DISUSUN OLEH KELOMPOK III
|
|
|
- Suharto Bambang Hartono
- 9 tahun lalu
- Tontonan:
Transkripsi
1 FUNGSI BESSEL DISUSUN OLEH KELOMPOK III Nama Aggoa : Desaah 7.. T Yua 7..5 Oa Helaa 7.. Sea ula Dessy Adea 7.. Esca Oaa Semese : L Pogam Sud : Pedda Maemaa Maa Kulah : Maemaa Lajua FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI PALEMBANG 9/
2 FUNGSI BESSEL PERSAMAAN DIFERENSIAL BESSEL Fugs Bessel dbagu sebaga eyelesaa esamaa dfeesal. y y y, yag damaa esamaa dfeesal Bessel. Peyelesaa umum dbea oleh y c c Y Peyelesaa, yag memuya lm behgga uu medea ol damaa fugs Bessel jes eama da beode. eyelesaa Y yag a memuya lm behgga [yau a ebaas] uu medea ol damaa fugs Bessel jes edua da beode- aau fugs Neuma. a eubah bebas ada dga λ d maa λ suau osaa, esamaa yag dhasla adalah y y λ y Yag memuya eyelesaa umum y c λ c Y λ FUNGSI BESSEL ENIS PERTAMA Ddefsa fugs Bessel jes eama beode sebaga Γ... 5 Aau! Γ D maa Γ adalah fugs gamma [Bab 9]. a blaga bula osf, Γ!, Γ. Uu, maa
3 ... 7 Dee ovege uu sea. Gaf da dujua ada Gamba -. a seegah aau blaga gajl osf, daa dyaaa dalam suu-suu sus da cosus. Lha Soal. da.7. Sebuah fugs, > daa ddefsa dega megga oleh ada 5 aau. a suau blaga bula, maa a daa meujua bahwa [lha Soal.] 8 a bua suau blaga bula, maa da bebas lea, da uu asus eyelesaa umum adalah y A B,,,,,... 9 FUNGSI BESSEL ENIS KEDUA Ka aa medefsa fugs Bessel jes edua beode sebaga Y cos,,,,... s cos lm,,,,... s Uu asus d maa,,,, deoleh uaa dee beu uu Y. Y! l γ { Φ Φ }!! D maa γ, adalah osaa Eule da Φ..., Φ
4 FUNGSI PEMBANGKIT UNTUK GENERATING FUNCTION Fugs e damaa fugs embag uu fugs Bessel jes eama beode bula, yag saga baya guaya dalam memeoleh sfa-sfa fugs uu la bula da emuda segal daa dbua belau uu semua. RUMUS-RUMUS PENGULANGAN RECURRENCE FORMULA Hasl beu belau uu sea la... [ ].. d d [ ] 5. d d. [ ] a adalah suau blaga bula umus esebu daa dbua dega fugs embag. Pehaa bahwa hasl da beuu-uu seaa dega 5 da. Fugs Y memeuh hasl yag sama see d aas, d maa meggaa. Y FUNGSI-FUNGSI YANG BERHUBUNGAN DENGAN FUNGSI BESSEL.Fugs Hael es Peama da Kedua, yag beuu-uu ddefsa oleh
5 H Y, H Y I K.Fugs Bessel yag Dmodfas. Fugs Bessel yag dmodfas jes eama beode ddefsa oleh e a blaga bula, I I 5 Tea ja bua blaga bula, I da I bebas lea. Fugs Bessel yag dmodfas jes edua beode ddefsa oleh I I,,,,... s I I lm,,,,... s Fugs memeuh esamaa dfeesal y" y y 7 da eyelesaa umum esamaa adalah c K y c I 8 aau ja,,,,... y AI BI 9.Fugs Be, Be, Ke, Ke. Fugs Be da Be adalah baga l da maje da d maa e, yau Be Be Fugs Ke da Ke adalah baga l da maje da e K d maa e, yau
6 e K Ke Ke Fugs-fugs begua sehubuga dega esamaa y" y y yag membagu e elsa da laaga laya. Peyelesaa umum da esamaa adalah y c ck PERSAMAAN-PERSAMAAN YANG DITRANSFORMASIKAN KE DALAM PERSAMAAN BESSEL Pesamaa y β y" α y d maa, α,, β osaa memuya eyelesaa umum y α α c cy 5 d maa β α K. a, esamaaya daa dselesaa sebaga esamaa Eule aau Cauchy [lha halama 8] RUMUS ASIMTOTIK UNTUK FUNGSI BESSEL Uu la besa a memuya umus asmo beu ~ cos, Y ~ s NILAI NOL FUNGSI BESSEL Ka daa meujua bahwa ja suau blaga l, memuya a behgga bayaya aa yag semuaya l. Pebedaa d aaa aa-aa yag beuua medea ja la aaya membesa.
7 I daa dlha da. Ka daa juga meujua bahwa aa-aa elea d aaa da juga dbua uu Y.. Caaa seua daa KETEGAK-LURUSAN ORTHOGONALITY FUNGSI BESSEL a λ da µ dua osaa bebeda, a daa meujua [lha Soal.] bahwa λ µ λ µ λ µ λ µ d 7 λ µ sedaga [lha Soal.] λ d λ λ 8 λ Da 7 a lha bahwa λ da µ adalah dua aa bebeda da esamaa S R 9 d maa R da S osaa, maa d λ µ yag meyaaa bahwa fugs λ da µ egaluus ada,. Pehaalah bahwa sebaga asus husus 9 a melha bahwa λ da µ daa meuaa dua aa bebeda da aau Ka daa juga megaaa bahwa fugs-fugs λ, ehada fugs eadaa.. µ egaluus DERET FUNGSI-FUNGSI BESSEL See ada asus Dee Foue, a daa meujua bahwa ja f memeuh syaa Dchle [d halama 97] maa d sea eoua f ada selag < < edaa suau uaa dee Bessel yag bebeu
8 f A A λ A λ λ... R d maa λ, λ,... adalah aa-aa osf 9 dega, S da S A λ λ R S λ λ f d D ea-oua dee d uas aa ovege e [ f ]. f yag daa dguaa uu meggaa uas Dalam asus S sehgga,... A λ λ adalah aa-aa da, λ λ f d, a R da, maa dee dmulas dega suu ea A f d SOAL-SOAL DAN PENYELESAIANNYA PERSAMAAN DIFERENSIAL BESSEL. Guaa meode Fobeus uu meeua dee eyelesaa esamaa dfeesal Bessel y" y y da. Adaa suau jawaba bebeu β y c d maa begea sama da c uu <, maa β β β y c c c y β c β β β y" c β Kemuda, dega mejumlahaya deoleh c β
9 [ β β c β c c c ] y" β da aea oefse [ ] c c β haus ol, deoleh β Adaa ada ; aea c maa deoleh esamaa awal c β ; aau adaa c, β. Kemuda, jaulah dua asus, β da β. Peama aa dadag asus eama β, da asus edua deoleh dega meggaa oleh. Kasus, β. Dalam asus mejad c c Ambllah,,,,... secaa beuua ada, a memuya c, c c, ad dee yag dga adalah c c, c c, y c Kasus, c β. c... c Galah oleh ada Kasus, deoleh... y c... Seaag, ja edua dee sama. a,,... dee edua da mug ada. Tea bla,,,... edua dee esebu daa dujua bebas lea sehgga uu asus eyelesaa umumya adalah y C... D... 5
10 Kasus uu,,,,... aa dbcaaa emuda [lha Soal.5 da.]. FUNGSI BESSEL ENIS PERTAMA Guaa defs 5 da yag dbea ada halama uu meujua bahwa ja,,,,... maa eyelesaa umum ada esamaa bassel adalah y A B uu asus,,,,....bualah a s, b cos, !! 5/! 7 / a b 5 /!/ / /!!!... 5! / 5 / / / 7 / s / /... s 7 / /! 5/ / /!!!... cos.huglah a d, b d a Meode.Meode egala asal membea d [ d] d [ ] [ ][ ] d c b Meode. Guaalah, deahu d d d { d} d [ d] [ ] [ ][ d] d { d}...
11 Maa d [ { }] c 8 d 5 [ d] 5 [ ] [ ] 5 d d [ ]d 5 [ ] [ ] d d d [ ] d d d d Maa d 5 [ d] d { } Iegal d da daa deoleh dalam beu euu.secaa umum, d daa deoleh dalam beu euu ja q da q gea haslya daa deoleh dalam suu-suu d a Bualah. s b Bahaslah a hasl a dadag da ebegauga lea da c Kaea, da,,beuu-uu dsga da, memeuh esamaa bassel,maa ", " aaalah esamaa eama dega Maa yag daa duls d d da edua dega da uagalah. " " [ ] [ ] [ ] [ ]
12 d Aau { [ ]} d Iegalalah,a memeoleh Uu meeua c guaalah uaa dee da,deoleh c...,...,...,... Da emuda subsusa ada, a memeoleh s c Dega megguaa hasl,dhalama 7. I membea hasl yag dga. a Beu ada a adalah deema Wos da da. a blaga bula a lha da a bahwa deema wos ol;sehgga da begauga lea da da juga jelas da soal.a. dalam hal la,ja bua blaga bula, da eduaya bebas lea aea ada asus deema wosya a ol. FUNGSI PEMBANGKIT DAN HASIL-HASIL LAINNYA Bualah e e Ka memuya Adaa mejad e e!! sehgga begea da!! sama, maa jumlahya!!!! Bualah a cos sθ cos θ cos θ... Adaa b s sθ sθ s θ 5 s 5θ... θ e ada soal,maa
13 e θ θ e e sθ θ e e [ cos θ s θ ] { [ ] cosθ [ ] cosθ...} { [ ] sθ [ ] s θ...} { cos θ...} { sθ s...} θ Dmaa a elah megguaa soal.a. samaa baga l da majeya uu eoleh hasl yag dga. Bualah cos θ sθ dθ,,,,... Kala hasl eama da edua soal.beuu-uu dega caa cos θ da s θ da egala da sama dega megguaa m cosm θ cos θdθ m sm θ s θdθ Kemuda ja gea aau ol deoleh : m m cos sθ cos θdθ, s sθ s θdθ Da dega mejumlahaya deoleh : [ cos sθ cos θ s sθ s θ ] dθ cos θ sθ dθ Dega caa seua,ja gajl,maa s sθ s θdθ, cos sθ s θdθ Da dega mejumlahaya deoleh θ θ dθ cos s ad a memeoleh hasl yag belau uu gea aua gajl,yau,,, Bualah hasl soal.b uu la bula dega megguaa fugs embag. Dfeesala edua uas fugs embag ehada aa meulsa lm sama uu des.
14 e Aau Yau I daa duls sebaga Aau Yau Kaea oefse haus sama,maa Da da s hasl yag dga deoleh dega megga oleh -. FUNGSI BESSEL ENIS KEDUA atujua bahwa ja blaga bula,eyelesaa umum esamaa Bessel adalah y E F s cos belasalah bagamaa ada daa megguaa baga a uu memeoleh eyelesaa umum esamaa bessel dalam asus bula. FUNGSI BESSEL a Kaea da bebas lea,peyelesaa umum esamaa bessel daa duls : y c c
15 da hasl yag dga deoleh dega megga osaa sebaag c oleh E dmaa c F cos c E, c s F s Pehaalah bahwa a medefsa fugs bessel jes edua bla bua suau blaga bula dega Y b Beulah cos s cos s Mejad suau a eu / deemae yag bebeu / uu asus suau blaga bula.hal dsebaba uu suau blaga,deahu cos da lha soal.. beu a eu daa dhug dega umus L Hosal,yau cos lm s Guaalah soal uu memeoleh eyelesaa umum esamaa uu Dalam asus haus dhug cos lm s Guaalah umus L Hosal uua emblag da eyebu ehada ada lm,deoleh lm / cos cos P / P P
16 Dmaa lambag yag dguaa meyaaa bahwa a megambl uua asal da da P ehada da emuda megambl.kaea. / / P lm yag dga juga sama dega Uu memeoleh / duua dee! / Tehada da deoleh /! P Seaag ja seadaya G /, maa L l / l G Sehgga uuaya ehada membea / l G G Maa uu deoleh / l / G Guaa da, deoleh / l! / { }... / l γ
17 Dmaa dee eah deoleh dega megguaa hasl dhalama.dee eah adalah dee uu Y.Dega caa yag sama a daa memeoleh dee dhalama uu Y dmaa sebuah blaga bula.a sebuah blaga bula,maa eyelesaa umumya y c c Y dbea oleh FUNGSI-FUNGSI YANG BERHUBUNGAN DENGAN FUNGSI BESSEL. Bualah umus egulaga uu fugs bessel jes eama yagelah dmodfas l yag dbea oleh I I I Da soal.ba memeoleh Galah dega uu memeoleh Seaag meuu defsya I aau I sehgga mejad I I I Baglah dega,maa hasl yag dga ecaa.. a bua suau blaga bula,ujualah bahwa e a H s Meuu defs H day, maa cos H Y s s cos s cos s s
18 e s e s b e H s Kaea, Y H deha megga oleh ada hasl a maa deoleh e H s e s. Tujualah a Be Be... 8 FUNGSI BESEEL Deahu: Da hasl yag dga ecaa dega megga bahwa da Be Be meyamaa baga l da majeya.elu
19 dca bahwa adag-adag meghlaga des ol dalam Be dabe. PERSAMAAN-PERSAMAAN YANG DITRANSFORMASIKAN NKE DALAM PERSAMAAN BESSEL.. eua eyelesaa umum esamaa y y ay. Pesamaa esebu daa duls sebaga y y ay da meuaa suau husus da esamaa d halama dmaa, a a,, β maa eyelesaa see dbea adalah y c a c y a KETEGAK LURUSAN FUNGSI BESEEL.Bualah λ µ λ µ λ µ λ µ d ja λ µ. λ µ Da da dhalama,elhaa bahwa y λ y µ da Adalah eyelesaa esamaa y y λ y, y y µ y Dega egala esamaa dega y da dega y da emuda uaga, a memeoleh [ y y y y ] [ y y y y ] µ λ y y Seelah dbag dega daa duls sebaga beu Aau d d [ y y y y ] [ y y y y ] µ λ y y { [ y y y y ]} µ λ y y d d Kemuda egala da hlaga osaa egegalaya,
20 µ λ y y d [ y y y y ] Lalu guaa y λ y maa, µ da baga dega µ λ, λ µ ad λ µ d [ λ µ λ µ λ µ ] λ d µ λ µ λ µ λ µ µ λ Yag evale dega hasl yag dga. λ µ λ ada hasl soal o.dega meguaa umus L hosal. bua λ d λ λ. msala deoleh λµ d λ µ λ λ µ µ λ µ λ µ λ lm µ λ λ λ λ λ λ Tea aea λ λ λ λ λ λ, uu λ dega meyelesaa da mesubsusaya deoleh λ d λ λ.bua bahwa ja λda µ adalah dua aa bebeda da samaa N R S λ µ d Yau λ da dmaa R da S osaa, maa µ salg ega luus ada,. Kaea λ da µ aa da, R S a memuya λ
21 R λ S N, R S µ µ µ Kemuda, ja R, S da a memeoleh λ µ µ µ λ µ Sehgga da soal.a medaaa hasl yag dga λ λ d Dalam asus R, S aau R, S, hasl esebu juga daa dbua dega mudah. DERET FUNGSI BESSEL.a f A, λ < >, dmaa λ,,,,..., aa osf da, dujua bahwa A P λ λ f d Kala dee uu f dega da sama.maa λ f d A λ λ A λ da egala suu dem suu λ AK N λ Dmaa a elah meggua soal..da. besama-sama dega eyaaa bahwa d d A K λ λ f d Uu memeoleh hasl yag dga da s,dguaa umus egulaga dhalama yag evale dega umus dhalama u, a memeoleh λ λ λ λ λ
22 Aau aea λ λ λ.uaa f dalam suau dee yag bebeu A Uu <<,ja λ A λ d λ X λ,,,,, adlah aa osf da, λ λ λ λ v v λ λ λ v λ Dmaa a elah megguaa eggaa v λ dalam egalya da hasl soal.8 dega ad a memeoleh dee yagdga f λ λ λ v dv Yag daa duls sebaga λ λ λ λ λ... λ SOAL-SOAL TAMBAHAN PERSAMAAN DEFERENSIAL BESSEL.. Tujualah bahwa ja dga oleh λ dmaa λ osaa, maa esamaa Bessel y y y dasfomasa mejad y y λ y FUNGSI BESSEL ENIS PERTAMA
23 5 selag eovegea adalah X <<.7.a ujua....8.ujua. d d.9. ujualah [ ]..Huglah a 5 da b 5 da esalah bahwa dalam suu-suu sus da cosus...eualah dalam suu-suu da... bualah bahwa a Da bualah eumusa hasl., [ ] [ ]. huglah a d b. d c. d. huglah a d b. d s d..5.huglah FUNGSI PEMBANGKIT DAN HASIL-HASIL TAMBAHAN. guaalah fugs embag uu membua bahwa [ ] uu asus dmaa bula..7 guaalah fugs embag uu megejaa soal. dalam asus bula. s d θ.8 ujualah cos θ.9 ujualah d FUNGSI BESSEL ENIS KEDUA.. Bualah Y Y
24 .. huglah a. Y, b.. Y..bualah Y Y.5. Tujualah I θ cosh s dθ..55. Tujualah a sh I I... b cosh I I I [ ] [...] sh.5. Tujualah a I cosh cosh b I sh..57. a Tujualah K K K b elasalah megaa fugs K memeuh umus egulaga yag sama see uu I dega I dga dega K..58. Bea umus asmo uu a I, b H..59. Tujualah Ke { l γ } Be Be!! 8 PERSAMAAN-PERSAMAAN YANG DUTRANSFORMASIKAN KEDALAM PERSAMAAN BESSEL.. Selesaa y y y... Selesaa a y y y, b y y... Selesaalah y e y. msala e u... Tujualah dega egaa lagsug bahwa y adalah suau eyelesaa da y " y da b ulsalah eyelesaa umumya....
25 .. a Tujua dega egaa lagsug bahwa y adalah suau jawaba da y y da b ulsa eyelesaa umumya.,,,.5. a Tujualah bahwa esamaa Bessel y y y daa d u dasfomasa edalam u dmaa y u. d b Bahaslah asus dmaa besa da jelasa hubugaya dega umus asmo dhalama. DERET TEGAK LURUS FUNGSI-FUNGSI BESSEL.. Legalah soal. dhalama 5 uu asus a R, S, b R, S.7. Tujualah d λ λ αλ.8. Bualah hasl.9. Tujualah 8 da λ..7. Tujualah λ da λ..7. Tujualah [ ] λ λ c λ λ λ... < < λ λ... < < λ λ λ... < λ λ 8 λ osf da. dmaa λ adalah aa osf dmaa λ adalah aa osf dmaa λ adalah aa.7. Guaalah soal.7 da.75 uu meujua adalah aa osf da λ. λ dmaa λ
26 AWABAN SOAL-SOAL TAMBAHAN.8. a 8.9. s cos b s cos.. a c b c d.. a c b j d.. s cos c.. a a b b a b b a b a a b a c b a b.8. a cos b s.5. a Y c b Y Y / c c Y Y Y Y d A BY y.. a As Bcos y b y A / B.5. A e BY e y
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab bers defs-defs da sfat-sfat yag petg yag berhubuga dega modul. Hal-hal tersebut dperlua dalam pembahasa megea modul jetf pada Bab III. 2.1. Modul Mata ulah Aljabar Ler membahas
BAB II LANDASAN TEORI
5 A II LANDASAN TEORI Pada bab aa dbahas bebeapa teo alaba le yag meduug dalam peuua Teo Peo-Fobeus pada ab III Teo-teo yag aa dbahas beupa subuag vaa, poyeto, des mats, deomposs coe-lpotet, seta om da
BAB II KONSEP DASAR. adalah koleksi dari peubah acak. Untuk setiap t dalam himpunan indeks T, N ( t)
BAB II KONSEP DASAR Kosep dasar yag dtuls dalam bab, merupaa beberapa dasar acua yag aa dguaa utu megaalsa model rso las da meetua fugs sebara peluag bertaha dalam model rso las Datara dasar acua tersebut
Karakterisasi Produk Tensor l ( Δ) l. Muslim Ansori
Ruag Basa Sesh ( Δ ),< < da Bebeaa Pemasaaha Kaatesas Podu Teso ( Δ) ( Δ) Musm Aso Juusa Matemata, FMIPA, Uvestas Lamug J. Soemat Bodoegoo No. Bada Lamug 3545 E-ma: [email protected] ABSTRACT I ths ae we
adalah nilai-nilai yang mungkin diambil oleh parameter jika H
Uj Nsbah Kemuga Lema Neyma-Pearso dapat dguaa utu meemua uj palg uasa bag hpotess sederhaa bla sebara dataya haya dtetua oleh satu parameter yag tda detahu. Lema tersebut juga adaalaya dapat dguaa utu
Koefisien Korelasi Spearman
Koefe Koela Speama La hala dega oefe oela poduct-momet Peao, oela Speama dapat dguaa utu data beala mmal odal utu edua vaabel ag heda dpea oelaa. Lagah petama ag dlaua utu meghtug oefe oela Speama adalah
BAB II PEMODELAN STRUKTUR DAN ANALISIS DINAMIK
BAB II PEMODELAN SRUKUR DAN ANALISIS DINAMIK II Pedaulua Aalss da saga dperlua uu bagua-bagua berlaa baya aau yag el egga leb dar eer Respo da sruur dabaa ole beba beba da yag basaya erupaa fugs dar wau
STATISTIKA: UKURAN PENYEBARAN DATA. Tujuan Pembelajaran
KTSP & K-3 matemata K e l a s XI STATISTIKA: UKURAN PENYEBARAN DATA Tujua Pembelajara Setelah mempelajar mater, amu dharapa meml emampua berut.. Memaham defs uura peyebara data da jes-jesya.. Dapat meetua
DISTRIBUSI GAMMA. Ada beberapa distribusi penting dalam distribusi uji hidup, salah satunya adalah distribusi gamma.
DITRIBUI GAMMA Ada beberaa dsrbus eg dalam dsrbus uj hdu, salah sauya adalah dsrbus gamma. A. Fugs keadaa eluag (fk) Fugs keadaa eluag (fk) dar dsrbus gamma dega dua arameer yau da adalah sebaga berku:
BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV
BAB 4 ENTROPI PADA PROSES STOKASTIK RANTAI MARKOV 4. Proses Sokask Dalam kehdupa yaa, sergkal orag g megama keerkaa sau kejada dega kejada la dalam suau erval waku ereu, yag merupaka suau barsa kejada.
FINITE FIELD (LAPANGAN BERHINGGA)
INITE IELD (LAPANGAN BERHINGGA) Muhamad Zak Ryao NIM: /5679/PA/8944 E-mal: zak@malugmacd h://zakmahwebd Dose Pembmbg: Drs Al Sujaa, MSc Jka suau laaga (feld) memua eleme yag bayakya berhgga, maka laaga
INFERENSI DATA UJI HIDUP TERSENSOR TIPE II BERDISTRIBUSI RAYLEIGH. Oleh : Tatik Widiharih 1 Wiwin Mardjiyati 2
INFERENSI DAA UJI HIDUP ERSENSOR IPE II BERDISRIBUSI RAYLEIGH Oleh : ak Wdhah Ww Madjya Saf Pogam Sud Saska FMIPA UNDIP Alum Pogam Sud Saska FMIPA UNDIP Absac Aalyss of lfe me s oe of sascal aalyss whch
kimia LAJU REAKSI II Tujuan Pembelajaran
KTSP & K-13 kimia K e l a s XI LAJU REAKSI II Tujuan Pembelajaan Seelah mempelajai maei ini, kamu dihaapkan memiliki kemampuan beiku. 1. Mengeahui pesamaan laju eaksi.. Memahami ode eaksi dan konsana laju
Created by Simpo PDF Creator Pro (unregistered version)
Created by Smpo PDF Creator Pro (uregstered verso) http://www.smpopdf.com Statst Bss : BAB V. UKURA PEYEBARA DATA.1 Peyebara Uura peyebara data adalah uura statst yag meggambara bagamaa berpecarya data
BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel
BAB III PENAKSIR DERET FOURIER 3. Peaksi Dalam saisika, peaksi adalah sebuah saisik (fugsi dai daa sampel obsevasi) yag diguaka uuk meaksi paamee populasi yag idak dikeahui (esimad) aau fugsi yag memeaka
BILANGAN BAB V BARISAN BILANGAN DAN DERET
Maemaika Kelas IX emese Baisa Bilaga da Dee BILANGAN BAB V BARIAN BILANGAN DAN DERET A. Baisa Bilaga. Pegeia Baisa Bilaga Jika bilaga-bilaga diuuka dega aua eeu maka aka dipeoleh suau baisa bilaga. Cooh
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga searag adalah aalss terhadap data megea sebuah araterst atau atrbut (ja data tu ualtatg) da megea sebuah araterst (ja data tu uattatf).
LEMMA HENSTOCK PADA INTEGRAL. Muslich Jurusan Matematika FMIPA UNS fine dan integral M
JP : Volue 4 Noor Ju 0 hal. 4-5 LEA HENSTOCK PADA NTEGRAL uslch Jurusa ateata FPA UNS [email protected] ABSTRACT. Based o the cshae e partto ad cshae tegral t ca be arraged the e partto ad tegral cocepts.
BAB IV SISTEM TUNGGU (DELAY SYSTEM)
38 Da eayaa Traf BB IV SISTM TUGGU (DLY SYSTM) Kedaaga ae buffer erver µ Keberagaa ae Gambar 4. : model em uggu ada em uggu, aggla yag daag ada aa emua bu, aggla erebu meuggu ama ada alura/eralaa yag beba
BAB II LANDASAN TEORI. Pada bab II ini, akan dijelaskan tentang teori yang dipakai dalam
BAB II LANDASAN TEORI Pada bab II, aa djelasa tetag teor yag dpaa dalam semvarogram asotrop. Sela tu juga aa dbahas megea teor peduug dalam melaua peasra aduga cadaga baust d daerah Mempawah Kalmata, dataraya
Integral Mcshane Fungsi Bernilai Banach
ea shae s Bea Baah Hey Pbawao Syawa sa aeaa Uvesas Saaa Dhaa Yoyaaa e-a heybs@sasdad Absa ea Shae eaa ea e Rea ya ea daa ea Heso-zwe da evae dea ea Lebese D daa aaah aa dbaaa sa ea ea Shae ya s bea ada
SISTEM PENDUKUNG KEPUTUSAN UNTUK PENGADAAN BAHAN BAKU DINAMIS DENGAN ADANYA DISKON DAN BATAS MASA KADALUARSA
JURNAL NFORMATKA Vol 4, No., Jauar SSTEM PENUKUNG KEPUTUSAN UNTUK PENGAAAN BAHAN BAKU NAMS ENGAN AANYA SKON AN BATAS MASA KAALUARSA S Mahsaah Budja Te dusr, Faulas Teolog dusr Uversas Ahmad ahla ABSTRAK
PENDUGAAN DURBIN WATSON UNTUK MENGATASI OTOKORELASI DALAM ANALISIS REGRESI LINEAR SKRIPSI
PENDUGAAN DURBIN WATSON UNTUK MENGATASI OTOKORELASI DALAM ANALISIS REGRESI LINEAR SKRIPSI Daua uu Memeuh Persyaraa Peyelesaa Program Saraa Sas Jurusa Maemaa Faulas Maemaa da Ilmu Pegeahua Alam Uversas
H dinotasikan dengan B H
Delta-P: Jural Matemata da Pedda Matemata ISSN 089-855X Vol., No., Aprl 03 OPERATOR KOMPAK Mustafa A. H. Ruhama Program Stud Pedda Matemata, Uverstas Kharu ABSTRAK Detahu H da H dua ruag Hlbert, B H )
9. SOAL-SOAL STATISTIKA
9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra
9. SOAL-SOAL STATISTIKA
9. SOAL-SOAL STATISTIKA UN00SMK. Dagram lgara d bawah meyaja jes estrauruler d suatu SMK yag dut oleh 500 orag sswa. Baya sswa yag tda megut estrauruler Pasbra adalah.. A. 00 sswa Olah B. 50 sswa Pasbra
KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH. Ariyanto* ABSTRACT
Aryato, Kaja Sfat Keompaa pada Ruag Baah KAJIAN SIFAT KEKOMPAKAN PADA RUANG BANACH Aryato* ABSTRACT The propertes of ompatess Baah spaes ths paper s a geeralzato of a ompat uderstadg the system o the real
BAB 3 PENYELESAIAN PERSAMAAN DIFFERENSIAL BIASA
BAB PENYELESAIAN PERSAMAAN DIFFERENSIAL BIASA Meode Euler Meode Euler adala Meode ampira palig sederaa uu meelesaia masala ilai awal: ( Biasaa diasumsia bawa peelesaia ( dicari pada ierval erbaas ag dieaui
Fungsional Aditif Ortogonal pada W 0 (E) di dalam R n. Riyadi. Fakultas Keguruan dan Ilmu Pendidikan Universitas Sebelas Maret
JM Volue I Noor Deseer 0 Fugsoal Ad Orogoal pada W 0 () d dala R Ryad Faulas Kegurua da Ilu Pedda Uversas Seelas Mare Asrac Ths paper dscusses aou a represeao heore o a orhogoally addve ucoal o W 0 ()
HIMPUNAN RENTANGAN DAN BEBAS LINIER. di V. Vektor w dikatakan sebagai kombinasi linier dari vektor-vektor v, 1
HIMPUNAN RENTANGAN DAN BEBA LINIER HIMPUNAN RENTANGAN Defs (Kombas Ler) Msala V suatu ruag etor atas feld F. w etor d V, da, 1, juga etoretor d V. Vetor w dataa sebaga ombas ler dar etor-etor, 1, ja w
METODE NUMERIK ROSENBERG DENGAN ARAH PENCARIAN TERMODIFIKASI PENAMBAHAN KONSTANTA l k
Prma: Jural Program Stud Pedda da Peelta Matemata Vol. 6, No., Jauar 07, hal. 7-59 P-ISSN: 0-989 METODE NUMERIK ROSENBERG DENGAN ARAH PENCARIAN TERMODIFIKASI PENAMBAHAN KONSTANTA l UNTUK BEBERAPA NILAI
PRAKTIKUM 5 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel
Praktkum 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 5 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa
PRAKTIKUM 7 Penyelesaian Persamaan Non Linier Metode Secant Dengan Modifikasi Tabel
Praktkum 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel PRAKTIKUM 7 Peelesaa Persamaa No Ler Metode Secat Dega Modfkas Tabel Tujua : Mempelajar metode Secat dega modfkas tabel utuk peelesaa
BAB III MENENTUKAN JADWAL OPTIMUM PERAWATAN OVERHAUL. MESIN OKK Gill BCG1-P2 PADA BAGIAN DRAWING PT VONEX INDONESIA
BAB III MENENTUKAN JADWAL OPTIMUM PERAWATAN OVERHAUL MESIN OKK Gll BCG1-P PADA BAGIAN DRAWING PT VONEX INDONESIA 3.1 Pedahulua Pada Bab II elah djelaska megea eor eor yag dbuuhka uuk meeuka jadwal opmum
Bukti Teorema Sisa China dengan Menggunakan Ideal Maksimal
Vol 5, No, 9-98, Jauar 9 But Teorema Ssa Cha dega egguaa deal asmal Abstra Sstem perogruea yag dapat dcar peyelesaaya secara teor blaga dasar teryata dapat dbuta melalu teor-teor strutur aljabar hususya
Penerapan Aljabar Max Plus Interval pada Jaringan Antrian dengan Waktu Aktifitas Interval
Peerapa Aljabar Max Plus Ierval pada Jarga Ara dega Wau Afas Ierval M. Ady Rudho Mahasswa S Maeaa FMIPA UGM da Saff Pegajar FKIP Uversas Saaa Dhara Yogyaara [email protected] Sr Wahyu, Ar Suparwao Jurusa
LAMPIRAN I GREEK ALPHABET
LAMPIRAN I GREEK ALPHABE Α, Alpha Μ, µ Mu Ψ, Psi Β, β Ba Ν, ν Nu Ω, ω Oga. Γ, γ Gaa, δ Dla Ε, ε Epsilo Ζ, ζ Za Η, η Ea Θ, θ ha Ι, ι Ioa Κ, κ Kappa Λ, λ Labda Ξ, ξ i Ο,ο Oico Π, π Pi Ρ, ρ Rho Σ, σ Siga
KAJIAN MODEL REGRESI ASYMTOTIC
Podg Sema Naoal Peelta, Pedda da Peeaa MIPA aulta MIPA, Uveta Nege Yogaata, 6 Me 009 KAJIAN MODEL REGRESI ASYMOIC Yul Ada, Da Cahawat, da Nov Yat Juua Matemata MIPA UNSRI Abta Model Rege ole meml ebaa
BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.
BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belaag Metode aalss yag telah dbcaraa hgga saat adalah aalss terhadap data megea sebuah araterst atau atrbut da megea sebuah varabel dsrt atau otu. Tetap, sebagamaa dsadar, baya
Regresi Linier Sederhana Definisi Pengaruh
Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh
8.4 GENERATING FUNCTIONS
8.4 GEERATIG FUCTIOS Fugs pembagt Fugs pembagt dguaa utu merepresetasa barsa secara efse dega megodea usur barsa sebaga oefse deret pagat dalam varabel. Fugs pembagt dapat dguaa utu: memecaha berbaga masalah
BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.
BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks
BAB 6 NOTASI SIGMA, BARISAN DAN DERET
BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat
Gambar 3.1Single Channel Multiple Phase
BAB III MODEL ANTRIAN PADA PEMBUATAN SIM C. Sigle Chael Multiple Phase Sistem atria sigle chael multiple phase merupaa sistem atria dimaa pelagga yag tiba, dapat memasui sistem dega megatri di tempat yag
4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data
//203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura
Hidraulika Komputasi
Hdraulka Kompuas Meoda Beda Hgga Ir. Djoko Lukao, M.Sc., Ph.D. Jurusa Tekk Spl Fakulas Tekk Uversas Gadjah Mada Peyelesaa Pedekaa Karea dak dperoleh peyelesaa aals, maka dguaka peyelesaa pedekaa umers.
MATEMATIKA INTEGRAL RIEMANN
MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN Ses NGAN INTEGRAL RIEMANN A. NOTASI SIGMA a. Defs Notas Sgma Sgma (Σ) adalah otas matematka megguaka smbol yag mewakl pejumlaha da beberapa suku yag memlk
BAB 3 Interpolasi. 1. Beda Hingga
BAB Iterpolas. Hgga. Iterpolas Lear da Kuadrat. Iterpolas -Maju da -Mudur Newto 4. Polo Iterpolas Terbag Newto 5. Polo Iterpolas Lagrage . Hgga Msala dbera suatu tabel la-la uers j j dar suatu ugs pada
= 8 = 7. x 4 = 24 = 8 = 5 = 13. pada persamaan ketiga dan x 3 = 5
III. REDUKSI GANJIL-GENAP/REDUKSI SIKLIS.. Alortma Sequesal Coto 9. Selesaka sstem persamaa erkut : Jawa 6 x + x = 8 x + x 5 x = 7 x + x 6 x = 5 x + 8 x = Vektor x = [ x x x x ] T dperole melalu prosedur
Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka
oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM
PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka
titik tengah kelas ke i k = banyaknya kelas
STATISTIKA Bab 0 UKURAN PEMUSATAN DAN PENYEBARAN. Mea X. a. Data Tuggal... 3 b. Data Kelompo ( dstrbus frewes) f. f. f.... f. 3 3 f f f... f = f. f 3 Ket : tt tegah elas e = bayaya elas f frewes elas e
Ring Noetherian dan Ring Artinian
Jual Saismat, Maet 2013, Halama 79-83 ISSN 2086-6755 htt://ojs.um.ac.id/idex.h/saismat Vol. II, No. I Rig Noetheia da Rig Atiia The Atiia Rig ad The Noetheia Rig Fitiai Juusa Matematia Seolah Tiggi Ilmu
Deret Positif. Dengan demikian, S = 1: Kemudian untuk deret lain, misalkan L = : Maka
oi eswa (fmipa-itb) Deret Positif Deret (ta berhigga) adalah ugapa berbetu a + a + a 3 + a 4 + dega a i disebut suu. Pejumlaha ii berbeda dega pejumlaha dua, tiga, atau berhigga bilaga. Maa, ita perlu
BAB IX. STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:
BAB IX. STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data,
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Aalss Regres Perubaha la suatu varabel tda selalu terjad dega sedrya amu perubaha la varabel tu dapat pula dsebaba oleh berubahya varabel la yag berhubuga dega varabel tersebut. Utu
3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut
3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas
Ruang Banach. Sumanang Muhtar Gozali UNIVERSITAS PENDIDIKAN INDONESIA
Ruag Baach Sumaag Muhtar Gozal UNIVERSITAS PENDIDIKAN INDONESIA Satu kose etg d kulah Aalss ugsoal adalah teor ruag Baach. Pada baga aka drevu defs, cotoh-cotoh, serta sfat-sfat etg ruag Baach. Kta aka
JENIS BUNGA PEMAJEMUKAN KONTINYU
JENIS BUNGA PEMAJEMUKAN KONTINYU Suku Buga Nomal Suku Buga Efektf Hubuga ataa Suku Buga Nomal da Efektf Aus Daa Dskt da Aus Daa Kotyu SUKU BUNGA NOMINAL & SUKU BUNGA EFEKTIF Selama daggap aus daa (peemaa
STATISTIKA. Contoh : hasil ulangan Matematika 5 siswa sbb: Pengertian Statistika dan Statistik:
STATISTIKA Pegerta Statsta da Statst: Statsta adalah lmu pegetahua yag membahas metode-metode lmah tetag ara-ara pegumpula data, pegolaha, pegaalsa da peara esmpula. Statst adalah umpula data, blaga ataupu
EKSISTENSI BASIS ORTHONORMAL PADA RUANG HASIL KALI DALAM
Ed-Math; ol Tah EKITENI BAI ORTHONORMAL PADA RUANG HAIL KALI DALAM Mhammad Kh Abstras at rag etor ag dlegap oleh sat operas ag memeh beberapa asoma tertet damaa Rag Hasl Kal Dalam (RHKD) Pada RHKD deal
ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar.
ANALISIS REGRESI Berdasara betu eleara data, model regres dapat dlasfasa mead dua macam yatu lear da o-lear. Ja pola data lear maa dguaa pemodela lear. Begtu uga sebalya apabla pola data tda lear maa dguaa
BAB II KAJIAN TEORI. tertentu (Martono, 1999). Sistem bilangan real dinotasikan dengan R. Untuk
5 BAB II KAJIAN TEOI A. Sstem Blaga eal Sstem blaga real adalah hmpua blaga real ag dserta dega operas pejumlaha da perala sehgga memeuh asoma tertetu (Martoo, 999). Sstem blaga real dotasa dega. Utu lebh
GARIS DAN BIDANG DALAM RUANG EUCLID BERDIMENSI N
GARIS DAN BIDANG DALAM RUANG EUCLID BERDIMENSI N SKRIPSI Dajua dalam raga meelesaa Stud Strata Satu utu mecapa gelar Sarjaa Sas Oleh Nama : M SOLIKIN ADRIANSAH NIM : 4504009 Program Stud Jurusa : Matemata
SOLUSI PERSAMAAN DIFERENSIAL BOLTZMANN LINEAR. Agus Sugandha
JMP : Volume Nomor 2, Oober 2009 SOUSI PERSAMAAN DIFERENSIA BOTZMANN INEAR Agus Sugadha Faulas Sais da Tei, Uiversias Jederal Soedirma Purwoero, Idoesia Email : [email protected] ABSTRACT. I his research,
BAB III UKURAN PEMUSATAN DATA
BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah
Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.
Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk
Ukuran Dispersi Multivariat
Bab IV Ukua Disesi Mulivaia Pada bab ii, eama-ama aka dikemukaka defiisi eag veko vaiasi vaiabel-vaiabel sada (VVVS sebagai ukua disesi mulivaia akala seluuh vaiabel yag eliba adalah vaiabel sada. Selajuya
PEMODELAN DUA DIMENSI RESERVOIR GEOTERMAL SISTEM DUA FASA MENGGUNAKAN METODE FINITE DIFFERENTIAL. 3.1 Formulasi dan Aproksimasi Model Matematis
BAB III EMODELAN DUA DIMENSI RESERVOIR GEOERMAL SISEM DUA FASA MENGGUNAAN MEODE FINIE DIFFERENIAL. Foma da Apoma Mode Maema Reeo a aa dmodea adaa eeo da da aa qd domaed. Mea aa da pada eoema mma bepa aa
BAB III ISI. x 2. 2πσ
BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)
KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.
KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah
MODEL DINAMIS : AUTOREGRESSIVE DAN DISTRIBUSI LAG
MODEL DINAMIS : AUTOREGRESSIVE DAN DISTRIBUSI LAG SKRIPSI Dajua epada Faulas Maemaa da Ilmu Pegeahua Alam Uversas Neger ogyaara uu memeuh sebaga persyaraa gua memperoleh gelar Sarjaa Sas Oleh: Naala Jagrum
ANALISIS & INTERPRETASI DATA KINETIKA SISTEM REAKTOR BATCH
NLISIS & INTERPRETSI DT KINETIK SISTEM REKTOR BTH PEROBN KINETIK REKSI Salah sau caupa aau ruag gup sud ea reas adalah peeua ecepaa reas secara uaaf; hal mejad bera peerjaa seorag chemcal egeer yag harus
FUNGSI BESSEL. 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial.
FUNGSI BESSEL 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial. x 2 y ''+xy'+(x 2 - n 2 )y = 0, n ³ 0 (1) yang dinamakan persamaan diferensial Bessel. Penyelesaian
STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis
STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma
PENGENDALIAN OPTIMAL PADA PENANGANAN TUBERKULOSIS DUA STRAIN
PEGEDAA OPMA PADA PEAGAA UERKUO DUA RA ma Haaf Emal : [email protected]. Malja Ema Way Jsa Maemaa FMPA- abaya ARAK Pegeala beloss a sa lae a mela meaa sala sa alas a eo egeala omal. ja a egeala aala megag
ANALISA HANTARAN GELOMBANG LISTRIKMAGNET DENGAN MENGGUNAKAN METODA FINITE DIFFERENCE TIME DOMAIN (FDTD)
Tuoral Rse Uggula Terpadu RUT VI PNGMBANGAN SISTM RADAR BAWA TANA PULSA IRP ANALISA ANTARAN GLOMBANG LISTRIKMAGNT DNGAN MNGGUNAKAN MTODA FINIT DIFFRN TIM DOMAIN FDTD Ieses P db Peel Uama Ir. Josapha Teuo
Pemecahan Masalah Integer Programming Biner Dengan Metode Penambahan Wawan Laksito YS 6)
Pemecaha Masalah Ieger Programmg Ber Dega Meode Peambaha Wawa Lakso YS 6) ISSN : 1693 1173 Absrak Program Ler adalah perecaaa akfas-akfas uuk memperoleh suau hasl yag opmal. Tdak semua varabel kepuusa
Prosiding SPMIPA; pp: 8-15; 2006 ISBN:
Posidig SPMIP; : 8-5; 6 ISN: 9797447 PERNNGN PENGENLI ERORE RENH MELLUI REUSI ORE PLN N PENGENLI ENGN MEOE PERURSI SINGULR si Raiigas Widowai Juusa Maemaia FMIP UNIP Semaag Jl Pof H Soedao SH embalag Semaag
BAB III DATA DAN METODE PENGOLAHAN DATA
BAB III DATA DA ETODE PEGOLAHA DATA 3. Daa Daa ag dguaa adalah daa ecepaa arus d perara Sela Lfaaola da uu edees edees orelasa dega feoea El ño da La ña pada ahu-ahu 004 sapa 006 dguaalah daa Ides Oslas
PROSIDING SEMINAR NASIONAL STATISTIKA UNIVERSITAS DIPONEGORO 2011 ISBN: INTERVAL KONFIDENSI SPLINE KUADRAT
PROSIDING SEMINAR NASIONAL SAISIA UNIVERSIAS DIPONEGORO 0 ISBN: 978-979-097-4-4 INERVAL ONFIDENSI SPLINE UADRA DENGAN PENDEAAN PIVOAL QUANIY Rowa Dafl Saraamual I Noma Budaara ) Mahasswa Magser Jurusa
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,
Penelitian Operasional II Teori Permainan TEORI PERMAINAN
Peelta Operasoal II Teor Permaa 7 2 TEORI PERMAINAN 2 Pegatar 2 Krtera Tekk Permaa : () Terdapat persaga kepetga datara pelaku (2) Setap pema memlk stateg, bak terbatas maupu tak terbatas (3) Far Game
BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah
BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,
