PREDIKSI UJIAN NASIONAL MATEMATIKA TAHUN 2009

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PREDIKSI UJIAN NASIONAL MATEMATIKA TAHUN 2009"

Transkripsi

1 PREDIKSI UJIAN NASIONAL MATEMATIKA TAHUN 009

2 . Persamaan kuadrat yang akar-akarnya 5 dan - adalah A. x² + 7x + 0 = 0 B. x² - 7x + 0 = 0 C. x² + 3x + 0 = 0 D. x² + 3x - 0 = 0 E. x² - 3x - 0 = 0. Kawat sepanjang 0 m akan dibuat kerangka seperti pada gambar di bawah ini Agar luasnya maksimum, pajang kerangka (p) tersebut adalah A. 6 m B. 8 m C. 0 m D. m E. 4 m 3. Harga kg mangga, kgjeruk, dan kg anggur adalah Rp70.000,00, dan harga kg mangga, kgjeruk, dan kg anggur adalah Rp ,00. Jika harga kg mangga, kgjeruk, dan 3 kg anggur Rp ,00, maka harga kg jeruk adalah A. Rp 5.000,00 B. Rp 7.500,00

3 C. Rp 0.000,00 D. Rp.000,00 E. Rp 5.000,00 4. Perhatikan gambar! Gambar tersebut adalah grafik fungsi kuadrat A. y = x + x + 6 B. y = x x 6 C. y = x x 6 D. y = x x + 3 E. y = x + x Persamaan grafik fungsi kuadrat yang mempunyai titik balik minimum (,) dan melalui titik (,3) adalah A. y x x B. y x x 3 C. y x x D. y x x E. y x x 3

4 6. Jika f : R R, g : R R dan dinyatakan f(x) = x + 3 dan (gof) (x) = x + 3 x + 6, maka fungsi g (x) = A. 8x + x 5 B. 8x x 5 C. 4x + x 5 D. 8x + x 5 E. 8x x 5 7. Himpunan penyelesaian persamaan 6 sin x + cos x = untuk 0 x < 360 adalah A. {5, 05} B. {5, 95} C. {75, 95} D. {75, 345} E. {05, 345} 8. Diketahui dan 5 Log7 q. Maka 5 Log63 A. B. C. q p pq q pq p

5 D. q p E. p + q 9. Perhatikan gambar berikut! Berat badan siswa pada suatu kelas disajikan dengan histogram seperti pada gambar. Rataan berat badan tersebut adalah A. 64,5 kg B. 65 kg C. 65,5 kg D. 66 kg E. 66,5 kg 0.Jika f(x) dibagi dengan (x ) sisanya 4, sedangkan jika f(x) dibagi dengan (x 3) sisanya 0. Jika f(x) dibagi dengan (x ) (x 3) sisanya adalah A. 8x + 8 B. 8x 8 C. 8x+8 D. 8x 8

6 E. 8x + 6.Persamaan garis singgung melalui titik A(-, - ) pada lingkaran x y x 6y 3 0adalah A. x y 5 = 0 B. x y + = 0 C. x + y + 4 = 0 D. 3x y + 4 = 0 E. x y + 3 = 0 0.Diketahui matriks S = 3 dan M = 0 3 jika fungsi f(s,m) = S² - M², maka matriks f(s+m, S-M) adalah A B C D A

7 3.Salah satu persamaan garis singgung lingkaran x +y = 5 yang tegak lurus garis y x + 3 = 0 adalah A. y = 5 x 5 5 B. y = x 5 C. y = x D. y = -x E. y = x Persamaan garis singgung pada lingkaran x y x 6y 7 0 di titik yang berabsis 5 adalah A.4x y 8= 0 B. 4x y + 4 = 0 C. 4x y +0 = 0 D.4x + y 4 = 0 E. 4x + y 5 = 0 5.Diketahui segitiga PQR dengan P(0,,4), Q(, - 3, ), dan R(-, 0,). Besar sudut PRQ = A. 0 0 B C D E. 30 0

8 6.Diketahui persamaan matriks a 4 b 30 c d Nilai a + b + c + d = A. 7 B. 6 C. D. 3 E. 7 7.Nilai 3 x Lim x 4 x x 8 A. B. C. 7 4 D. 0 E. 4 8.Seorang anak menabung di suatu bank dengan selisih kenaikan tabungan antarbulan tetap. Pada bulan pertama sebesar Rp ,00, bulan kedua Rp

9 55.000,00, bulan ketiga Rp ,00, dan seterusnya. Besar tabungan anak tersebut selama dua tahun adalah A. Rp ,00 B. Rp ,00 C. Rp ,00 D. Rp ,00 E. Rp ,00 9.Garis yang persamaannya x y +3 =0 ditransformasikan dengan transformasi yang berkaitan dengan matriks A. 3x + y 3 = 0 B. 3x y 3 =0 C. 3x + y + 3 = 0 D. x + y + 3 = 0 E. x y + 3 = Persamaan bayangan garis itu adalah 0.Persamaan bayangan parabola y x 4 diputar dengan pusat O(0,0) sejauh 80 0 adalah A. x = y + 4 B. x = - y + 4 C. x = -y 4 D. y = -x 4 E. y = x + 4

10 .Dengan persediaan kain polos 0 m dan kain bergaris 0 m, seorang penjahit akan membuat model pakaian jadi. Model I memerlukan m kain polos dan,5 m kain bergaris. Model II memerlukan m kain polos dan 0,5 m kain bergaris. Bila pakaian tersebut dijual, setiap model I memperoleh untung Rp 5.000,00 dan model II memperoleh untung Rp 0.000,00. Laba maksimum yang diperoleh adalah sebanyak A. Rp ,00 B. Rp ,00 C. Rp ,00 D. Rp ,00 E. Rp ,00.Diketahui panjang proyeksi vector 3 a 3 A. 4 B. C. D. E pada vector 3 3 b p adalah. Nilai p adalah 3

11 3.Volum bendaputar yang terjadi,jika daerah antara kurva y = x + dan y = x +3, diputar mengelilingi sumbu X adalah 67 A B. 5 7 C D E. 5 4.Perhatikan gambar kubus ABCD.EFGH Jarak bidang ACH dan EGB adalah A. 4 3 cm B. 3 cm C. 4 cm D. 6 cm

12 E. cm 5.Diketahui kubus ABCD.EFGH dengan panjang rusuk 8 cm. Jarak titik H dan garis AC adalah A. 8 3 B. 8 C. 4 6 D. 4 3 E. 4 6.Suku banyak (x 4-3x 3-5x + x - 6) dibagi oleh (x - x - ), sisanya sama dengan A. 6x + 8 B. 6x 8 C. -8x + 6 D. -8x 6 E. -8x Nilai dari sin3x sin3xcosx x Lim 0 x3 A. B. 3

13 C. 3 D. E Diketahui barisan geometri dengan U x dan U 4 x x Rasio barisan geometri tersebut adalah A. 4 x x B. x C. 4 3 x D. x E. 4 x 9.Himpunan penyelesaian persamaan 0 0 sin x 3 cos x ;0 <x<360 0 A. {5,85} B. {75,65} C. {05,95} D. {65,55} E. {95,85} 30.Himpunan penyelesaian persamaan Cos x Sin x 0 4 = 0 0 x 360 adalah

14 A. {40,300} B. {0,330} C. {0,40} D. {60,0} E. {30,50} 3.Nilai dari sin 7x cos 3x dx =... A. B. C. D. E Volum benda putar yang terjadijika daerah yang dibatasi = 4x, x = 3 dan sumbu X diputar mengelilingi sumbu X sejauh 360 adalah A. B. 6 C. 4 D. 36 E. 48

15 33.Persamaan bayangan garis 4x - y + 5 = 0 oleh transformasi yang bersesuaian dengan matriks M sumbu Y adalah A. 3x + y 30 = 0 B. 6x + y 5 = 0 C. 7x + 3y+30 = 0 D. x + y 30=0 E. x - y + 30= 0 0 dilanjutkanpencerminan terhadap 3 3 a x. Nilai a 34.Diketahui 3 x dx 5 A. 4 B. C. D. E. = 35.Hasil 4 dx x x A. B. 4 C. 3 D.

16 E Diketahui kubus ABCD.EFGH dengan rusuk 8 cm. Panjang proyeksi DE pada bidang BDHF adalah A. B. 6 C. 4 D. 4 6 E Himpunan penyelesaian sstem pertidaksamaan y x 4x + 3y x 0 y 0 Pada gambar terletak di daerah. A. I B. II C. III D. I dan IV E. II dan III

17 38. Akar-akar persamaan.3 4x 0.3 x 8 0 adalah x dan x Nilai x + x A. 0 B. C. D. 3 E Dalam kantong I terdapat 5 kelereng merah dan 3 kelereng putih, dalam kantong II terdapat 4 kelereng merah dan 6 kelereng hitam. Dan setiap kantong diambil satu kelereng secara acak. Peluang terarnbilnya kelereng putih dan kantong I dan kelereng hitam dan kantong II adalah A B. 3 9 C. D. E Dua buah dadu dilempar undi secara bersamaan sebanyak satukali. Peluang kejadian muncul jumlah mata dadu 9 atau adalah A.

18 B. C. 4 6 D. 8 E.

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2007

SOAL UN DAN PENYELESAIANNYA 2007 1. Bentuk sederhana dari (1 + 3 ) - (4 - ) adalah... A. -2-3 B. -2 + 5 C. 8-3 D. 8 + 3 8 + 5 (1 + 3 ) - (4 - ) = (1 + 3 ) - (4-5 ) = 1 + 3-4 + 5 = 8-3 2. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20

Lebih terperinci

m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah.

m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah. . Di berikan premis sebagai berikut : Premis : Jika terjadi hujan lebat atau mendapat air kiriman maka Jakarta banjir Premis : Jalan menjadi macet dan aktivitas kerja terhambat jika Jakarta banjir Kesimpulan

Lebih terperinci

Soal Ujian Nasional Tahun 2007 Bidang Matematika

Soal Ujian Nasional Tahun 2007 Bidang Matematika Soal Ujian Nasional Tahun 007 Bidang Matematika Oleh : Fendi Alfi Fauzi 6 Desember 01 1. Bentuk sederhana dari (1 + ) (4 50) adalah... A. B. + 5 C. 8 D. 8 + E. 8 + 5. Jika log = a dan log 5 = b, maka 15

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian 1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan

Lebih terperinci

Matematika Ujian Akhir Nasional Tahun 2004

Matematika Ujian Akhir Nasional Tahun 2004 Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri

Lebih terperinci

UN MATEMATIKA IPA PAKET

UN MATEMATIKA IPA PAKET UN MATEMATIKA IPA PAKET Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Diberikan pernyataan berikut: P: Semua pramugari berwajah cantik P: Catherine seorang pramugari

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3 Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log

Lebih terperinci

SOAL TO UN SMA MATEMATIKA

SOAL TO UN SMA MATEMATIKA 1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas

Lebih terperinci

PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA

PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA Pilihlah salah satu jawaban yang paling benar! PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA TAHUN PELAJARAN 2012 / 2013 1. Ditentukan premis-premis: I. Jika Badu rajin bekerja, maka ia disayang

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ayah tidak memarahi Badu, maka Badu bahagia dan tidak nakal () Jika Ayah tidak menyayangi Badu, maka Badu tidak bahagia atau nakal Kesimpulan yang sah adalah. a. Jika

Lebih terperinci

Ujian Nasional Tahun Pelajaran 2005/2006

Ujian Nasional Tahun Pelajaran 2005/2006 Ujian Nasional Tahun Pelajaran 005/006 P Copyright oke.or.id Artikel ini boleh dicopy,diubah, dikutip, di cetak dalam media kertas atau yang lain, dipublikasikan kembali dalam berbagai bentuk dengan tetap

Lebih terperinci

Matematika EBTANAS Tahun 2002

Matematika EBTANAS Tahun 2002 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Ditentukan nilai a = 9, b = dan c =. Nilai a b c = 9 EBT-SMA-0-0 Hasil kali akar-akar persamaan kuadrat + = 0 adalah EBT-SMA-0-0 Persamaan kuadrat + (m ) + 9 = 0

Lebih terperinci

1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... D E

1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... D E 1. Dengan merasionalkan penyebut, bentuk sederhana dari adalah... A. 3-3 + 21-7 21-21 + 7 2. Persamaan (2m - 4)x² + 5x + 2 = 0 mempunyai akar-akar real berkebalikan, maka nilai m adalah... A. -3-3 6 Kunci

Lebih terperinci

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA TRYOUT UN SM/M 04/0 MTMTIK IP. iketahui premis-premis berikut : Premis : Jika kita tidak menjaga kebersihan, maka kita akan terserang penyakit. Premis : Jika kita terserang penyakit, maka aktivitas kita

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau

Lebih terperinci

PAKET TRY OUT UN MATEMATIKA IPA

PAKET TRY OUT UN MATEMATIKA IPA PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA UJIAN NASIONAL TAHUN PELAJARAN 007/008 MATEMATIKA (D0) SMA/MA - PROGRAM STUDI IPA KODE : P 5 UTAMA SOAL :. Ingkaran dari pernyataan Beberapa siswa senang belajar matematika adalah... A. Ada siswa tidak

Lebih terperinci

b c a b a c 1. Bentuk sederhanaa dari

b c a b a c 1. Bentuk sederhanaa dari 7 a b c. Bentuk sederhanaa dari 6 6a b c c A. a b b B. a c C. b a c bc D. a E. 7 7 c a b. Dalam kantong kantong diambil dua kelereng sekaligus, maka peluang mendapatkan kelereng satu berwarna merah dan

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran 00/00 SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D0) SELASA, 6 MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL 0 0-0-D0-P0

Lebih terperinci

D. 90 meter E. 95 meter

D. 90 meter E. 95 meter 1. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah... A. x² + 7x + 10 = 0 B. x² - 7x + 10 = 0 C. x² + 3x + 10 = 0 Kunci : E Rumus : (x - x 1 ) (x - x 2 ) = 0 dimana x 1 = 5, dan x 2 = -2 (x - 5) (x

Lebih terperinci

PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A01) 5b Dengan merasionalkan penyebut, bentuk sederhana dari 5 2

PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A01) 5b Dengan merasionalkan penyebut, bentuk sederhana dari 5 2 PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A0).. a bc Bentuk sederhana dari 9. a b c c a b. (C) ab c a b c a c b ac b. Dengan merasionalkan penyebut, bentuk sederhana dari. (C). (E).. (D). 7 9 log.

Lebih terperinci

PREDIKSI SOAL MATEMATIKA UN 2015 ( TUGAS KELOMPOK 1 )

PREDIKSI SOAL MATEMATIKA UN 2015 ( TUGAS KELOMPOK 1 ) PREDIKSI SOAL MATEMATIKA UN 0 ( TUGAS KELOMPOK ) SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 40 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2008

SOAL UN DAN PENYELESAIANNYA 2008 1. Ingkaran dari pernyataan, "Beberapa bilangan prima adalah bilangan genap." adalah... Semua bilangan prima adalah bilangan genap Semua bilangan prima bukan bilangan genap Beberapa bilangan prima bukan

Lebih terperinci

Page 1

Page 1 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 6/7. Bentuk sederhana dari ( + ) ( 5 ) adalah. A. C. 8 E. 8 + 5 B. + 5 D. 8 + ( + ) ( 5 ) ( + ) (. 5 ) ( + ) ( 5 ) + + 5 - + 8 8 - Jawabannya

Lebih terperinci

SOAL LATIHAN UN UNBK USBN SMA PROGRAM IPA LATIHAN SOAL UN DAN UJIAN SBMPTN / PTS 2016/2017

SOAL LATIHAN UN UNBK USBN SMA PROGRAM IPA LATIHAN SOAL UN DAN UJIAN SBMPTN / PTS 2016/2017 MATEMATIKA IPA SOAL LATIHAN UN UNBK USBN SMA PROGRAM IPA. Diketahui premis-premis : Jika gaji pegawai naik, maka harga barang naik Jika harga barang naik maka semua rakyat Kesimpulan yang sah dari premis-premis

Lebih terperinci

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 1. Akar-akar persamaan kuadrat x 2 +ax - 4=0 adalah p dan q. Jika p 2-2pq + q 2 =8a, maka nilai a =... A. -8 B. -4 C. 4 D. 6 E. 8 2. Persamaan

Lebih terperinci

NAMA : NO PESERTA : 3. Bentuk sederhana dari Diketahui 2 log 5 = p dan 2 log 3 = q. Bentuk 3 log 20 dinyatakan dalam p dan q adalah...

NAMA : NO PESERTA : 3. Bentuk sederhana dari Diketahui 2 log 5 = p dan 2 log 3 = q. Bentuk 3 log 20 dinyatakan dalam p dan q adalah... NAMA : NO PESERTA : 1. Perhatikan premis-premis berikut. Premis 1 : Jika 10 bilangan genap maka 7 tidak habis dibagi Premis : Jika 7 tidak habis dibagi maka bilangan ganjil Premis : bukan bilangan ganjil

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan

Lebih terperinci

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. 1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00

Lebih terperinci

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan Uji Coba Ujian Nasional tahun 009 Satuan pendidikan Mata pelajaran Program Waktu. Diketahui premis-premis berikut : ). p ~ q ). q r : SMA : Matematika : IPA : 0 menit.. Negasi (ingkaran) dari kesimpulan

Lebih terperinci

Istiyanto.Com Media Belajar dan Berbagi Ilmu

Istiyanto.Com Media Belajar dan Berbagi Ilmu Istiyanto.Com Media Belajar dan Berbagi Ilmu Dapatkan tutorial-tutorial TIK/komputer dan soal-soal Matematika secara mudah dan gratis dengan berlangganan melalui email. SOAL UAN MATEMATIKA JURUSAN BAHASA

Lebih terperinci

Matematika EBTANAS Tahun 1995

Matematika EBTANAS Tahun 1995 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Grafik fungsi kuadrat di samping (,) persamaannya y = + + y = + y = + (0,) y = + y = + EBT-SMA-9-0 Akar-akar persamaan kuadrat = 0 adalah dan. Persamaan kuadrat

Lebih terperinci

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( )

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( ) Nama : Ximple Education No. Peserta : 08-6600-747. Bentuk sederhana dari 6 6 3 3 5 64 7 000 3 A. 36 B. 6 C. D. 6 E. 36 =.. Bentuk sederhana dari ( 6)(6 +3 6) 3 4 A. 3 ( 3 + 4) B. 3 ( 3 + 4) C. ( 3 + 4)

Lebih terperinci

UN SMA IPA 2014 Pre Matematika

UN SMA IPA 2014 Pre Matematika UN SMA IPA 04 Pre Matematika Kode Soal Doc. Name: UNSMAIPA04PREMAT999 Doc. Version : 04-0 halaman 0. Diketahui premis-premis berikut: Premis : Jika harga turun, maka penjualan naik. Premis : Jika permintaan

Lebih terperinci

disesuaikan dengan soal yaitu 2 atau 3 )

disesuaikan dengan soal yaitu 2 atau 3 ) SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 6/7. Bentuk sederhana dari ( + ) ( 5 ) adalah. A. C. 8 E. 8 + 5 B. + 5 D. 8 + ( + ) ( 5 ) ( + ) (. 5 ) ( + ) ( 5 ) + + 5 - + 8 8 - Jawabannya

Lebih terperinci

Copyright all rights reserved

Copyright   all rights reserved Latihan Soal UN SMK 0 Program Teknik Mata Pelajaran : Matematika Jumlah Soal : 0 Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional (LJUN) yang tersedia

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010 TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang

Lebih terperinci

Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran

Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran 009 00 Petunjuk Umum:. Tulislah nomor dan nama pada lembar jawaban!. Periksa dan bacalah soal dengan teliti!. Dahulukam

Lebih terperinci

Matematika EBTANAS Tahun 2003

Matematika EBTANAS Tahun 2003 Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +

Lebih terperinci

UN SMA IPA 2002 Matematika

UN SMA IPA 2002 Matematika UN SMA IPA 00 Matematika Kode Soal Doc. Name: UNSMAIPA00MAT999 Doc. Version : 0-0 halaman 0. Ditentukan nilai a = 9, b =, dan c =. Nilai 9 8 0. Hasil kali akar-akar persamaan kuadrat 0 adalah... - a b

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/010 MATEMATIKA PROGRAM STUDY IPA PEMBAHAS : 1. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 010 1. Perhatikan

Lebih terperinci

SANGGAR 14 SMA JAKARTA TIMUR

SANGGAR 14 SMA JAKARTA TIMUR SANGGAR 4 SMA JAKARTA TIMUR SOAL TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan yang

Lebih terperinci

SOAL TRY OUT MATEMATIKA 2009

SOAL TRY OUT MATEMATIKA 2009 SOAL TRY OUT MATEMATIKA 009. Diberikan premis-premis :. jika semua siswa SMA di DKI Jakarta lulus ujian, maka Pak Gubernur DKI Jakarta sujud syukur. Pak Gubernur DKI Jakarta tidak sujud syukur negasi kesimpulan

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

9x 2 15x + 8, maka nilai dari g (4) =... A. 12 B. 14 C. 15 D. 36 E. 44

9x 2 15x + 8, maka nilai dari g (4) =... A. 12 B. 14 C. 15 D. 36 E. 44 MATEMATIKA IPA PAKET A. Diberikan nilai p =, q = 9 dan r = 8 maka nilai paling sederhana dari A. 78 9 p p q q r r =... 9. Diketahui m = + dan n =. Nilai A. m n mn =.... Seorang ahli serangga memantau keberadaan

Lebih terperinci

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA SOAL PM MATEMATIKA SMA NEGERI 9 JAKARTA. Dengan merasionalkan penyebut, bentuk sederhana dari 5 5 + 5 4 5 5 e. + 5 6 + 5 adalah. Persamaan x (m + ) x = 0 mempunyai akar-akar yang berlawanan, maka nilai

Lebih terperinci

Matematika EBTANAS Tahun 2001

Matematika EBTANAS Tahun 2001 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Luas maksimum persegipanjang OABC pada gambar adalah satuan luas satuan luas C B(,y) satuan luas + y = satuan luas satuan luas O A EBT-SMA-0-0 Diketahui + Maka nilai

Lebih terperinci

PEMERINTAH KOTA MAKASSAR DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 11 MAKASSAR

PEMERINTAH KOTA MAKASSAR DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 11 MAKASSAR 1 PEMERINTAH KOTA MAKASSAR DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 11 MAKASSAR Alamat : Jalan Letjen. Pol. Mappa Oudang Nomor 66 Telepon/Fax (0411) 851262 Makassar 90223 PREDIKSI SOAL UJIAN

Lebih terperinci

UN SMA IPA 2008 Matematika

UN SMA IPA 2008 Matematika UN SMA IPA 008 Matematika Kode Soal P Doc. Name: UNSMAIPA008MATP Doc. Version : 0-0 halaman 0. Ingkaran dari pernyataan "Semua anak-anak suka bermain air." Tidak ada anak-anak yang suka bermain air. Semua

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

UN SMA IPA 2007 Matematika

UN SMA IPA 2007 Matematika UN SMA IPA 007 Matematika Kode Soal P Doc. Version : 0-0 halaman 0. Bentuk sederhana dari ( + ) - ( - 0 ) adalah... 8 8 8 0. Jika log a dan log b, maka log 0... a ab a( b) a b ab a(b ) ab 0. Persamaan

Lebih terperinci

, maka nilai dari a b c

, maka nilai dari a b c Nama : Ximple Education No. Peserta : 08-6600-747. Jika a =, b =, dan c = 3, maka nilai dari a b c 8 4 5 3 6 6 =. a b c A. 3 B. 6 C. 4 D. E. 4. Bentuk sederhana dari (3 6 )( 6 + 3 ) =. A. 30 + 4 3 B. 30

Lebih terperinci

02. Jika. 0, maka nilai x + y =... 3 = A. 14 B. 16 C. 18 D. 20 E. 21. ; a dan b bilangan bulat, maka a + b =... A. 3 B. 2 C. 2 D. 3 E.

02. Jika. 0, maka nilai x + y =... 3 = A. 14 B. 16 C. 18 D. 20 E. 21. ; a dan b bilangan bulat, maka a + b =... A. 3 B. 2 C. 2 D. 3 E. PILIHLAH JAWABAN YANG PALING TEPAT 0. Diketahui : Premis : Jika laut berombak besar, maka nelayan tidak berlayar Premis : Jika nelayan tidak berlayar, maka tidak ada ikan di pasar. Negasi dari kesimpulan

Lebih terperinci

UN SMA IPA 2012 Matematika

UN SMA IPA 2012 Matematika UN SMA IPA 0 Matematika Kode Soal E8 Doc. Name: UNSMAIPA0MATE8 Doc. Version : 0- halaman. Diketahui premis-premis berikut: Premis I : Jika hari ini hujan maka saya tidak pergi. Premis II : Jika saya tidak

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2009

SOAL UN DAN PENYELESAIANNYA 2009 1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan

Lebih terperinci

SOAL: MATEMATIKA Kelas : XII Mipa

SOAL: MATEMATIKA Kelas : XII Mipa SOAL: MATEMATIKA Kelas : XII Mipa Pilihlah salah satu jawaban yang tepat! Diberikan premis-preimis:. Jika Siti sakit maka dia pergi ke dokter.. Jika Siti pergi ke dokter maka dia diberi obat. Negasi dari

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA B Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) 0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :

Lebih terperinci

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 49 PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

x y xy x y 2 E. 9 8 C. m > 1 8 D. m > 3 E. m < x : MATEMATIKA Mata Pelajaran

x y xy x y 2 E. 9 8 C. m > 1 8 D. m > 3 E. m < x : MATEMATIKA Mata Pelajaran Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPA Waktu : 0 menit *Pilihlah satu jawaban yang benar * Tidak diperkenankan menggunakan kalkulator atau alat hitung lainnya.. Diketahui premis - premis:

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 2017/2018-1. Jika diketahui x = 8, y = 25 dan z = 81, maka nilai dari x 2 y 2 z adalah.... (a) 0 (b) 00 (c) 500

Lebih terperinci

SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA

SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA. Diketahui premis-premis : (): Jika Ani lulus ujian maka ia bekerja atau kuliah di luar negeri (): Jika rajin dan tekun

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

adalah. 3. Bentuk sederhana dari A.!!" B.!!" 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16

adalah. 3. Bentuk sederhana dari A.!! B.!! 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16 . Diketahui premis-premis berikut : Premis : Jika Dasikin belajar maka ia dapat mengerjakan soal Premis : Dasikin tidak dapat mengerjakan soal atau ia bahagia Premis : Dasikin belajar Kesimpulan yang sah

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran / SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D) SELASA, 6 MEI Pukul 7.. DEPARTEMEN PENDIDIKAN NASIONAL --D-P Hak Cipta pada

Lebih terperinci

Soal Latihan Matematika

Soal Latihan Matematika Soal Latihan Matematika www.oke.or.id Soal berikut terdiri dari 6 soal Yang merupakan rangkuman dari berbagai latihan, isi dari soal berikut meliputi : Pernyerderhanaan Persamaan grafis akar kuadrat fungsi

Lebih terperinci

UN SMA IPA 2011 Matematika

UN SMA IPA 2011 Matematika UN SMA IPA 0 Matematika Kode Soal Doc. Name: UNSMAIPA0MAT999 Doc. Version : 0- halaman 0. Suku ke- dan ke-9 suatu barisan aritmetika berturut-turut adalah 0 dan 50. Suku ke- 0 barisan aritmetika tersebut

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >> 1

DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >>  1 DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >> WWW.E-SBMPTN.COM 1 DAPATKAN SOAL SBMPTN & PEMBAHASAN 2015/2016, KLIK DI >> WWW.E-SBMPTN.COM 2 NAMA : NO PESERTA : 1. Perhatikan premis-premis berikut.

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

UN SMA IPA 2006 Matematika

UN SMA IPA 2006 Matematika UN SMA IPA Matematika Kode Soal P Doc. Version : - halaman. Sebidang tanah berbentuk persegi panjang dengan luas 8 m². Jika perbandingan panjang dan lebarnya sama dengan sebanding, maka panjang diagonal

Lebih terperinci

Try Out Matematika MIPA

Try Out Matematika MIPA . Diketahui fungsi f dan g dirumuskan oleh f(x) = x x + 6 dan g(x) = x. Jika nilai fog x = 0, maka nilai x yang memenuhi adalah. / dan / dan / dan / dan / dan. Fungsi g : R R ditentukan oleh g ( x) x x

Lebih terperinci

PREDIKSI UJIAN NASIONAL 2009

PREDIKSI UJIAN NASIONAL 2009 LEMBAGA PENJAMINAN MUTU PENDIDIKAN (LPMP) PROVINSI DAERAH KHUSUS IBU KOTA JAKARTA Alamat : Jl. Nangka No. 60, Tanjung Barat, Jagakarsa, Jakarta Selatan, Telp. (0) 79, 7099, 7067, Fax. (0) 7067 PREDIKSI

Lebih terperinci

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

adalah... pq = Dalam skala Richter, kekuatan R dari suatu gempa bumi dengan intensitas I dimodelkan dengan

adalah... pq = Dalam skala Richter, kekuatan R dari suatu gempa bumi dengan intensitas I dimodelkan dengan SOAL-SOAL TO KELAS XII IPA PAKET B. Nilai paling sederhana dari 9 9 9 9 9 4 6 6 4 adalah.... Diketahui p = + dan q =. Nilai 0 0. Apabila g g maka pq p q =... 4. Dalam skala Richter, kekuatan R dari suatu

Lebih terperinci

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010 . Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK 2, TEBO

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK 2, TEBO SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK, TEBO. Perhatikan premis-premis berikut. Premis : Jika bilangan genap maka 7 tidak habis dibagi Premis : Jika 7 tidak habis dibagi maka bilangan

Lebih terperinci

PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB

PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI SUNGAI TARAB. Dari argumentasi berikut : Premis : Jika Ibu tidak pergi maka adik senang. Premis : Jika adik senang maka dia tersenyum. Kesimpulan

Lebih terperinci

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK 1. Jarak kota P dan kota R pada sebuah peta adalah 20 cm. Jika skala pada peta tersebut 1:2.500.000, maka jarak sebenarnya dua kota tersebut adalah. A.

Lebih terperinci

UAN MATEMATIKA SMA IPA 2009 P45

UAN MATEMATIKA SMA IPA 2009 P45 1. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut bertanding Ingkaran dari kesimpulan kedua premis di atas adalah.

Lebih terperinci

PETUNJUK UMUM PETUNJUK KHUSUS

PETUNJUK UMUM PETUNJUK KHUSUS LEMBAR SOAL PERSIAPAN UJIAN NASIONAL SMA/MA Tahun Ajaran 00/009 MATEMATIKA Program Studi IPA (Berdasarkan Lampiran Permendiknas No.77 Tahun 00) Try Out UN Matematika IPA SMA/MA - Esis PETUNJUK UMUM. Tuliskan

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

Mata Pelajaran : MATEMATIKA. menit

Mata Pelajaran : MATEMATIKA. menit Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPA Waktu : 0 menit Petunjuk Pilihlah jawaban yang dianggap paling benar pada lembar jawaban yang tersedia (LJK)! Dilarang menggunakan kalkulator, kamus

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2004/2005

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2004/2005 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN /5. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB... A. cm C B. (- ) cm C. (- ) cm D. (8- ) cm E. (8- ) cm A B misal panjang

Lebih terperinci

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan Pilihlah satu jawaban yang tepat.. (x x 4 ) dx.. ULANGAN AKHIR SEMESTER TAHUN PELAJARAN 007/008 Mata Pelajaran : Matematika Kelas / Program : XII / Ilmu Alam Hari, Tanggal : Waktu : 90 menit ( ) ` a. x

Lebih terperinci