SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2005/2006

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2005/2006"

Transkripsi

1 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 00/006. Sebidang tanah berbentuk persegi panjang dengan luas 80m. Jika perbandingan panjang dan lebarnya sama dengan berbanding 4, maka panjang diagonal bidang tanah tersebut adalah. A. 9m C. 6 4 m E. 8 m B. 4 m D. 9 4 m? l L p x l 80 m p Panjang diagonal p l p : l : 4 p 4 l p x l 4 l l 4 l 80 l 80.4 l p 4 l 4. maka panjang diagonal Jawabannya adalah B Page

2 . Suatu area berbentuk persegi panjang, di tengahnya terdapat kolam renang berbentuk persegi panjang yang luasnya 80m. Selisih panjang dan lebar kolam adalah m. Di sekeliling kolam dibuat jalan selebar m. Maka luas jalan tersebut adalah A. 4m C. 68m E. 4m B. 4m D. 08m m m m Kolam renang m Luas jalan Luas area Luas kolam Luas area panjang area x lebar area panjang area + + panjang kolam lebar area + + lebar kolam cari panjang kolam dan lear kolam: Luas kolam 80 m Panjang kolam(pk) Lebar kolam(lk) + Luas kolam panjang kolam x lebar kolam (lk + ). (lk) lk + lk 80 lk + lk 80 0 (lk+)(lk-) 0 lk - (tidak berlaku) atau lk nilai lk pk lk+ + panjang area lebar area Page

3 Luas area Luas jalan m Jawabannya adalah E. Harga kg mangga, kg jeruk dan kg anggur adalah Rp ,00, dan harga kg mangga, kg jeruk dan kg anggur adalah Rp ,00, jika harga kg mangga, kg jeruk dan kg anggur Rp ,00, maka harga kg jeruk adalah. A. Rp. 000,00 C. Rp.0.000,00 E. Rp..000,00 B. Rp. 700,00 D. Rp..000,00 misal : x mangga ; y jeruk ; z anggur x + y + z () x + y + z () x + y + z 0000 () ditanya x..? subst () dan () eliminasi x: x + y + z x x + y + z x + y + z x x + 4y + 4z y z y + z 0000 (4) subs () dan () eliminasi x: x + y + z x + y + z z z z 0000 masukkan ke dalam pers (4) y + z 0000 y y y 0000 y 0000 masukkan nilai x dan y ke dalam pers () : x + y + z x x Page

4 Jawabannya adalah C x 0000 x Rp ,00 4. Dari argumentasi berikut: Jika Ibu tidak pergi maka adik senang Jika adik senang maka dia tersenyum Kesimpulan yang sah adalah: A. Ibu tidak pergi atau adik tersenyum B. Ibu pergi dan adik tidak tersenyum C. Ibu pergi atau adik tidak tersenyum D. Ibu tidak pergi dan adik tersenyum E. Ibu pergi atau adik tersenyum p ibu tidak pergi q adik senang r adik tersenyum premis : p q premis : q r p r Modus silogisme kesimpulannya adalah ibu tidak pergi maka adik tersemyum tetapi jawabannya tidak ada di atas maka cari ekuivalensinya: Ekuivalensi : p q ~q ~p ~p q Identik dengan p r ~r ~p ~p r ekuivalensinya adalah ~p r yang berarti ibu pergi atau adik tersenyum Jawabannya adalah E ( maka, dan, atau). Sebuah kapal berlayar dari pelabuhan A dengan arah sejauh 0 km. Kemudian berlayar lagi dengan arah 04 0 sejauh 40 km ke pelabuhan C. Jarak pelabuhan A ke C adalah A. 0 9 km C. 0 8 km E. 0 6 km B. 0 9 km D. 0 7 km Page 4

5 U U B C A B 0 km km A C Aturan cosinus C b a A c B c a + b - ab cos AC BC + AB - BC. AB cos ( - ) AC km Jawabannya adalah E 6. Diketahui kubus ABCD.EFGH. Dari pernyataan berikut: () AH dan BE berpotongan () AD adalah proyeksi AH pada bidang ABCD Page

6 () DF tegak lurus bidang ACH (4) AG dan DF bersilangan yang benar adalah nomor A. () dan () saja C. () dan (4) saja E. () dan (4) saja B. () dan () saja D. () dan () saja E H F G P D C A B Perhatikan gambar: untuk kondisi AH dan BE tidak berpotongan karena AH dan BE tidak terletak pada bidang yang terpisah Untuk kondisi AD adalah proyeksi AH pada bidang ABCD adalah benar tarik salah satu titik dari gris AH yang berada di luar bidang ABCD yaitu titik H ke bidang ABCD yang membentuk siku siku ke ujung titik yang lain (titik A), kemudian tarik titik tersebut didapat garis AD untuk kondisi. DF tegak lurus bidang ACH d titik P (titik berat ACH) Untuk kondisi 4 terlihat pada gambar bahwa garis AG dan DF bersilangan, karena masing-masing merupakan garis diagonal ruang yang saling berpotongan Penyataan, dan 4 benar Tidak ada jawaban yang tepat 7. Diketahui bidang empat beraturam ABCD dengan panjang rusuk 8 cm. Cosinus sudut antara bidang ABC dan bidang ABD adalah.. Page 6

7 A. B. C. D. E. D 8cm C A O B (ABC,ABD) COD OD OC BD OB ; OB AB Aturan cosinus: CD OC + OD - OC.OD cos OC.OD cos OC + OD - CD cos OC OD CD. OC. OD (4 ) (4 ) Jawabannya adalah A Page 7

8 8. Perhatikan gambar berikut : f Berat badan (kg) Berat badan siswa pada suatu kelas disajikan dengan histogram seperti pada gambar. Rataan berat badan tersebut adalah: A. 64. kg C 6. kg E. 66. kg. B. 6 kg D. 66 kg tabel distribusi frekuensi: Berat badan Frekuensi ( fi ) Nilai Tengah (xi) fi.xi Page 8

9 Rata-rata x Jawabannya adalah B f i f x i i kg A, B, C dan D akan berfoto bersama secara berdampingan. Peluang A dan B selalu berdampingan adalah. A. B. 6 C. D. E. P(A) n( A) n( S) n(s) terdapat posisi yang akan ditempati oleh A, B, C, D posisi pertama bisa ditempati oleh semuanya (4 posisi) posisi kedua bisa ditempati oleh 4 - ( posisi sudah menempati posisi pertama ) posisi ketiga bisa ditempati oleh 4 posisi keempat bisa ditempati oleh 4 mencari n (A) Banyaknya susunan A dan B selalu berdampingan: A dan B selalu berdampingan pada posisi I dan II I II III IV Banyaknya susunan I II III IV Page 9

10 A dan B selalu berdampingan pada posisi II dan III Banyaknya susunan... 4 A dan B selalu berdampingan pada posisi III dan IV I II III IV Banyaknya susunan... 4 Banyaknya susunan A dan B selalu berdampingan adalah: Maka peluang A dan B selalu berdampingan adalah : n( A B) P(A B) n( S) 4 Jawabannya adalah D 0. Nilai sin cos 0. A. ( 6 ) C. ( 6 ) E. ( 6 ) B. ( ) D. ( ) Sin ( ) cos sin cos 0 sin ( ) + cos 0 cos 0 + cos 0 cos 0 cos ( ) { cos 4 0 cos sin 4 0 Sin 0 0 }. {, +. } Page 0

11 Jawabannya adalah E. { } { 6 + }. Persamaan garis singgung pada lingkaran x + y - x 6y 7 0 di titik yang berabsis adalah.. A. 4x y 8 0 C. 4x y E.. 4x + y 0 B. 4x y D. 4x + y 4 0 Persamaan umum lingkaran: x + y + Ax + By + C 0 Dari persamaan lingkaran x + y - x 6y 7 0 didapat A - ; B -6 dan C - 7 Lingkaran menyinggung persamaan garis di titik yang berabsis atau x maka : masukkan nilai x ke dalam pers lingkaran : + y -. 6y y - 0 6y 7 0 y - 6y (y - 4) (y - ) 0 y 4 atau y maka titik singgungnya didapat (,4) dan (,) Persamaan garis singgung melalui titik (x, y ) pada lingkaran x + y + Ax + By + C 0 adalah: x. x + y. y + A (x + x ) + B ( y + y ) + C 0 - Persamaan garis singgung melalui titik (, 4) x + 4y + (-) (x + ) + (-6) ( y + 4) -7 0 x + 4y - (x + ) - ( y + 4) -7 0 x + 4y x - - y x + y Persamaan garis singgung melalui titik (, ) Page

12 x + y + (-) (x + ) + (-6) ( y + ) -7 0 x + y - (x + ) - ( y + ) -7 0 x + y x - - y x - y 8 0 Jawaban yang tersedia adalah A. Sebuah peluru ditembakkan vertical ke atas dengan kecepatan awal Vo m/detik. Tinggi peluru setelah t detik dinyatakan dengan fungsi h(t) t 4t. tinggi maksimum yang dapat dicapai peluru tersebut adalah. A. 60 m C. 40m E. 800 m B. 00 m D. 400 m Tinggi maksimum dicapai apabila h ' (t) 0 h(t) t 4t. h ' (t) 40 8t t t 8 40 detik tingggi maksimum dicapai pada t h () m Jawabannya adalah B. Persamaan lingkaran yang pusatnya terletak pada garis x 4y 4 0, serta menyinggung sumbu x negatif dan sumbu y negatif adalah A. x + y + 4x + 4y D. x + y - 4x - 4y B. x + y + 4x + 4y E. x + y - x - y C. x + y + x + y Page

13 menyinggung sumbu x negatif dan y negatif maka lingkaran berada di kuadran III : -a r (-a, -b) -b r Pusat lingkaran adalah (-a, -b) Terlihat pada gambar bahwa r -a a atau r -b b a b Pusat lingkaran yaitu titik (-a, -b) terletak pada garis x 4y 4 0 maka masukkan nilai a dan b dimana a b.( a) 4.( -a) 4 -a + 4a 4 0 a 4 0 a 4 a maka b Persamaan lingkaran dengan pusat (a,b) dan berjari-jari r (x a) + (y b) r Maka persamaan lingkaran dengan pusat (-,-) dan berjari-jari adalah (x (-)) + (y (-)) (x + ) + (y +) x + 4x y + 4 y x + y + 4x + 4y Jawabannya adalah A lim cos x 4. Nilai x cos x sin x 4 A. 0 C. E. ~ B. D. Bentuk tak tentu 0 0 dapat diselesaikan dengan faktorisasi atau L Hospital: Cara : Faktorisasi lim cos x x cos x sin x 4 lim cos x x cos x sin x 4 cos x sin x cos x sin x Page

14 lim cosx(cos x sin x) ; ingat cos A 4 cos x sin x x lim cosx(cos x sin x) x cos x 4 cos A - sin A lim (cos x sin x) x 4 cos sin cos sin Cara : L Hospital lim cos x x sin x. cos x sin x sin x cos x 4 sin. 4 sin cos 4 4 sin. sin cos Jawabannya adalah D. Turunan pertama dari f(x) sin 4 A. sin B. x sin C. x sin D. 4x sin E. 4x sin x sin 6 x 4 x sin 6 4 x. x cos6 x 4 x cos x x cosx x adalah f ' (x) x cos 4x sin f ' (x) 4 sin x. 6x x cosx jawabannya adalah E Page 4

15 Tetapi hasilnya setelah dijabarkan menjadi: 4x sin x cosx x sin x. sin ingat sin A sin A cosa x sin x.sin x x sin x.sin 6 x 4 x cosx ; Jawabannya adalah B Kita tidak boleh memilih jawaban, maka saya menyarankan untuk memilih jawaban yang pertama saja yaitu E 6. Persamaan garis singgung kurva y x di titik dengan absis adalah. A. x y + 0 C. x y E. x y B. x y + 0 D. x y cari titik singgungnya dengan memasukkan nilai absis atau x y x 8 didapat titik singgungnya (,) y (+x) gradien m y ' (+x) ( x) masukkan nilai x ( x). ( ).. persamaan garis singgung di titik (a,b) adalah: y b m (x-a) persamaan garis singgung di titik (,) adalah y ( x - ) dikalikan y 4 x x y Page

16 Jawabannya adalah A 7. Suatu pekerjaan dapat deselesaikan dalam x hari dengan biaya (4x 60 + Biaya minimum per hari penyelesaian pekerjaan tersebut adalah. A. Rp C. Rp E. Rp B. Rp D. Rp ) ribu rupiah per hari. x 000 BiayaB(x) (4x 60 + ).x x 4x - 60x Agar biaya minimum maka B ' 0 B ' (x) 8x x 60 x 0 masukkan nilai x 0 pada B menjadi: B(0) Karena nilainya dalam ribuan maka biaya minimumnya adalah 400 x 000 Rp ,- Jawabannya adalah B 8. Nilai sin x cos xdx A. - C. E. 4 B. - D. Page 6

17 0 sin x cos xdx sin x cos xdx ; sin A sin A cosa 0 - cos x. d cos x -. cos x - cos x {(-) 4 -} - {-} 0 Jawabannya adalah E 9. Volume benda putar yang terjadi, jika daerah antara kurva y x + dan y x +, diputar mengelilingi sumbu x adalah. 67 A. 07 B. 7 satuan volum C. satuan volum D. 8 satuan volum E. satuan volum satuan volum y x + y x + b V ( y y ). dx a Titik potong kurva dan garis: y y x + x + Page 7

18 x -x - 0 (x-)(x + ) 0 x dan x - titik batas atasnya dan titik batas bawahnya - V {( x ) ( x ) }. dx 4 { x 6x 9 ( x x )}. dx 4 ( x 6x 9 x x ). dx 4 ( x x 6x 8). dx {- x x x 8x } {- ( ) (8 ) (4 ) 8( ) } ( ) ( + 0) Jawabannya adalah C Perhatikan gambar berikut! Page 8

19 Luas daerah yang diarsir pada gambar adalah A. satuan luas C. satuan luas E. 9 satuan luas B. satuan luas D. 6 satuan luas y -x + 6x y x - 4x + titik potong kurva : y y -x + 6x x - 4x + x + x -6x - 4x x - 0x dibagi x - x (x- 4)(x-) 0 x 4 atau x x 4 merupakan titik potong tetapi bukan menjadi batas karena batasnya sudah ditentukan dengan x sebagai batas atasnya x merupakan batas bawah b L ( y y ) dx a { x 6x ( x 4x )} dx { x 6x x 4x )} dx { x 0x 8)} dx x x 8x (7 ) (9 ) 8( ) Page 9

20 satuan luas Jawabannya adalah D. Seorang pedagang menjual buah mangga dan pisang dengan menggunakan gerobak. Pedagang tersebut membeli mangga dengan harga Rp ,00/kg dan pisang Rp ,00/kg. Modal yang tersedia Rp ,00 dan gerobaknya hanya dapat memuat mangga dan pisang sebanyak 80 kg. Jika harga jual mangga Rp.900,00/kg dan pisang Rp.7000,00/kg, maka laba maksimum yang diperoleh adalah.. A. Rp.0.000,00 C. Rp.9.000,00 E. Rp.6.000,00 B. Rp ,00 D. Rp ,00 Misal : x mangga ; y pisang Model matematikanya: x 0 ; y0 8000x y dibagi 000 4x + y 600.() x + y 80.() Laba penjualan mangga Laba penjualan pisang Laba maksimum 00x + 000y (60,0) Page 0

21 Titik potong: Dari pers () dan () eliminasi x 4x + y 600 x 4x + y 600 x + y 80 x4 4x + 4y y - 0 y 0 x + y 80 x titik potong (60,0) Titik pojok 00x + 000y (0, 0) 0 (0, 0) (60, 0) (0, 80) Laba maksimum adalah Jawabannya adalah C. Seorang ibu membagikan permen kepada orang anaknya menurut aturan deret aritmetika. Semakin muda usia anak semakin banyak permen yang diperolehnya. Jika permen yang diterima anak kedua buah dan anak keempat 9 buah, maka jumlah seluruh permen adalah A. 60 buah C. 70 buah E. 80 buah B. 6 buah D.7 buah U n a + (n-) b U a + b U 4 9 a + b a + b 9 a + b - b 8 b 4 Page

22 a + b a 4 7 S n n (a +(n-) b) S ( ) (0) 7 Jawabannya adalah D. Sebuah bola jatuh dari ketinggian 0 m dan memantul kembali dengan ketinggian 4 kali tinggi sebelumnya, begitu seterusnya hingga bola berhenti. Jumlah seluruh lintasan bola adalah.. A. 6 m C. 7 m E. 80 m B. 70 m D. 77 m 0 m Jumlah seluruh lintasan 0m + S naik + S turun S naik S turun a 0 m + S 7 ; a bukan 0, karena deret terjadi mulanya pada 7 r Page

23 7 7 a S.4 0 r 4 4 Jumlah seluruh lintasan 0 m + S 0 m +. 0m 70 m Jawabannya adalah B 0 x 4. Diketahui matrik A, B y Jika A t. B C maka nilai x + y dan C 0, A t adalah transpose dari A A. 4 C. E. 7 B. D. A 0 A t 0 A t. B C 0 x. y 0 x + y 0 y - y - x + y 0 x + (-) 0 x 6 0 x 6 x maka nilai x + y. - Jawabannya adalah C. Diketahui a ; b 9 dan a + b. Besar sudut antara vector a dan vector b adalah. A. 4 0 C. 0 0 E. 0 0 B D. 0 Page

24 cos a.. b a. b besar sudut antara vektor a dan vektor b a dan b diketahui, a. b belum diketahui, dicari dengan cara sbb besar sudut antara vektor a dan vektor a adalah 0 0 Cos a.. a a. a a a a. a. Cos. besar sudut antara vektor b dan vektor b adalah 0 0 cos b.. b b. b b b b. b. Cos besar sudut antara vektor a b dan vektor a b adalah 0 0 cos ( a. b.).(. a b) ( a. b.).(. a b) a b. a b. Cos a b. a b.. ( a. b.).(. a b) a a + a. b + b a + b b a a + a. b + b b + a. b + 9 a. b -6 a. b - Maka: cos a.. b a. b atau Karena merupakan sudut lancip maka nilai yang berlaku adalah 0 Page 4

25 Jawabannya adalah D 6. Diketahui vector a i - 4 j - 4k, b i - j + k dan c 4i - j + k Panjang proyeksi vector ( a + b ) pada c adalah. A. C. E. 7 B. 4 D. 6 Panjang proyeksi vector ( a + b ) pada c d ( a + b ) (+)i + (- 4 - ) j + (- 4+) k i - j - k ( a b). c c d ( a b). c c (.4) (. ) (.) 4 ( ) Jawabannya adalah D 7. Persamaan bayangan garis 4x y + 0 oleh transformasi yang bersesuaian dengan matriks 0 dilanjutkan pencerminan terhadap sumbu Y adalah. A. x + y 0 0 C. 7x + y E. x - y B. 6x + y 0 D. x + y pencerminan terhadap sumbu Y 0 0 transformasi dengan dilanjutkan terhadap sumbu Y x y x y ' ' ' ' x y x ' - x x 0 x y x ' Page

26 y ' -x + y y x + y ' y x + y ' masukkan nilai x x ' menjadi y ( x ' )+ y ' y ' - x ' 6 Masukkan nilai-nilai tesebut ke dalam persamaan garis awal: 4x y ( x ' ) { y ' - x ' } x ' - y ' + 6 x ' + 0 ' ' x x - y ' x ' - y ' + 0 dikalikan -6 6 x ' + y ' Jawabannya adalah D 4x x 8. Akar-akar persamaan adalah x dan x. Nilai x + x A. 0 C. E. 4 B. D. Misal y x 4 x ( x ) y 4x x y - 0.y ( y ) ( y 9 ) 0 y y x x 0 y 9 x 9 x x Didapat x 0 dan x maka x + x 0 + Jawabannya adalah B x 9. Nilai x yang memenuhi persamaan log log log x adalah. Page 6

27 A. log B. log C. log D. - atau E. 8 atau x log log log x x log log x log log x log log x log log x x x x x -. x 0 ( x ) -. x 0 Misal y x Maka ( x ) -. x 0 y - y + 0 (y-) (y+) 0 y x x log log x + log x y - x - ; nilai x tidak ada yang memnuhi x log tidak memenuhi syarat a log b syarat b > 0 Maka jawabnya adalah x log Jawabannya adalah A 0. Penyelesaian pertidaksamaan log (x-4) + log (x+8) < log (x+6) adalah A. x > 6 C. 4< x < 6 E. 6 < x < 8 B. x > 8 D. -8 < x < 6 log (x-4) + log (x+8) < log (x+6) log (x-4) + log (x+8)- log (x+6) < 0 Page 7

28 ( x 4)( x 8) log < 0 x 6 ( x 4)( x 8) log < 0 ( x 8) ( x 4) log < 0 ( x 4) log < log ( ) x 4 < x 4 < x < 6 Syarat logaritma: ( x 4) Maka > 0 x -4 > 0 x > 4 a log b syarat b > 0 Maka jawabannya adalah x> 4 dan x< 6 atau 4< x <6 Jawabannya adalah C Page 8

UN SMA IPA 2006 Matematika

UN SMA IPA 2006 Matematika UN SMA IPA Matematika Kode Soal P Doc. Version : - halaman. Sebidang tanah berbentuk persegi panjang dengan luas 8 m². Jika perbandingan panjang dan lebarnya sama dengan sebanding, maka panjang diagonal

Lebih terperinci

UJIAN NASIONAL MATEMATIKA

UJIAN NASIONAL MATEMATIKA UJIAN NASIONAL MATEMATIKA /6. Sebidang tanah berbentuk persegi panjang dengan luas 8 m. Jika perbandingan panjang dan lebarnya sama dengan :, maka panjang diagnal bidang tanah tersebut ada lah A. 9m C.

Lebih terperinci

DEPARTEMEN PENDIDIKAN NASIONAL

DEPARTEMEN PENDIDIKAN NASIONAL ( DOKUMEN NEGARA TAHUN PELAJARAN 005/006 M A T E M A T I K A (~10). PROGRAM STUD1 IPA KURIKULUM 004 DEPARTEMEN PENDIDIKAN NASIONAL / DOKUMENNEGARA I Mata Pelajaran Program Studi : Matematika : IPA HariITanggal

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2004/2005

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2004/2005 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN /5. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB... A. cm C B. (- ) cm C. (- ) cm D. (8- ) cm E. (8- ) cm A B misal panjang

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 008/009. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Page 1

Page 1 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 6/7. Bentuk sederhana dari ( + ) ( 5 ) adalah. A. C. 8 E. 8 + 5 B. + 5 D. 8 + ( + ) ( 5 ) ( + ) (. 5 ) ( + ) ( 5 ) + + 5 - + 8 8 - Jawabannya

Lebih terperinci

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA

Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 2010/2011 Program Studi IPA Soal-Soal dan Pembahasan Ujian Nasional Matematika Tahun Pelajaran 010/011 Program Studi IPA 1. Akar-akar persamaan 3x -1x + = 0 adalah α dan β. Persamaan Kuadrat baru yang akar-akarnya (α +) dan (β +)

Lebih terperinci

UN MATEMATIKA IPA PAKET

UN MATEMATIKA IPA PAKET UN MATEMATIKA IPA PAKET Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Diberikan pernyataan berikut: P: Semua pramugari berwajah cantik P: Catherine seorang pramugari

Lebih terperinci

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA TRYOUT UN SM/M 04/0 MTMTIK IP. iketahui premis-premis berikut : Premis : Jika kita tidak menjaga kebersihan, maka kita akan terserang penyakit. Premis : Jika kita terserang penyakit, maka aktivitas kita

Lebih terperinci

PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB

PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI SUNGAI TARAB. Dari argumentasi berikut : Premis : Jika Ibu tidak pergi maka adik senang. Premis : Jika adik senang maka dia tersenyum. Kesimpulan

Lebih terperinci

Matematika EBTANAS Tahun 2003

Matematika EBTANAS Tahun 2003 Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA SOAL PM MATEMATIKA SMA NEGERI 9 JAKARTA. Dengan merasionalkan penyebut, bentuk sederhana dari 5 5 + 5 4 5 5 e. + 5 6 + 5 adalah. Persamaan x (m + ) x = 0 mempunyai akar-akar yang berlawanan, maka nilai

Lebih terperinci

A. 10 B

A. 10 B . Tujuh tahun yang lalu umur ayah sama dengan 6 kali umur Budi. Empat tahun yang akan datang kali umur ayah sama dengan kali umur Budi ditambah 9 tahun. Umur ayah sekarang adalah... DEPARTEMEN PENDIDIKAN

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA UJIAN NASIONAL TAHUN PELAJARAN 007/008 MATEMATIKA (D0) SMA/MA - PROGRAM STUDI IPA KODE : P 5 UTAMA SOAL :. Ingkaran dari pernyataan Beberapa siswa senang belajar matematika adalah... A. Ada siswa tidak

Lebih terperinci

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40. PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ayah tidak memarahi Badu, maka Badu bahagia dan tidak nakal () Jika Ayah tidak menyayangi Badu, maka Badu tidak bahagia atau nakal Kesimpulan yang sah adalah. a. Jika

Lebih terperinci

UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) UJIAN NASIONAL SMA/MA Tahun Pelajaran 004/005 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 005 Jam : 08.00 0.00 PELAKSANAAN

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2008

SOAL UN DAN PENYELESAIANNYA 2008 1. Ingkaran dari pernyataan, "Beberapa bilangan prima adalah bilangan genap." adalah... Semua bilangan prima adalah bilangan genap Semua bilangan prima bukan bilangan genap Beberapa bilangan prima bukan

Lebih terperinci

Soal Latihan Matematika

Soal Latihan Matematika Soal Latihan Matematika www.oke.or.id Soal berikut terdiri dari 6 soal Yang merupakan rangkuman dari berbagai latihan, isi dari soal berikut meliputi : Pernyerderhanaan Persamaan grafis akar kuadrat fungsi

Lebih terperinci

disesuaikan dengan soal yaitu 2 atau 3 )

disesuaikan dengan soal yaitu 2 atau 3 ) SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 6/7. Bentuk sederhana dari ( + ) ( 5 ) adalah. A. C. 8 E. 8 + 5 B. + 5 D. 8 + ( + ) ( 5 ) ( + ) (. 5 ) ( + ) ( 5 ) + + 5 - + 8 8 - Jawabannya

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2007

SOAL UN DAN PENYELESAIANNYA 2007 1. Bentuk sederhana dari (1 + 3 ) - (4 - ) adalah... A. -2-3 B. -2 + 5 C. 8-3 D. 8 + 3 8 + 5 (1 + 3 ) - (4 - ) = (1 + 3 ) - (4-5 ) = 1 + 3-4 + 5 = 8-3 2. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA A Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA B Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang

Lebih terperinci

Hak Cipta 2014 Penerbit Erlangga

Hak Cipta 2014 Penerbit Erlangga 00-00-008-0 Hak Cipta 0 Penerbit Erlangga Berilah tanda silang (X) pada huruf A, B, C, D, atau E pada jawaban yang benar!. Diketahui premis-premis: () Jika beberapa daerah dilanda banjir, maka beberapa

Lebih terperinci

Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran

Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran 009 00 Petunjuk Umum:. Tulislah nomor dan nama pada lembar jawaban!. Periksa dan bacalah soal dengan teliti!. Dahulukam

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A

SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A SOAL DAN SOLUSI MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN PAKET SOAL A. Diberikan premis-premis berikut : ) Politik tidak sehat atau Negara tentram dan damai ) Jika Negara tentram dan damai maka

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut

Lebih terperinci

UN SMA IPA 2008 Matematika

UN SMA IPA 2008 Matematika UN SMA IPA 008 Matematika Kode Soal P Doc. Name: UNSMAIPA008MATP Doc. Version : 0-0 halaman 0. Ingkaran dari pernyataan "Semua anak-anak suka bermain air." Tidak ada anak-anak yang suka bermain air. Semua

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 1. Akar-akar persamaan kuadrat x 2 +ax - 4=0 adalah p dan q. Jika p 2-2pq + q 2 =8a, maka nilai a =... A. -8 B. -4 C. 4 D. 6 E. 8 2. Persamaan

Lebih terperinci

Matematika IPA UN, Tahun 2015 Retype : Neonjogja.com

Matematika IPA UN, Tahun 2015 Retype : Neonjogja.com Matematika IPA UN, Tahun 0. Diketahui premis-premis berikut:. Saya bermain atau saya tidak gagal dalam ujian.. Saya gagal dalam ujian. Kesimpulan yang sah dari permis-permis tersebut Saya tidak bermain

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

SOAL MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A

SOAL MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN 2015 PAKET SOAL A SOAL MATEMATIKA SMA/MA IPA UNIVERSITAS GUNADARMA TAHUN PAKET SOAL A. Diberikan premis-premis berikut : ) Politik tidak sehat atau Negara tentram damai ) Jika Negara tentram damai maka rakyat makmur sejahtera

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010 TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E 1 Nama : Ximple Education No. Peserta : 08-6600-747 1 1. Jika a = 1, b = 6, maka nilai dari 6 a b 1 4 =. a b A. 6 B. 4 C. 1 6 D. 1 4 E.. Nilai dari ( log + log log log ) log 7+ log =. A. B. C. 4 D. 4 8

Lebih terperinci

PREDIKSI SOAL MATEMATIKA UN 2015 ( TUGAS KELOMPOK 1 )

PREDIKSI SOAL MATEMATIKA UN 2015 ( TUGAS KELOMPOK 1 ) PREDIKSI SOAL MATEMATIKA UN 0 ( TUGAS KELOMPOK ) SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 40 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2010

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2010 Soal-Soal dan Pembahasan Matematika IPA SNMPTN. Diketahui a dan b adalah dua buah bilangan bulat positif yang memenuhi : Nilai ab (a+b) adalah.. A. 68 C. 68 E. 6 B. 8 D. 9 a b 6 a b 6 b a ab a+b ab 6 6

Lebih terperinci

D. 90 meter E. 95 meter

D. 90 meter E. 95 meter 1. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah... A. x² + 7x + 10 = 0 B. x² - 7x + 10 = 0 C. x² + 3x + 10 = 0 Kunci : E Rumus : (x - x 1 ) (x - x 2 ) = 0 dimana x 1 = 5, dan x 2 = -2 (x - 5) (x

Lebih terperinci

b c a b a c 1. Bentuk sederhanaa dari

b c a b a c 1. Bentuk sederhanaa dari 7 a b c. Bentuk sederhanaa dari 6 6a b c c A. a b b B. a c C. b a c bc D. a E. 7 7 c a b. Dalam kantong kantong diambil dua kelereng sekaligus, maka peluang mendapatkan kelereng satu berwarna merah dan

Lebih terperinci

PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA

PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA Pilihlah salah satu jawaban yang paling benar! PREDIKSI SOAL UJIAN NASIONAL MATA PELAJARAN MATEMATIKA IPA TAHUN PELAJARAN 2012 / 2013 1. Ditentukan premis-premis: I. Jika Badu rajin bekerja, maka ia disayang

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 7/8. Diketahui premis premis : () Jika Badu rajin belajar dan patuh pada orang tua, maka Ayah membelikan bola basket () Ayah tidak membelikan

Lebih terperinci

TRY-OUT 2 XII IPA PAKET 1 (P.01)

TRY-OUT 2 XII IPA PAKET 1 (P.01) TRY-OUT XII IPA PAKET (P.0). Diketahui premis premis sebagai berikut Premis : Harga naik atau permintaan barang naik Premis : Permintaan barang turun atau angka penjualan naik Kesimpulan yang sah adalah.

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau

Lebih terperinci

Matematika Ujian Akhir Nasional Tahun 2004

Matematika Ujian Akhir Nasional Tahun 2004 Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke

Lebih terperinci

PAKET TRY OUT UN MATEMATIKA IPA

PAKET TRY OUT UN MATEMATIKA IPA PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian 1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan

Lebih terperinci

02. Jika. 0, maka nilai x + y =... 3 = A. 14 B. 16 C. 18 D. 20 E. 21. ; a dan b bilangan bulat, maka a + b =... A. 3 B. 2 C. 2 D. 3 E.

02. Jika. 0, maka nilai x + y =... 3 = A. 14 B. 16 C. 18 D. 20 E. 21. ; a dan b bilangan bulat, maka a + b =... A. 3 B. 2 C. 2 D. 3 E. PILIHLAH JAWABAN YANG PALING TEPAT 0. Diketahui : Premis : Jika laut berombak besar, maka nelayan tidak berlayar Premis : Jika nelayan tidak berlayar, maka tidak ada ikan di pasar. Negasi dari kesimpulan

Lebih terperinci

x y xy x y 2 E. 9 8 C. m > 1 8 D. m > 3 E. m < x : MATEMATIKA Mata Pelajaran

x y xy x y 2 E. 9 8 C. m > 1 8 D. m > 3 E. m < x : MATEMATIKA Mata Pelajaran Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPA Waktu : 0 menit *Pilihlah satu jawaban yang benar * Tidak diperkenankan menggunakan kalkulator atau alat hitung lainnya.. Diketahui premis - premis:

Lebih terperinci

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada

Lebih terperinci

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009

SOAL UJIAN NASIONAL. PROGRAM STUDI IPA ( kode P 45 ) TAHUN PELAJARAN 2008/2009 SOAL UJIAN NASIONAL PROGRAM STUDI IPA ( kode P 4 ) TAHUN PELAJARAN 8/9. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Soal Ujian Nasional Tahun 2007 Bidang Matematika

Soal Ujian Nasional Tahun 2007 Bidang Matematika Soal Ujian Nasional Tahun 007 Bidang Matematika Oleh : Fendi Alfi Fauzi 6 Desember 01 1. Bentuk sederhana dari (1 + ) (4 50) adalah... A. B. + 5 C. 8 D. 8 + E. 8 + 5. Jika log = a dan log 5 = b, maka 15

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2009

SOAL UN DAN PENYELESAIANNYA 2009 1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan

Lebih terperinci

Mata Pelajaran : MATEMATIKA. menit

Mata Pelajaran : MATEMATIKA. menit Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPA Waktu : 0 menit Petunjuk Pilihlah jawaban yang dianggap paling benar pada lembar jawaban yang tersedia (LJK)! Dilarang menggunakan kalkulator, kamus

Lebih terperinci

UN SMA IPA 2003 Matematika

UN SMA IPA 2003 Matematika UN SMA IPA 00 Matematika Kode Soal Doc. Version : 0-0 halaman 0. Persamaan kuadrat (k + )² - (k - ) +k - = 0, mempunyai akar-akar nyata dan sama. Jumlah kedua persamaan tersebut 9 9 0. Jika akar-akar persamaan

Lebih terperinci

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Program Studi : MATEMATIKA : SMA/MA : IPA PELAKSANAAN Hari/Tanggal Jam : Isi sesuai waktu anda latihan : Isi sesuai waktu anda latihan PETUNJUK UMUM. Isikan identitas

Lebih terperinci

TRY OUT UN MATEMATIKA SMA IPA 2013

TRY OUT UN MATEMATIKA SMA IPA 2013 TRY OUT UN MATEMATIKA SMA IPA 0 Berilah tanda silang (x) pada huruf a, b, c, d, atau e di depan jawaban yang benar!. Diketahui premis-premis berikut. Jika Yudi rajin belajar maka ia menjadi pandai. Jika

Lebih terperinci

m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah.

m, selalu di atas sumbu x, batas batas nilai m yang memenuhi grafik fungsi tersebut adalah. . Di berikan premis sebagai berikut : Premis : Jika terjadi hujan lebat atau mendapat air kiriman maka Jakarta banjir Premis : Jalan menjadi macet dan aktivitas kerja terhambat jika Jakarta banjir Kesimpulan

Lebih terperinci

PEMERINTAH KOTA MAKASSAR DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 11 MAKASSAR

PEMERINTAH KOTA MAKASSAR DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 11 MAKASSAR 1 PEMERINTAH KOTA MAKASSAR DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 11 MAKASSAR Alamat : Jalan Letjen. Pol. Mappa Oudang Nomor 66 Telepon/Fax (0411) 851262 Makassar 90223 PREDIKSI SOAL UJIAN

Lebih terperinci

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah...

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah... SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN /. Nilai a yang menyebabkan fungsi kuadrat f x a x ax a a a a a a Solusi: [Jawaban D] a a a. () D a a a a a

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-86080 UJIAN SEKOLAH TAHUN PELAJARAN 0/0 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

2015 ACADEMY QU IDMATHCIREBON

2015 ACADEMY QU IDMATHCIREBON 2015 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2014/2015 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/04 April 2015 Program Studi : IPA Waktu : 07.30 09.30 Petunjuk: Pilihlah satu

Lebih terperinci

SOAL TRY OUT MATEMATIKA 2009

SOAL TRY OUT MATEMATIKA 2009 SOAL TRY OUT MATEMATIKA 009. Diberikan premis-premis :. jika semua siswa SMA di DKI Jakarta lulus ujian, maka Pak Gubernur DKI Jakarta sujud syukur. Pak Gubernur DKI Jakarta tidak sujud syukur negasi kesimpulan

Lebih terperinci

SANGGAR 14 SMA JAKARTA TIMUR

SANGGAR 14 SMA JAKARTA TIMUR SANGGAR 4 SMA JAKARTA TIMUR SOAL TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan yang

Lebih terperinci

PILIHLAH SALAH SATU JAWABAN YANG BENAR

PILIHLAH SALAH SATU JAWABAN YANG BENAR PETOENJOEK OEMOEM. Periksa Soal Try Out (IPA) dan Nomor Tes sebelum Anda menjawab. Jumlah soal sebanyak 0 butir soal yang terdiri dari :. Pengisian pada lembar jawaban (LJK) yang disediakan PILIHLAH SALAH

Lebih terperinci

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. 1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00

Lebih terperinci

C34 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh

C34 MATEMATIKA. Pak Anang. Rabu, 18 April 2012 ( ) Pembahasan soal oleh DOKUMEN NEGARA C MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Pak Anang http://pakhttp://pak-anang.blogspot.com MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M9-0/0 Hak Cipta pada Pusat Penilaian Pendidikan-BALITBANG-KEMDIKBUD

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran / SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D) SELASA, 6 MEI Pukul 7.. DEPARTEMEN PENDIDIKAN NASIONAL --D-P Hak Cipta pada

Lebih terperinci

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) 0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran 00/00 SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D0) SELASA, 6 MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL 0 0-0-D0-P0

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013

Soal dan Pembahasan UN Matematika SMA IPA Tahun 2013 Soal dan Pembahasan UN Matematika SMA IPA Tahun 013 LOGIKA MATEMATIKA p siswa rajin belajar ; q mendapat nilai yang baik r siswa tidak mengikuti kegiatan remedial ~ r siswa mengikut kegiatan remedial Premis

Lebih terperinci

adalah. 3. Bentuk sederhana dari A.!!" B.!!" 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16

adalah. 3. Bentuk sederhana dari A.!! B.!! 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16 . Diketahui premis-premis berikut : Premis : Jika Dasikin belajar maka ia dapat mengerjakan soal Premis : Dasikin tidak dapat mengerjakan soal atau ia bahagia Premis : Dasikin belajar Kesimpulan yang sah

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan Uji Coba Ujian Nasional tahun 009 Satuan pendidikan Mata pelajaran Program Waktu. Diketahui premis-premis berikut : ). p ~ q ). q r : SMA : Matematika : IPA : 0 menit.. Negasi (ingkaran) dari kesimpulan

Lebih terperinci

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA

TRY OUT UJIAN NASIONAL TAH SMA/MA PROGRAM STUDI IPA MATEMATIKA DOKUMEN SEKOLAH MATEMATIKA SMA/MA IPA PAKET NAMA : NO.PESERTA : TRY OUT UJIAN NASIONAL TAH TAHUN UN PELAJARAN 0/0 SMA/MA PROGRAM STUDI IPA MATEMATIKA PUSPENDIK SMAYANI SMA ISLAM AHMAD YANI BATANG 0 TRY

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI 5 BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-86080 UJIAN SEKOLAH TAHUN PELAJARAN 0/05 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

D46 MATEMATIKA. Rabu, 18 April 2012 ( ) Pembahasan soal oleh Perpustakaan.

D46 MATEMATIKA. Rabu, 18 April 2012 ( ) Pembahasan soal oleh  Perpustakaan. DOKUMEN NEGARA Pembahasan soal oleh http://pak-anang.blogspot.com D6 MATEMATIKA SMA/MA IPA MATEMATIKA SMA/MA IPA Perpustakaan SMAN Wonogiri MATEMATIKA Rabu, 8 April 0 (08.00 0.00) A-MAT-ZD-M0-0/0 Hak Cipta

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 2017/2018-1. Jika diketahui x = 8, y = 25 dan z = 81, maka nilai dari x 2 y 2 z adalah.... (a) 0 (b) 00 (c) 500

Lebih terperinci

Ujian Nasional. Tahun Pelajaran 2010/2011 IPA MATEMATIKA (D10) UTAMA. SMA / MA Program Studi

Ujian Nasional. Tahun Pelajaran 2010/2011 IPA MATEMATIKA (D10) UTAMA. SMA / MA Program Studi Ujian Nasional Tahun Pelajaran 00/0 UTAMA SMA / MA Program Studi IPA MATEMATIKA (D0) c Fendi Alfi Fauzi alfysta@yahoo.com Ujian Nasional Tahun Pelajaran 00/0 (Pelajaran Matematika) Tulisan ini bebas dibaca

Lebih terperinci

PETUNJUK UMUM PETUNJUK KHUSUS

PETUNJUK UMUM PETUNJUK KHUSUS LEMBAR SOAL PERSIAPAN UJIAN NASIONAL SMA/MA Tahun Ajaran 00/009 MATEMATIKA Program Studi IPA (Berdasarkan Lampiran Permendiknas No.77 Tahun 00) Try Out UN Matematika IPA SMA/MA - Esis PETUNJUK UMUM. Tuliskan

Lebih terperinci

UN SMA IPA 2014 Pre Matematika

UN SMA IPA 2014 Pre Matematika UN SMA IPA 04 Pre Matematika Kode Soal Doc. Name: UNSMAIPA04PREMAT999 Doc. Version : 04-0 halaman 0. Diketahui premis-premis berikut: Premis : Jika harga turun, maka penjualan naik. Premis : Jika permintaan

Lebih terperinci

AB = c, AC = b dan BC = a, maka PQ =. 1

AB = c, AC = b dan BC = a, maka PQ =. 1 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 9. Jika a, b, maka pernyataan di bawah ini yang benar adalah A. B. a b ab C. ab b a D. ab ab E. ab ab ab b a karena pada jawaban terdapat ab maka selesaikan

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 00 Mata Pelajaran : Matematika Kelas : XII IPA Alokasi Waktu : 0

Lebih terperinci