, maka nilai dari a b c

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download ", maka nilai dari a b c"

Transkripsi

1 Nama : Ximple Education No. Peserta : Jika a =, b =, dan c = 3, maka nilai dari a b c =. a b c A. 3 B. 6 C. 4 D. E. 4. Bentuk sederhana dari (3 6 )( ) =. A B C D E Nilai dari log 5 A. B. C. 3 D. 4 E. 5 5 log log 3 6 log 4 =. 4. Budi menabung di bank dengan mendapatkan bunga 0% pertahun, ia mula-mula menabung sebesar Rp ,00 yang akan diperhitungkan secara bunga majemuk. Uang budi setelah 4 tahun adalah. A. Rp ,00 B. Rp ,00 C. Rp ,00 D. Rp ,00 E. Rp.93.6,00 5. Koordinat titik puncak grafik fungsi y = 3x x + 6 adalah. A. (, 30) B. (,30) C. (, ) D. (, 8) E. (,8)

2 6. Diketahui x dan x adalah akar-akar persamaan kuadrat x 4x + = 0. Nilai dari x + x 8 ( x + x ) =. A. 7 B. 8 C. 9 D. 30 E Persamaan kuadrat 9x 3x + 5 = 0 mempunyai akar-akar p dan q. Persamaan kuadrat baru yang akar-akarnya 3p + dan 3q + adalah. A. x 5x + = 0 B. x 3x + 7 = 0 C. 3x 5x + = 0 D. 9x 3x + 7 = 0 E. 9x 5x + = 0 8. Himpunan penyelesaian dari pertidaksamaan 3x + x x + x + 5 adalah. A. {x 3 x 5, x R} B. {x 6 x 5, x R} C. {x x 6 atau x 5, x R} D. {x x 3 atau x 5, x R} E. {x x 3 atau x 5, x R} 9. Arya menghabiskan uang Rp5.000,00 untuk membeli 5 roti coklat dan roti keju, sedangkan Santi menghabiskan uang Rp.000,00 untuk membeli 3 roti coklat dan 4 roti keju. Hasan membeli 4 roti coklat dan 5 roti keju di toko yang sama. Jika Hasan membayar dengan satu lembar uang lima puluh ribuan. Hasan akan menerima uang kembalian sebesar. A. Rp.500,00 B. Rp.500,00 C. Rp0.000,00 D. Rp9.500,00 E. Rp9.000,00 0. Diketahui fungsi f dan g yang dinyatakan dengan f(x) = x dan g(x) = 3x x + maka fungsi komposisi (gof)(x) adalah. A. (gof)(x) = 6x + x + 4 B. (gof)(x) = 6x + x 4 C. (gof)(x) = x 4x + 6 D. (gof)(x) = x 4x 6 E. (gof)(x) = x + x + 4

3 3. Diketahui fungsi f: R R dan fungsi g: R R dirumuskan dengan f(x) = 4x + 3 dan g(x) = x ; x. Fungsi x+ (fog) (x) dapat dirumuskan dengan. A. x+ ; x 5 x 0 x+ B. ; x 5 0 x C. 0x ; x 5 x 0 D. 0x ; x x+ E. 0x+ ; x x+. Nilai minimum f(x, y) = 3x + 4y yang memenuhi pertidaksamaan 3x + y ; x + y 5; x 0 dan y 0 adalah. A. B. C. 3 D. 4 E Seorang penjahit membuat dua jenis pakaian untuk dijual, pakaian jenis I memerlukan m kain katun dan 4 m kain sutera, dan pakaian jenis II memerlukan 5 m kain katun dan 3 m kain sutera. Bahan katun yang tersedia 70 m dan sutera 84 m. Pakaian jenis I dijual dengan laba Rp5.000,00/buah dan pakaian jenis II mendapat laba Rp50.000,00/buah. Agar Ia memperoleh laba yang sebesar-besarnya, maka pakaian jenis I dan jenis II berturut turut adalah... A. 5 dan 8 B. 8 dan 5 C. 0 dan 3 D. 3 dan 0 E. 0 dan 3 4. Diketahui matriks A 0 a 3, 4 B a b c Maka a + b + c =. A. 5 B. 6 C. 7 D. 8 E. 9 dan C 7. Jika A B T = C. 4b

4 4 5. Diketahui matriks A dan matriks 8 7 B. Jika persamaan matriks XA = B maka 6 4 5X =. 8 A. 6 8 B. 6 8 C D E Dari suatu barisan aritmetika diketahui suku kelima adalah 3 dan suku kesembilan adalah 9. Jumlah tiga puluh suku pertama barisan aritmetika tersebut adalah. A..375 B..445 C..595 D..650 E Dari suatu barisan geometri diketahui suku kedua adalah 5 dan suku kelima adalah 405. Jumlah enam suku pertama barisan geometri tersebut adalah. A..440 B..80 C..00 D..400 E Sebuah bola jatuh dari ketinggian 0 m dan memantul kembali dengan ketinggian ¾ kali tinggi sebelumnya, begitu seterusnya hingga bola berhenti. Jumlah seluruh lintasan bola adalah. A. 60 B. 65 C. 70 D. 77 E. 80

5 Tiang DOKUMEN PRIBADI 5 9. Diketahui PQR siku-siku di Q. Jika cos QRP = 5, maka nilai tan QPR =. 3 A. 5 B. 5 5 C. 5 0 D. 3 E Nilai dari sin 0 o 6 tan 330 o cos 0 o =. A. 3 B. 3 C. 3 D. E. 3. Dua buah tali digunakan sebagai penyangga sebuah tiang sehingga dapat berdiri dengan stabil. Jika tinggi tiang meter (terlihat pada gambar), maka panjang tali minimum yang dibutuhkan adalah. A. ( + ) B. ( 3 + ) C. 6( ) D. 4(3 + 3) E. (3 3 + ) A Tali I Tali II 60 o 45 o Tanah B. Perhatikan gambar kubus berikut! Diketahui pernyataan : (i) EC terletak pada bidang BDHF (ii) Bidang AHF sejajar dengan bidang BDG (iii) Rusuk DH tegak lurus dengan diagonal EG (iv) Diagonal AH menembus bidang ACH E H D F G C Pernyataan yang benar adalah. A. (i) dan (iii) B. (iii) dan (iv) C. (ii) dan (iii) D. (i) dan (iv) E. (ii), (iii) dan (iv) A B

6 6 3. Diketahui kubus ABCD.EFGH dengan panjang rusuk 6 cm. Jarak titik C ke bidang BDG adalah. A. 4 3 cm B. 3 3 cm C. 3 cm D. 3 cm E. cm 4. Diketahui limas beraturan T.ABCD dengan rusuk alas 0 cm dan rusuk tegak 8 cm. Jika α sudut antara rusuk BT dan DT, maka cosinus sudut α =. A. 3 5 B. 4 5 C. 3 6 D. 5 6 E. 9 6 x 3x 5. Nilai dari lim x x x x A. 8 B. 6 C. 4 D. 3 E. 6. Nilai dari lim x 3 4x A. 4 B. 3 C. D. 3 E. 4 x =.

7 7. Turunan pertama dari f(x) = x+3 A. f (x) = 4x 8 4x B. f (x) = x+6 4x C. f (x) = 4x 8 4x D. f (x) = x+6 (4x ) 3 E. f (x) = 4x 8 (4x ) 3 4x 7 adalah. 8. Grafik fungsi f(x) = x 3 + 3x 9x 7 naik pada interval. A. {x x < atau x > 3, x R} B. {x x < 3 atau x >, x R} C. {x 3 < x <, x R} D. {x < x < 3, x R} E. {x < x < 3, x R} 9. Untuk memproduksi x unit pakaian dalam satu hari, diperlukan biaya produksi (x + 4x + 0) ratusan ribu rupiah. Harga jual per unit pakaian itu adalah (0 x) ratusan ribu rupiah. Laba maksimum yang dapat diperoleh setiap hari adalah. A. Rp ,00 B. Rp ,00 C. Rp ,00 D. Rp ,00 E. Rp , Hasil x 43 x 5 dx =. A. 3x 3 x + 0x + C B. 3x 3 + x + 0x + C C. x 3 x + 0x + C D. x 3 + x + 0x + C E. x 3 x 0x + C 3 3. Nilai x x 8x dx A. 4 B. 8 4 C D. 4 4 E

8 8 3. Diagram lingkaran berikut menunjukkan hasil survei jenis mata pencaharian penduduk kampung Mandiri. Bila banyaknya penduduk yang bermata pencaharian sebagai nelayan 80 orang, maka banyaknya penduduk yang bermata pencaharian sebagai petani adalah. A. 300 B. 90 C. 80 D. 70 E Dari sekumpulan data pengamatan, diketahui nilai rata-rata dan jangkauannya berturut-turut adalah 6 dan 9. Jika setiap data dikurangi a kemudian di kali b maka rata-ratanya menjadi 5 dan jangkauannya 45. Maka nilai a + b adalah. A. 7 B. 8 C. 9 D. 0 E. 34. Simpangan rata-rata dari data : 7,, 5, 8, 7, 5, 0, 9 adalah. A. 0 B. 3 C. 7 D. 9 E Tabel berikut menyajikan data berat produksi beberapa jenis barang suatu perusahaan Berat Barang (kg) Banyak Barang Nilai modus data tersebut adalah.. A. 49,06 kg B. 50,0 kg C. 50,70 kg D. 5,33 kg E. 5,83 kg

9 9 36. Nilai median dari histogram di bawah ini adalah. frekuensi Nilai A. 59,67 B. 60,67 C. 6,67 D. 6,67 E. 63, Dari angka,,3,4,5, dan 6 akan disusun bilangan yang terdiri dari 3 angka yang berbeda. Banyak bilangan yang lebih dari 00 adalah. A. 90 B. 98 C. 00 D. 05 E Tiga keping uang logam setimbang dilempar undi secara bersamaan sebanyak 30 kali. Frekuensi harapan muncul minimal satu sisi gambar adalah. A. 60 B. 80 C. 0 D. 80 E Pada percobaan melempar undi dua buah dadu bersamaan sebanyak satu kali, peluang munculnya mata dadu berjumlah 7 atau 0 adalah. A. 36 B C D E. 7 36

10 0 40. Santi dan Sinta berbelanja di toko yang sama dalam minggu yang sama selama 5 hari (senin sampai jumat). Mereka masing-masing mempunyai peluang yang sama untuk berbelanja di toko pada 5 hari tersebut. Peluang mereka berbelanja di toko itu pada hari yang berurutan adalah. A. 0,0 B. 0,5 C. 0,3 D. 0,50 E. 0,60

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( )

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( ) Nama : Ximple Education No. Peserta : 08-6600-747. Bentuk sederhana dari 6 6 3 3 5 64 7 000 3 A. 36 B. 6 C. D. 6 E. 36 =.. Bentuk sederhana dari ( 6)(6 +3 6) 3 4 A. 3 ( 3 + 4) B. 3 ( 3 + 4) C. ( 3 + 4)

Lebih terperinci

UN SMA 2016 Matematika IPS

UN SMA 2016 Matematika IPS UN SMA 06 Matematika IPS Soal Doc. Name: UNSMA06MATIPS999 Doc. Version : 06-0 halaman 0. Diketahui a 0, b 0, dan c 0. Bentuk 3 4 8a b c sederhana dari 5 6 adalah... 4a b c a b c 4 3 8 6 4 4a b c 4 c 4a

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E 1 Nama : Ximple Education No. Peserta : 08-6600-747 1 1. Jika a = 1, b = 6, maka nilai dari 6 a b 1 4 =. a b A. 6 B. 4 C. 1 6 D. 1 4 E.. Nilai dari ( log + log log log ) log 7+ log =. A. B. C. 4 D. 4 8

Lebih terperinci

PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A01) 5b Dengan merasionalkan penyebut, bentuk sederhana dari 5 2

PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A01) 5b Dengan merasionalkan penyebut, bentuk sederhana dari 5 2 PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A0).. a bc Bentuk sederhana dari 9. a b c c a b. (C) ab c a b c a c b ac b. Dengan merasionalkan penyebut, bentuk sederhana dari. (C). (E).. (D). 7 9 log.

Lebih terperinci

NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/11 April 2017 Program Studi : IPS Waktu :

NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/11 April 2017 Program Studi : IPS Waktu : NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/11 April 2017 Program Studi : IPS Waktu : 07.30 09.30 Petunjuk: Pilihlah satu jawaban yang tepat. 1. Diketahui

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3 Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log

Lebih terperinci

UN SMA 2017 Matematika IPA

UN SMA 2017 Matematika IPA UN SMA 07 Matematika IPA Soal UN SMA 07 - Matematika IPA Doc. Name: UNSMA07MATIPA Version: 07-0 Halaman 5-8 5 4 0. Hasil dari - 8 8.4 5 7 7 8 8 8 7 0. Bentuk sederhana dari ( 5 + ) ( - 5 ) - ( 5 +4 ) 4

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

SOAL MATEMATIKA IPS PAKET B 1. Diketahui Bentuk sederhana dari ( ) adalah... A. B. C. D. E. 3. Jika, dan, maka nilai adalah...

SOAL MATEMATIKA IPS PAKET B 1. Diketahui Bentuk sederhana dari ( ) adalah... A. B. C. D. E. 3. Jika, dan, maka nilai adalah... SOAL MATEMATIKA IPS PAKET B 1. Diketahui Bentuk sederhana dari ( ) adalah.... D. 2. Bentuk sederhana dari ( )( ) adalah.... D. 3. Jika, dan, maka nilai adalah.... D. 4. Koordinat titik balik grafik fungsi

Lebih terperinci

PAKET TO UJIAN NASIONAL PAKET A Pelajaran : MATEMATIKA IPS Waktu : 120 Menit

PAKET TO UJIAN NASIONAL PAKET A Pelajaran : MATEMATIKA IPS Waktu : 120 Menit PAKET TO UJIAN NASIONAL PAKET A Pelajaran : MATEMATIKA IPS Waktu : 0 Menit Pilihlah salah satu jawaban yang tepat! Jangan lupa Berdoa dan memulai dari yang mudah.. Bentuk sederhana dari y y z 6 adalah...

Lebih terperinci

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA

TRYOUT UN SMA/MA 2014/2015 MATEMATIKA IPA TRYOUT UN SM/M 04/0 MTMTIK IP. iketahui premis-premis berikut : Premis : Jika kita tidak menjaga kebersihan, maka kita akan terserang penyakit. Premis : Jika kita terserang penyakit, maka aktivitas kita

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 1. Akar-akar persamaan kuadrat x 2 +ax - 4=0 adalah p dan q. Jika p 2-2pq + q 2 =8a, maka nilai a =... A. -8 B. -4 C. 4 D. 6 E. 8 2. Persamaan

Lebih terperinci

Matematika Ujian Akhir Nasional Tahun 2004

Matematika Ujian Akhir Nasional Tahun 2004 Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke

Lebih terperinci

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPS 02 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA DINAS PENDIDIKAN DAN KEBUDAYAAN PEMERINTAH KOTA BATAM

TRY OUT UJIAN NASIONAL SMA/MA MATEMATIKA IPS 02 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA DINAS PENDIDIKAN DAN KEBUDAYAAN PEMERINTAH KOTA BATAM TRY OUT UJIAN NASIONAL SMA/MA 01 MATEMATIKA IPS 0 MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA DINAS PENDIDIKAN DAN KEBUDAYAAN PEMERINTAH KOTA BATAM 01 hakcipta MGMP Matematika Kota Batam paket 0 MATA

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ayah tidak memarahi Badu, maka Badu bahagia dan tidak nakal () Jika Ayah tidak menyayangi Badu, maka Badu tidak bahagia atau nakal Kesimpulan yang sah adalah. a. Jika

Lebih terperinci

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada

Lebih terperinci

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian

7. Himpunan penyelesaian. 8. Jika log 2 = 0,301 dan log 3 = 10. Himpunan penyelesaian 1. Persamaan kuadrat yang akarakarnya 5 dan -2 x² + 7x + 10 = 0 x² - 7x + 10 = 0 x² + 3x + 10 = 0 x² + 3x - 10 = 0 x² - 3x - 10 = 0 2. Suatu peluru ditembakkan ke atas. Tinggi peluru pada t detik dirumuskan

Lebih terperinci

PAKET TRY OUT UN MATEMATIKA IPA

PAKET TRY OUT UN MATEMATIKA IPA PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"

Lebih terperinci

adalah. 3. Bentuk sederhana dari A.!!" B.!!" 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16

adalah. 3. Bentuk sederhana dari A.!! B.!! 4. Bentuk sederhana dari A. ( 15 5 ) B C. 4 ( 15 5 ) D. 2 ( ) E. 4 ( ) log 16 . Diketahui premis-premis berikut : Premis : Jika Dasikin belajar maka ia dapat mengerjakan soal Premis : Dasikin tidak dapat mengerjakan soal atau ia bahagia Premis : Dasikin belajar Kesimpulan yang sah

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 MATEMATIKA (D10) SMA/MA - PROGRAM STUDI IPA KODE : P 15 UTAMA UJIAN NASIONAL TAHUN PELAJARAN 007/008 MATEMATIKA (D0) SMA/MA - PROGRAM STUDI IPA KODE : P 5 UTAMA SOAL :. Ingkaran dari pernyataan Beberapa siswa senang belajar matematika adalah... A. Ada siswa tidak

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40. PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan

Lebih terperinci

UN SMA 2017 Matematika IPS

UN SMA 2017 Matematika IPS UN SMA 017 Matematika IPS Soal UN SMA 017 - Matematika IPS Doc. Name: UNSMA017MATIPS999 Version: 017-10 Halaman 1 01. Persamaan grafik fungsi kuadrat pada gambar berikut adalah... X 8 0 4 Y (A) y = x -

Lebih terperinci

Prediksi US Mat Wajib log16 log9 =

Prediksi US Mat Wajib log16 log9 = Bentuk Eksponen dan Logaritma Bentuk sederhana dari =.... + + Bentuk sederhana dari =.... 3 2 2 2 + 3 2 3 + 2 2 1 2 2 3 2 Nilai dari + log16 log9 =.... Persamaan dan Pertidaksamaan Nilai Mutlak jika >

Lebih terperinci

Matematika Proyek Perintis I Tahun 1980

Matematika Proyek Perintis I Tahun 1980 Matematika Proyek Perintis I Tahun 980 MA-80-0 Di antara lima hubungan di bawah ini, yang benar adalah Jika B C dan B C, maka A C Jika A B dan C B, maka A C Jika B A dan C B, maka A C Jika A C dan C B,

Lebih terperinci

D. 90 meter E. 95 meter

D. 90 meter E. 95 meter 1. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah... A. x² + 7x + 10 = 0 B. x² - 7x + 10 = 0 C. x² + 3x + 10 = 0 Kunci : E Rumus : (x - x 1 ) (x - x 2 ) = 0 dimana x 1 = 5, dan x 2 = -2 (x - 5) (x

Lebih terperinci

NAMA : NO PESERTA : 3. Bentuk sederhana dari Diketahui 2 log 5 = p dan 2 log 3 = q. Bentuk 3 log 20 dinyatakan dalam p dan q adalah...

NAMA : NO PESERTA : 3. Bentuk sederhana dari Diketahui 2 log 5 = p dan 2 log 3 = q. Bentuk 3 log 20 dinyatakan dalam p dan q adalah... NAMA : NO PESERTA : 1. Perhatikan premis-premis berikut. Premis 1 : Jika 10 bilangan genap maka 7 tidak habis dibagi Premis : Jika 7 tidak habis dibagi maka bilangan ganjil Premis : bukan bilangan ganjil

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 00 Mata Pelajaran : Matematika Kelas : XII IPA Alokasi Waktu : 0

Lebih terperinci

Matematika EBTANAS Tahun 2003

Matematika EBTANAS Tahun 2003 Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +

Lebih terperinci

UN SMA IPS 2012 Matematika

UN SMA IPS 2012 Matematika UN SMA IPS 01 Matematika Kode Soal A Doc. Name: UNSMAIPS01MATA Doc. Version : 01-1 halaman 1 01. Ingkaran pernyataan Pada hari Senin siswa SMAN memakai sepatu hitam dan atribut lengkap adalah. Pada hari

Lebih terperinci

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012

SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 2012 SMA 74 JAKARTA LATIHAN SOAL UN MATEMATIKA JURUSAN IPS TAHUN 0. Negasi dari semua siswa rajin belajar untuk menghadapi UN, adalah... A. tidak semua siswa rajin belajar untuk menghadapi UN B. semua siswa

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau

Lebih terperinci

SOAL-SOAL TO UN MATEMATIKA IPA PAKET A ... A B. x 3 C. 2 5 D E. 3 x Bentuk sederhana dari ... A. B. C. D. E. 3. Nilai dari =...

SOAL-SOAL TO UN MATEMATIKA IPA PAKET A ... A B. x 3 C. 2 5 D E. 3 x Bentuk sederhana dari ... A. B. C. D. E. 3. Nilai dari =... SOAL-SOAL TO UN MATEMATIKA IPA PAKET A 5. 4 4 Nilai dari 4 ( )4 5 4.0..... 4 5 4 5. Bentuk sederhana dari 5... 0 8 5 8 5 5 8 8 5 8 5 5 log 4. log log8. Nilai dari log 4 log 8 4 4 8 4 =.... 4. Nilai x yang

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2004/2005

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2004/2005 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN /5. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB... A. cm C B. (- ) cm C. (- ) cm D. (8- ) cm E. (8- ) cm A B misal panjang

Lebih terperinci

UN MATEMATIKA IPA PAKET

UN MATEMATIKA IPA PAKET UN MATEMATIKA IPA PAKET Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Diberikan pernyataan berikut: P: Semua pramugari berwajah cantik P: Catherine seorang pramugari

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

SOAL UN MATEMATIKA SMA IPS PAKET USC1105 TAHUN PELAJARAN 2015/2016

SOAL UN MATEMATIKA SMA IPS PAKET USC1105 TAHUN PELAJARAN 2015/2016 SOAL UN MATEMATIKA SMA IPS PAKET USC05 TAHUN PELAJARAN 05/06. Diketahui a 0, b 0, dan c 0. Bentuk sederhana dari A. D. 4 a b c 4 c 8 6 4a b 8 6 4a b 4 c 4a b c 4a b c 8 6 4 6 5 4. Bentuk sederhana dari

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2008

SOAL UN DAN PENYELESAIANNYA 2008 1. Ingkaran dari pernyataan, "Beberapa bilangan prima adalah bilangan genap." adalah... Semua bilangan prima adalah bilangan genap Semua bilangan prima bukan bilangan genap Beberapa bilangan prima bukan

Lebih terperinci

TAHUN PELAJARAN 2003/2004 SMK. Matematika Teknik Industri (E3-1) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 SMK. Matematika Teknik Industri (E3-1) PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul 0-04 E--P0-0-4 DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMK Matematika Teknik Industri (E-) PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta

Lebih terperinci

TAHUN PELAJARAN 2003/2004 SMK. Matematika Teknik Kesehatan (E3-3) PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 SMK. Matematika Teknik Kesehatan (E3-3) PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA 0-0 E--P9-0- SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/00 SMK Matematika Teknik Kesehatan (E-) PAKET (UTAMA) SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPS Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Diketahui:

Lebih terperinci

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 LEMBAR SOAL. Mata Pelajaran : MATEMATIKA. Satuan Pendidikan : SMA/MA

TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 2016/2017 LEMBAR SOAL. Mata Pelajaran : MATEMATIKA. Satuan Pendidikan : SMA/MA TRY OUT UJIAN NASIONAL TAHUN PELAJARAN 201/2017 LEMBAR SOAL Mata Pelajaran : MATEMATIKA Satuan Pendidikan : SMA/MA Program : IPS Hari, Tanggal : Sabtu, 18 Februari 2017 Waktu : 120 Menit PETUNJUK UMUM

Lebih terperinci

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E.

1. Dari suatu barisan aritmetika diketahui suku ke-15 adalah 222 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah. A. 62 B. 68 C. 72 D. 74 E. . Dari suatu barisan aritmetika diketahui suku ke-5 adalah dan suku ke- adalah 57. Suku ke-5 barisan ini adalah. A. 6 B. 68 7 D. 74 E. 76. Suku ketiga dan suku keenam barisan geometri berturut-turut adalah

Lebih terperinci

6. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20 = a. 2. c. a. e

6. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20 = a. 2. c. a. e Page of. Negasi dari pernyataan Matematika tidak mengasyikkan atau adalah a. Matematika mengasyikkan atau Matematika mengasikkan atau tidak c. Matematika mengasikkan dan tidak Matematika tidak mengasikkan

Lebih terperinci

UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) UJIAN NASIONAL SMA/MA Tahun Pelajaran 004/005 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 005 Jam : 08.00 0.00 PELAKSANAAN

Lebih terperinci

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 05 / 06 SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON SMA / MA MATEMATIKA Program Studi IPS Kerjasama dengan Dinas Pendidikan Provinsi DKI Jakarta,

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA B TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

Istiyanto.Com Media Belajar dan Berbagi Ilmu

Istiyanto.Com Media Belajar dan Berbagi Ilmu Istiyanto.Com Media Belajar dan Berbagi Ilmu Dapatkan tutorial-tutorial TIK/komputer dan soal-soal Matematika secara mudah dan gratis dengan berlangganan melalui email. SOAL UAN MATEMATIKA JURUSAN BAHASA

Lebih terperinci

2014 ACADEMY QU IDMATHCIREBON

2014 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/15 April 2014 Program Studi : IPA Waktu : 07.30 09.30 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Bentuk

Lebih terperinci

SANGGAR 14 SMA JAKARTA TIMUR

SANGGAR 14 SMA JAKARTA TIMUR SANGGAR 4 SMA JAKARTA TIMUR SOAL TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan yang

Lebih terperinci

4. Bentuk sederhana dari : a b

4. Bentuk sederhana dari : a b PAKET A. Pernyataan yang setara dengan Jika cuaca buruk, maka semua penerbangan ditunda adalah. A. Jika beberapa penerbangan tidak ditunda, maka cuaca baik. B. Jika semua penerbangan ditunda, maka cuaca

Lebih terperinci

SOAL ToT MATEMATIKA TEKNIK 2018

SOAL ToT MATEMATIKA TEKNIK 2018 1. Nilai dari =... A. 4 B. 6 C. 1 D. 12 E. 18 2. Bentuk sederhana dari ( ) =... A. a 5. b 8. c 4 B. a 5. b 2. c 4 C. a 6. b 8. c 4 D. a 6. b 8. c 4 E. a 6. b 2. c 4 3. Bentuk sederhana dari A. B. C. D.

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA A TROUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 0/05 MATEMATIKA IPS Hasil Kerja Sama dengan Mata Pelajaran : Matematika IPS Jenjang : SMA/MA MATA PELAJARAN Hari, tanggal : Selasa,

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA B Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-0 Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program

Lebih terperinci

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) 0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2007

SOAL UN DAN PENYELESAIANNYA 2007 1. Bentuk sederhana dari (1 + 3 ) - (4 - ) adalah... A. -2-3 B. -2 + 5 C. 8-3 D. 8 + 3 8 + 5 (1 + 3 ) - (4 - ) = (1 + 3 ) - (4-5 ) = 1 + 3-4 + 5 = 8-3 2. Jika 2 log 3 = a dan 3 log 5 = b, maka 15 log 20

Lebih terperinci

1. Jika diketahui pernyataan p benar dan q salah, maka pernyataan di bawah ini yang benar adalah.

1. Jika diketahui pernyataan p benar dan q salah, maka pernyataan di bawah ini yang benar adalah. MAT IPS PAKET B PETUNJUK KHUSUS : Pilihlah satu jawaban yang benar untuk soal nomor sampai dengan 40 dengan menghitamkan huruf A, B, C, D, atau E pada lembar LJK!. Jika diketahui pernyataan p benar dan

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Soal Latihan UJIAN NASIONAL TAHUN PELAJARAN 0/0 Disusun Per Indikator Kisi-Kisi UN 0 Matematika SMA (Program Studi IPA) Written By : Team MKKS Jakarta Distributed by : Pak Anang PEMERINTAH PROVINSI DAERAH

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp./Fax Sidayu Gresik PEMERINTAH KAUPATEN GRESIK DINAS PENDIDIKAN SMA NEGERI SIDAYU Jl. Pahlawan No.0 Telp./Fax. 0-0 Sidayu Gresik UJIAN SEKOLAH TAHUN PELAJARAN 00/0 Mata Pelajaran : Matematika Satuan Pendidikan : SMA Program

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK 2, TEBO

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK 2, TEBO SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK, TEBO. Perhatikan premis-premis berikut. Premis : Jika bilangan genap maka 7 tidak habis dibagi Premis : Jika 7 tidak habis dibagi maka bilangan

Lebih terperinci

UN SMA IPS 2011 Matematika

UN SMA IPS 2011 Matematika UN SMA IPS 0 Matematika Kode Soal Doc. Name: UNSMAIPS0MAT999 Version: 0- halaman 0. Koordinat titik potong grafik fungsi kuadrat y = - - dengan sumbu X dan sumbu Y (A) (-,0),(,0), dan (0,) (B) (-,0),(,0),dan

Lebih terperinci

Soal Ujian Nasional Tahun 2005 Bidang Matematika

Soal Ujian Nasional Tahun 2005 Bidang Matematika Soal Ujian Nasional Tahun 2005 Bidang Matematika Oleh : Fendi Alfi Fauzi 7 Desember 2012 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... C A B A. 4 2 cm B. (4 2) cm C. (4 2 2) cm

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan

Lebih terperinci

UN SMA IPS 2010 Matematika

UN SMA IPS 2010 Matematika UN SMA IPS 00 Matematika Kode Soal Doc. Name: UNSMAIPS00MAT999 Doc. Version : 04-0 halaman 0. Nilai kebenaran yang tepat untuk pernyataan ( p q) ~ p, Pada table berikut adalah... p q (p q) ~ p B B... B

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09)

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) 1. Luas daerah yang dibatasi oleh kurva y = x + x + 5, sumbu x, dan 0 x 1... satuan luas (A) (C) (E) 5 (B) 0 (D) 5 1. Diketahui segitiga ABC, siku-siku di

Lebih terperinci

UN SMA IPA 2012 Matematika

UN SMA IPA 2012 Matematika UN SMA IPA 0 Matematika Kode Soal E8 Doc. Name: UNSMAIPA0MATE8 Doc. Version : 0- halaman. Diketahui premis-premis berikut: Premis I : Jika hari ini hujan maka saya tidak pergi. Premis II : Jika saya tidak

Lebih terperinci

TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 2012/2013. Program Studi Hari/Tanggal : Rabu / 6 Februari 2013 : s/d 10.

TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 2012/2013. Program Studi Hari/Tanggal : Rabu / 6 Februari 2013 : s/d 10. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-9064 71 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 0/01 Mata Pelajaran

Lebih terperinci

TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 2012/2013. Program Studi Hari/Tanggal : Rabu / 6 Februari 2013 : s/d 10.

TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 2012/2013. Program Studi Hari/Tanggal : Rabu / 6 Februari 2013 : s/d 10. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-9064 71 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata Pelajaran

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-59064 5751 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata

Lebih terperinci

SOAL PREDIKSI XI. 2. Jika x = 4, y = 16, dan z = 27, nilai adalah. a. b. c. d. e.

SOAL PREDIKSI XI. 2. Jika x = 4, y = 16, dan z = 27, nilai adalah. a. b. c. d. e. SOAL PREDIKSI XI 1. Waktu yang diperlukan dalam perjalanan Jakarta Bandung adalah 2,25 jam, apabila kecepatan rata-rata kendaraan 75 km/jam. Kecepatan rata-rata kendaraan yang diperlukan agar perjalanan

Lebih terperinci

SANGGAR 14 SMA JAKARTA TIMUR

SANGGAR 14 SMA JAKARTA TIMUR SANGGAR 4 SMA JAKARTA TIMUR SOAL DAN SOLUSI TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. C, Jakarta Selatan - Telepon (0) 77, Fax (0)

Lebih terperinci

= 3 x maka (f g)(x) =.. Mata Pelajaran : MATEMATIKA. Petunjuk: A

= 3 x maka (f g)(x) =.. Mata Pelajaran : MATEMATIKA. Petunjuk: A Mata Pelajaran : MATEMATIKA Kelas/ Program : XII IPS Waktu : 0 menit Petunjuk: Pilih satu jawaban yang benar. Pernyataan yang senilai dengan Jika guru tidak datang maka semua siswa sedih. Adalah... Jika

Lebih terperinci

2015 ACADEMY QU IDMATHCIREBON

2015 ACADEMY QU IDMATHCIREBON 2015 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2014/2015 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/04 April 2015 Program Studi : IPA Waktu : 07.30 09.30 Petunjuk: Pilihlah satu

Lebih terperinci

SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017

SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017 SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 06 / 07 MATA PELAJARAN : Matematika KELOMPOK : TEKNIK (RPL, TKJ). Bentuk sederhana dari p q r 0 0 0 0 p q r 8 0 p q r 8 pqr 6 5 5 p q r p q r p q r 5 adalah....

Lebih terperinci

x y y z TRY OUT 2 1. Untuk x 0, y 0 dan z 0. Bentuk sederhana dari adalah. 2. Jika diketahui a = dan b = 20 12, maka nilai dari

x y y z TRY OUT 2 1. Untuk x 0, y 0 dan z 0. Bentuk sederhana dari adalah. 2. Jika diketahui a = dan b = 20 12, maka nilai dari TRY OUT x y. Untuk x 0, y 0 dan z 0. Bentuk sederhana dari x y x A. y z B. C. x y z x y y z D. x z E. x y z. Jika diketahui a = 0 dan b = 0, maka nilai dari A. B. C. D. E. z. z a b ab. Bentuk sederhana

Lebih terperinci

TRY OUT UJIAN NASIONAL

TRY OUT UJIAN NASIONAL PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH KERJA KEPALA SEKOLAH SMA Sekretariat : SMA Negeri 70 Jakarta Jalan Bulungan No. C, Jakarta Selatan Telepon (0) 77, Fax (0)

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2007/2008 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 7/8. Diketahui premis premis : () Jika Badu rajin belajar dan patuh pada orang tua, maka Ayah membelikan bola basket () Ayah tidak membelikan

Lebih terperinci

MATEMATIKA 12 SMA IPS

MATEMATIKA 12 SMA IPS Pemantapan H- MATEMATIKA SMA IPS Hari/Tanggal : Maret 06 M Jumadil Akhir 7 H Waktu : 90 menit Kerjakanlah dengan Jujur dan Sungguh-Sungguh, Minta Tolonglah hanya kepada Allah! Selamat Mengerjakan, Semoga

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D

A. 100 B. 25 C. 20 D. 10 E Bentuk sederhana dari pecahan bentuk akar. adalah. A B C D , PEMERINTAH KABUPATEN KENDAL DINAS PENDIDIKAN PEMUDA DAN OLAH RAGA SMK NEGERI KENDAL Alamat : Jl. Boja - Limbangan KM Salamsari, Boja, Kendal Telp.(9) 88 Fax. (9) e-mail : smktelukendal@yahoo.com. Pak

Lebih terperinci

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010 . Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan

Lebih terperinci

UN SMA IPA 2008 Matematika

UN SMA IPA 2008 Matematika UN SMA IPA 008 Matematika Kode Soal D0 Doc. Version : 0-06 halaman 0. Ingkaran dari pernataan "Ada bilangan prima adalah bilangan genap." Semua bilangan prima adalah bilangan genap. Semua bilangan prima

Lebih terperinci

2 sama dengan... 5, x R adalah.

2 sama dengan... 5, x R adalah. . Menjelang hari raya, sebuah toko M memberikan diskon % untuk setiap pembelian barang. Jika Rini membayar pada kasir sebesar Rp 7.00,00, maka harga barang yang dibeli Rini sebelum dikenakan diskon adalah...

Lebih terperinci

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal A) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 05 / 06 SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON Downloaded from SMA / MA MATEMATIKA Program Studi IPS Kerjasama dengan Dinas Pendidikan Provinsi

Lebih terperinci

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0 UN-SMK-TEK-04-0 Jarak kota A ke kota B pada peta 0 cm. Jika skala peta : 0.000, maka jarak kedua kota sebenarnya adalah..., km km 0 km.00 km.000 km UN-SMK-TEK-04-0 Hasil perkalian dari (4a) - (a) =...

Lebih terperinci

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA

UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA A Matematika IPA SMA/MA TRYOUT UJIAN NASIONAL DINAS PENDIDIKAN DKI JAKARTA SMA/MA TAHUN PELAJARAN 04/05 MATEMATIKA IPA Hasil Kerja Sama dengan Matematika IPA SMA/MA Mata Pelajaran : Matematika IPA Jenjang

Lebih terperinci

Hak Cipta 2014 Penerbit Erlangga

Hak Cipta 2014 Penerbit Erlangga 00-00-008-0 Hak Cipta 0 Penerbit Erlangga Berilah tanda silang (X) pada huruf A, B, C, D, atau E pada jawaban yang benar!. Diketahui premis-premis: () Jika beberapa daerah dilanda banjir, maka beberapa

Lebih terperinci

SOAL TO UN SMA MATEMATIKA

SOAL TO UN SMA MATEMATIKA 1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas

Lebih terperinci

b c a b a c 1. Bentuk sederhanaa dari

b c a b a c 1. Bentuk sederhanaa dari 7 a b c. Bentuk sederhanaa dari 6 6a b c c A. a b b B. a c C. b a c bc D. a E. 7 7 c a b. Dalam kantong kantong diambil dua kelereng sekaligus, maka peluang mendapatkan kelereng satu berwarna merah dan

Lebih terperinci

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal B) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON

SMA / MA PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 2015 / 2016 MATEMATIKA. (Paket Soal B) SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON PRA UJIAN NASIONAL SMA / MA TAHUN PELAJARAN 05 / 06 SE-JABODETABEK, KARAWANG, SERANG, PANDEGLANG, DAN CILEGON Downloaded from SMA / MA MATEMATIKA Program Studi IPA Kerjasama dengan Dinas Pendidikan Provinsi

Lebih terperinci

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.

PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-594 5751 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata Pelajaran

Lebih terperinci