )] ' [ X X ( ˆ ˆ )] ( X ˆ ) ' ( X ˆ ) ( ˆ ) ' X ' X ( ˆ ) ( X ˆ ) ' ( X ˆ ) Mmum dar ( X ) ( X ) Solus utu melhat mmum ' adalah ( X ˆ ) ' ( X ˆ ) ε ' ε. dcapa pada ˆ.. Estmas Estmas adalah measr cr-cr tertetu dar populas atau memperraa la populas (parameter) dega memaa la sampel (statst). Dega statsta ta berusaha meympula populas. Dalam eyataaya meggat berbaga fator utu eperlua tersebut dambl sebuah sampel yag represetatf da berdasara hasl aalss terhadap data sampel esmpula megea populas dbuat. Cara pegambla esmpula tetag parameter berhubuga dega cara-cara measr harga parameter. Jad harga parameter sebearya yag tda detahu aa destmas berdasara statst sampel yag dambl dar populas yag bersaguta. Sfat atau cr estmator yag ba yatu tda bas efse da osste:. Estmator yag tda bas Estmator dataa tda bas apabla a dapat meghasla estmas yag megadug la parameter yag destmasa. Msala estmator θˆ dataa estmator yag tda bas ja rata-rata semua harga θˆ yag mug aa sama dega θ. Dalam bahasa espetas dtuls E ( θ ) θ. ˆ Uverstas Sumatera Utara
7 . Estmator yag efse Estmator dataa efse apabla haya dega retag la estmas yag ecl saja sudah cuup megadug la parameter. Estmator bervaras mmum alah estmator dega varas terecl datara semua estmator utu parameter yag sama. Ja ˆ θ da ˆ θ dua estmator utu θ dmaa varas utu ˆ θ lebh ecl dar varas utu ˆ θ maa ˆ θ merupaa estmator bervaras mmum. 3. Estmator yag osste Estmator dataa osste apabla sampel yag dambl berapa pu besarya pada retagya tetap megadug la parameter yag sedag d estmas. Msala θˆ estmator utu θ yag dhtug berdasara sebuah sampel aca beruura. Ja uura sampel ma besar medeat uura populas meyebaba θˆ medeat θ maa θˆ dsebut estmator osste. Estmas la parameter meml dua cara yatu estmas tt (pot estmato) da estmas selag (terval estmato). a. Estmas tt (pot estmato) Estmas tt adalah estmas dega meyebut satu la atau utu megestmas la parameter. b. Estmas terval (terval estmato) Estmas terval dega meyebut daerah pembatasa dmaa ta meetua batas mmum da masmum suatu estmator. Metode memuat la-la estmator yag mash daggap bear dalam tgat epercayaa tertetu (cofdece terval). Uverstas Sumatera Utara
8 .. Estmas Masmum Lelhood Suatu cara yag petg utu medapat estmator yag ba adalah metode masmum lelhood yag dpereala oleh R. A. Fsher. Masmum lelhood merupaa suatu cara medapat estmator a utu parameter b yag tda detahu dar populas dega memasmuma fugs emuga. Utu data sampel dar dstrbus yag otu dega fugs padat f( ; α) dtetua fugs lelhood sebaga L( ; α) f( ;α) f( ; α). Utu data sampel dstrbus yag dsrt dega la emuga p(x ) p (α) r da freues f f r dtetua dega fugs lelhood sebaga: L f f r (... ; α ) ( p ( α ))...( pr ( α )) f Karea l L merupaa trasformas yag mooto a darpada L maa l L mecapa masmumya pada la α yag sama. Meurut htug dfferesal l L persamaaya mejad α ˆ. Suatu aar persamaa a (... ) memasmuma L dsebut estmas masmum lelhood utu α. α yag.. Masmum Lelhood dalam Multple Regres Masmum lelhood adalah metode yag dapat dguaa utu megestmas suatu parameter dalam regres. ( X X ) Ja X durag dega rata-rataya maa aa dperoleh varabel baru da selsh atara X dega X merupaa perhtuga yag sederhaa area jumlah dar la tersebut adalah sama dega ol Da persamaa multple regresya mejad:. Uverstas Sumatera Utara
9 dmaa:... ε (.7) varabel terat e- selsh atara varabel bebas X dega la rata-rataya pada pegamata e- parameter regres ε la esalaha (error) Te estmas masmum lelhood mempertmbaga berbaga populas yag mug dega perpdaha gars regres da regres tersebut megellg dstrbus utu semua poss yag mug. Perbedaa poss yag berhubuga dega perbedaa la percobaa utu.... Dalam hal pegamata lelhood aa d estmas. Utu estmas masmum lelhood dplh hpotess populas yag masmum dalam lelhood. Secara umum adaa ta mempuya sampel beruura da ta g megetahu emuga sampel yag damat. Dperlhata fugs la emuga utu... : p ( ) (.8) Meggat emuga la pertama adalah: p ( ) ( ) e π (.9) Hal d atas adalah dstrbus ormal sederhaa dega rata-rata p da varas ( ) ( ) µ e π yag dsubsttus e dalam. Kemuga la edua sama dega (.9) ecual aga satu dgat dega dua da seterusya utu semua la amata laya. Uverstas Sumatera Utara
10 (.8) dmaa: Utu la bebas dega megala semua emuga bersama dalam p ( ) ( ) ( ) e π e π ( ) e π (.) Dega meyataa hasl al emuga bersama utu la yag pegguaaya deal utu espoesal. Hasl (.) dapat dperlhata dega pejumlaha espoe: p ( ) e π ( ) ( ) (.) Meggat amata yag dbera dpertmbaga utu berbaga la.... Sehgga persamaa (.) damaa fugs lelhood: dmaa: (... ) ( π ) L e (... ) L fugs masmum lelhood pada parameter... (.) parameter yag merupaa smpaga bau utu dstrbus π la osta (π 346) baya data sampel e blaga osta (e 783) varabel terat e- parameter regres e- Uverstas Sumatera Utara
11 Dar persamaa (.) dperoleh l L(... ) yatu: ( ) ( ) Λ L l l... l π (.3) Dega medfferesala Λ terhadap setap parameter... da meetapa dervatf parsal yag dhasla sama dega ol dperoleh: ( ) Λ ˆ (.4) ( ) Λ (.5) ( ) Λ (.6) Maa hasl yag dperoleh dar peurua parsal d atas dapat dhtug la parameter ˆ ˆ ˆ. Uverstas Sumatera Utara
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga saat adalah aalss terhadap data megea sebuah araterst atau atrbut da megea sebuah varabel dsrt atau otu. Tetap, sebagamaa dsadar, baya
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga searag adalah aalss terhadap data megea sebuah araterst atau atrbut (ja data tu ualtatg) da megea sebuah araterst (ja data tu uattatf).
STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran
KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua
adalah nilai-nilai yang mungkin diambil oleh parameter jika H
Uj Nsbah Kemuga Lema Neyma-Pearso dapat dguaa utu meemua uj palg uasa bag hpotess sederhaa bla sebara dataya haya dtetua oleh satu parameter yag tda detahu. Lema tersebut juga adaalaya dapat dguaa utu
BAB II LANDASAN TEORI. Pada bab II ini, akan dijelaskan tentang teori yang dipakai dalam
BAB II LANDASAN TEORI Pada bab II, aa djelasa tetag teor yag dpaa dalam semvarogram asotrop. Sela tu juga aa dbahas megea teor peduug dalam melaua peasra aduga cadaga baust d daerah Mempawah Kalmata, dataraya
ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar.
ANALISIS REGRESI Berdasara betu eleara data, model regres dapat dlasfasa mead dua macam yatu lear da o-lear. Ja pola data lear maa dguaa pemodela lear. Begtu uga sebalya apabla pola data tda lear maa dguaa
Created by Simpo PDF Creator Pro (unregistered version)
Created by Smpo PDF Creator Pro (uregstered verso) http://www.smpopdf.com Statst Bss : BAB V. UKURA PEYEBARA DATA.1 Peyebara Uura peyebara data adalah uura statst yag meggambara bagamaa berpecarya data
BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres
BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.
BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka
titik tengah kelas ke i k = banyaknya kelas
STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e
Regresi Linier Sederhana Definisi Pengaruh
Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab bers defs-defs da sfat-sfat yag petg yag berhubuga dega modul. Hal-hal tersebut dperlua dalam pembahasa megea modul jetf pada Bab III. 2.1. Modul Mata ulah Aljabar Ler membahas
BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:
BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,
BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t)
BAB II KONSEP DASAR Kosep dasar yag dtuls dalam bab, merupaa beberapa dasar acua yag aa dguaa utu megaalsa model rso las da meetua fugs sebara peluag bertaha dalam model rso las Datara dasar acua tersebut
BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai
BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres
BAB 3 Interpolasi. 1. Beda Hingga
BAB Iterpolas. Hgga. Iterpolas Lear da Kuadrat. Iterpolas -Maju da -Mudur Newto 4. Polo Iterpolas Terbag Newto 5. Polo Iterpolas Lagrage . Hgga Msala dbera suatu tabel la-la uers j j dar suatu ugs pada
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,
BAB 2 LANDASAN TEORI. Istilah regresi diperkenalkan oleh seorang yang bernama Francis Gulton dalam
BAB LANDASAN TEORI Pegerta Regres da Korelas Pegerta Regres Istlah regres dpereala oleh seorag yag erama Fracs Gulto dalam maalah erjudul regresso towerd medacraty heredtary stature Meurut hasl peelta
STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:
STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data, blaga ataupu
BAB 2. Tinjauan Teoritis
BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut
E ax by c ae X be Y c. 6.1 Pengertian Umum
6.1 Pegerta Umum Baya permasalaha yag dataya dyataa oleh lebh dar sebuah varabel. Hubuga atara dua atau lebh varabel dapat dyataa secara matemata sehgga merupaa suatu model yag dapat dguaa utu berbaga
PENAKSIR RANTAI RASIO-CUM-DUAL UNTUK RATA-RATA POPULASI PADA SAMPLING GANDA
PEAKI ATAI AIO-CUM-DUAL UTUK ATA-ATA POPULAI PADA AMPLIG GADA Holla Maalu Bustam Haposa rat Mahasswa Program Matemata Dose Jurusa Matemata Faultas Matemata da Ilmu Pegetahua Alam Uverstas au Kampus Bawda
KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT
Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real
HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1
HIMPUNAN RENTANGAN DAN BEBA LINIER HIMPUNAN RENTANGAN Defs (Kombas Ler) Msala V suatu ruag etor atas feld F. w etor d V, da, 1, juga etoretor d V. Vetor w dataa sebaga ombas ler dar etor-etor, 1, ja w
BAB 5. ANALISIS REGRESI DAN KORELASI
BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh
H dinotasikan dengan B H
Delta-P: Jural Matemata da Pedda Matemata ISSN 089-855X Vol., No., Aprl 03 OPERATOR KOMPAK Mustafa A. H. Ruhama Program Stud Pedda Matemata, Uverstas Kharu ABSTRAK Detahu H da H dua ruag Hlbert, B H )
STATISTIKA ELEMENTER
STATISTIKA ELEMENTER Statsta Apa tu statsta? Apa beda statsta dega statst? Populas? Sampel? Parameter? Sala Peguura: Nomal Ordal 3 Iterval 4 Raso Bagamaa r-r eempat sala d atas? Bera masg-masg otoh sala
Rangkuman 1. Statistik menyatakan kumpulan data yang dapat berupa angka yang dinamakan data kuantitatif maupun non angka yang dinamakan data
Raguma. Statt meyataa umpula data yag dapat berupa aga yag damaa data uattat maupu o aga yag damaa data ualtat yag duu dalam betu tabel da atau dagram/gra, yag meggambara da mempermudah pemahama aa aga
Pemilihan Model Regresi Terbaik Menggunakan Metode Akaike s Information Criterion dan Schwarz Information Criterion
Jural Iformata Mulawarma Vol 4 No. 3 September 009 37 Pemlha Model Regres erba Megguaa Metode Aae s Iformato Crtero da Schwarz Iformato Crtero M. Fathurahma Program Stud Ilmu Komputer, FMIPA Uverstas Mulawarma
Kajian Hubungan Koefisien Korelasi Pearson (r), Spearman-rho (ρ), Kendall-Tau (τ), Gamma (G), dan Somers ( d
Jural Grade Vol4 No Jul 008 : 37-38 Kaja Hubuga Koefse Korelas Pearso (r), Spearma-rho (ρ), Kedall-Tau (τ), Gamma (G), da Somers ( d yx ) Sgt Nugroho, Syahrul Abar, da Res Vusvtasar Jurusa Matemata, Faultas
Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal
Vol 5, No, 9-98, Jauar 9 But Teorema Ssa Cha dega egguaa deal asmal Abstra Sstem perogruea yag dapat dcar peyelesaaya secara teor blaga dasar teryata dapat dbuta melalu teor-teor strutur aljabar hususya
BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:
BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,
BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling
BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl
BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel
BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:
UKURAN GEJALA PUSAT DAN UKURAN LETAK
UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu
9. SOAL-SOAL STATISTIKA
9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra
9. SOAL-SOAL STATISTIKA
9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Aalss Regres Regres merupaa alat uur yag dguaa utu meguur ada atau tdaya orelas atar varael. Istlah regres yag erart ramala atau tasra pertama al dpereala oleh Sr Fracs Galto pada tahu
ANALISIS JUMLAH TENAGA KERJA TERHADAP JUMLAH PASIEN RSUD ARIFIN ACHMAD PEKANBARU MENGGUNAKAN METODE REGRESI GULUD
Jural as, Teolog da Idustr, Vol., No., Desember 04, pp. 48-57 IN 693-390 prt/in 407-0939 ole ANALII JUMLAH TENAGA KERJA TERHADAP JUMLAH PAIEN RUD ARIFIN ACHMAD PEKANBARU MENGGUNAKAN METODE REGREI GULUD
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut
Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu
KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua
* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES
* PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka
BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu
BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka
BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel
BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka
BAB II KAJIAN TEORI. tertentu (Martono, 1999). Sistem bilangan real dinotasikan dengan R. Untuk
5 BAB II KAJIAN TEOI A. Sstem Blaga eal Sstem blaga real adalah hmpua blaga real ag dserta dega operas pejumlaha da perala sehgga memeuh asoma tertetu (Martoo, 999). Sstem blaga real dotasa dega. Utu lebh
UKURAN DASAR DATA STATISTIK
UKURAN DASAR DATA STATISTIK UKURAN PUSAT Apa yag dapat ta smpula secara gamblag da cepat dar data yag dsodora berut : Tabel 1 Sampel Data Karyawa peserta Jamsoste Nama Sex Status Kerja Gaj/Bl Umur NATUL
ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:
ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X
Analisis Regresi Eksponensial Berganda (Studi Kasus: Jumlah Kelahiran Bayi di Kalimantan Timur pada Tahun 2013 dan 2014)
Jural EKSPONENSIAL Volume 6, Nomor, Nopember 5 ISSN 85-789 Aalss Regres Espoesal Bergada (Stud Kasus: Jumlah Kelahra Bay d Kalmata Tmur pada Tahu 3 da 4) Double Expoetal Regresso Aalyss (Case Study: Number
Pemodelan Angka Buta Huruf di Provinsi Sumatera Barat Tahun 2014 dengan Geographically Weighted Regression
JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Prt) D-361 Pemodela Aga Buta Huruf d Provs Sumatera Barat Tahu 014 dega Geographcally Weghted Regresso Rath Mahara da Wwe Setya Wahju Jurusa
S2 MP Oleh ; N. Setyaningsih
S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal
PENDETEKSIAN HETEROSKEDASTISITAS DENGAN PENGUJIAN KORELASI RANK SPEARMAN DAN TINDAKAN PERBAIKANNYA
PENDETEKSIAN HETEROSKEDASTISITAS DENGAN PENGUJIAN KORELASI RANK SPEARMAN DAN TINDAKAN PERBAIKANNA Srps dsaja sebaga salah satu syarat utu memperoleh gelar Sarjaa Sas Program Stud Matemata Oleh Layyatus
STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis
STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma
PROSEDUR PENGUJIAN HIPOTESIS SEHUBUNGAN DENGAN AKAR-AKAR LATEN DARI MATRIKS KOVARIANS (Dalam Analisis Komponen Utama)
H. Maa Suhera,Drs.,M.S PROSEDUR PEGUJIA HIPOTESIS SEHUBUGA DEGA AKAR-AKAR LATE DARI MATRIKS KOVARIAS (Dala Aalss Kopoe Utaa) Abstra Utu ebuat espula tetag araterst populas ultvarat husuya populas varat
dan µ : rata-rata hitung populasi x : rata-rata hitung sampel
Uura Statt. Pedahulua Uura Statt:. Uura Pemuata Bagamaa, d maa data berpuat? Rata-Rata Htug Arthmetc Mea Meda Modu Kuartl, Del, Peretl. Uura Peyebara Bagamaa peyebara data? Ragam, Vara Smpaga Bau Uura
Ir. Tito Adi Dewanto
Ir. Tto A Dewato Dega megetahu la rata-rata saja,ormas yag apat aag-aag bsa salah terpretas. Msalya, ar ua elompo ata etahu rata-rataya sama, alau haya ar ormas ta suah meyataa bahwa ua elompo sama, mug
Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )
Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar
BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten
BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar
ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS
ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud
LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M
JP : Volue 4 Noor Ju 0 hal. 4-5 LEA HENSTOCK PADA NTEGRAL uslch Jurusa ateata FPA UNS [email protected] ABSTRACT. Based o the cshae e partto ad cshae tegral t ca be arraged the e partto ad tegral cocepts.
XI. ANALISIS REGRESI KORELASI
I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas
METODE PENELITIAN. Populasi dari penelitian ini adalah seluruh peserta didik kelas VII semester genap
III. METODE PENELITIAN A. Populas da Sampel Populas dar peelta adalah seluruh peserta dd elas VII semester geap SMP Neger 3 Terbaggbesar tahu pelaara 0/0 yag terdstrbus e dalam tuuh elas, yatu elas VII
Pemodelan Faktor-Faktor yang Mempengaruhi Angka Morbiditas di Jawa Timur Menggunakan Regresi Nonparametrik Spline
JURNAL SAINS DAN SENI ITS Vol. 6, No., (7) ISSN: 337-35 (-98X Prt) D-5 Pemodela Fator-Fator yag Mempegaruh Aga Morbdtas d Jawa Tmur Megguaa Regres Noparametr Sple Krsa Wuladar, I Nyoma Budatara, da Madu
REGRESI SEDERHANA Regresi
P a g e REGRESI SEDERHANA.. Regres Istlah regres dkemukaka utuk pertama kal oleh seorag atropolog da ahl meteorology Fracs Galto dalam artkelya Famly Lkeess Stature pada tahu 886. Ada juga sumber la yag
MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI
MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag
TINJAUAN PUSTAKA Evaluasi Pengajaran
TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas
SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS
C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah
METODE NUMERIK ROSENBERG DENGAN ARAH PENCARIAN TERMODIFIKASI PENAMBAHAN KONSTANTA l k
Prma: Jural Program Stud Pedda da Peelta Matemata Vol. 6, No., Jauar 07, hal. 7-59 P-ISSN: 0-989 METODE NUMERIK ROSENBERG DENGAN ARAH PENCARIAN TERMODIFIKASI PENAMBAHAN KONSTANTA l UNTUK BEBERAPA NILAI
Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin
4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua
Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2
M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe
8.4 GENERATING FUNCTIONS
8.4 GEERATIG FUCTIOS Fugs pembagt Fugs pembagt dguaa utu merepresetasa barsa secara efse dega megodea usur barsa sebaga oefse deret pagat dalam varabel. Fugs pembagt dapat dguaa utu: memecaha berbaga masalah
LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)
LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau
BAB 1 STATISTIKA RINGKASAN MATERI
BAB STATISTIKA A RINGKASAN MATERI. Pegerta Data adalah kumpula keteraga-keteraga atau catata-catata megea suatu kejada, dapat berupa blaga, smbol, sat atau kategor. Masg-masg keteraga dar data dsebut datum.
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB PENDAHULUAN. Latar Belaang Masalah Analss regres merupaan lmu peramalan dalam statst. Analss regres dapat dataan sebaga usaha mempreds atau meramalan perubahan. Regres mengemuaan tentang engntahuan
WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST
Koferes Nasoal Tekk Spl 3 (KoNTekS 3) Jakarta, 6 7 Me 009 WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Maksum Taubrata Program Stud Tekk Spl, Uverstas Krste Maraatha Badug Jl.
III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri
III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,
Prosiding SPMIPA. pp , 2006 ISBN : PERKEMBANGAN ESTIMATOR DENSITAS NON PARAMETRIK DAN APLIKASINYA
Prosdg SPMIP. pp. 4-46, 6 ISBN : 979.74.47. PERKEMBNGN ESTIMTOR DENSITS NON PRMETRIK DN PLIKSINY Hasb Yas, Supart Staf PS Statsta, urusa Matemata, FMIP, UNDIP l. Prof. Sudarto, Kampus UNDIP Tembalag, Semarag
REGRESI & KORELASI LINIER SEDERHANA
1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)
BAB II LANDASAN TEORI. digunakan dengan mengabaikan asumsi-asumsi yang melandasi penggunaan metode
BAB II ANDASAN TEORI. Regres Noparametrk Metode statstka oparametrk merupaka metode statstka ag dapat dguaka dega megabaka asums-asums ag meladas pegguaa metode statstk parametrk. Terutama ag berkata dega
Bab II Teori Pendukung
Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,
BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,
BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga
PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan
Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah
STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 150 KV MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE
STUDI PEMODELAN PERAMBATAN GELOMBANG SURJA PETIR PADA SALURAN TRANSMISI 50 K MENGGUNAKAN METODE MULTI- CONDUCTOR TRANSMISSION LINE Kade Ad Dw Purwaa 2205 00 038 dose pembmbg :. Ir. Syarffudd M M.Eg. 2.
ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET
Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,
BAB III FUZZY C-MEANS. mempertimbangkan tingkat keanggotaan yang mencakup himpunan fuzzy sebagai
BB III FUZZY C-MENS 3. Fuzzy Klasterg Fuzzy lasterg erupaa salah satu etode aalss laster dega epertbaga tgat eaggotaa yag eaup hpua fuzzy sebaga dasar pebobota bag pegelopoa (Bezde,98). Metode erupaa pegebaga
BAB II TINJAUAN PUSTAKA. analisis regresi logistik, dan analisis regresi logistik rare event.
BAB II TINJAUAN PUSTAKA. Peahulua Sebelum melaua pembahasa megea permasalaha ar srps, paa Bab II aa uraa beberapa teor peujag ag perraa apat membatu alam pembahasa bab-bab selajuta. Pembahasa paa Bab II
