Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS

Ukuran: px
Mulai penontonan dengan halaman:

Download "Distribusi Normal. Statistika (MAM 4137) Syarifah Hikmah JS"

Transkripsi

1 Distribusi Normal Statistika (MAM 4137) Syarifah Hikmah JS

2 Outline Kurva normal Luas daerah di bawah kurva normal Penerapan sebaran normal

3 DISTRIBUSI NORMAL model distribusi kontinyu yang paling penting untuk diterapkan di berbagai bidang seperti industri dan penelitian Distribusi Normal Kurva normal.. Grafik dari distribusi normal yang berbentuk seperti genta (lonceng) setangkup yang simetris disebut kurva normal.. Suatu peubah acak kontinu X yang memiliki sebaran berbentuk genta disebut peubah acak normal

4 Jika X merupakan suatu peubah acak normal dengan nilai tengah µ dan ragam σ2, maka persamaan kurva normalnya : Persamaan Matematika kurva normal yang ditemukan oleh Gauss

5 Bentuk distribusi normal ditentukan oleh μ dan σ μ 1 = μ 2 σ 1 > σ 2 μ 1 < μ 2 σ 1 = σ μ 1 < μ 2 σ 1 < σ 2

6 Sifat Penting Distribusi Normal Grafiknya selalu ada di atas sumbu datar x Bentuknya simetrik terhadap x=µ Mempunyai satu modus Grafiknya mendekati sumbu mendatar x dimulai dari x = µ + 3σ ke kanan dan x = µ - 3σ ke kiri Luas daerah grafik selalu sama dengan satu unit persegi σ makin besar maka kurva makin rendah (B) σ makin kecil maka kurva makin tinggi (A)

7 Luas Daerah Di Bawah Kurva Normal Bila x menyatakan peubah acak distribusi maka P(x1 < x < x2) diberikan oleh daerah yang berwarna abu-abu. x 1 μ x 2 P(x 1 <x<x 2 ) = probabilitas variabel random x memiliki nilai antara x 1 dan x 2 P(x 1 <x<x 2 ) = luas di bawah kurva normal antara x=x 1 dan x=x 2

8 Untuk peubah acak X pada sebaran I, P(x1<X<x2) ditunjukkan pada daerah yang diaksir, sedangkan untuk sebaran II, peluang dinyatakan oleh daerah yang berwarna abu-abu Sebaran peluang untuk masing-masing sebaran juga berbeda Harus membuat tabel terpisah untuk setiap kurva normal bagi setiap pasangan µ dan σ Perrhitungan fungsi probabilitas (peluang) dengan rumus matematik integral yang sangat rumit KESULITAN

9 DISTRIBUSI NORMAL UMUM VS DISTRIBUSI NORMAL BAKU Sebaran peubah acak normal dengan nilai tengah (µ) = nol dan simpangan baku (σ) = 1 Distribusi Normal Baku Agar data dapat digunakan, distribusi normal umum harus diubah ke dalam distribusi normal baku dengan transformasi nilai z. nilai-nilai z dari variabel-variabel yang berdistribusi normal yang akan dengan sendirinya terdistribusi normal sehingga tidak mengubah bentuk awal distribusi

10 Kurva Distribusi Normal Baku Transformasi ini juga mempertahankan luas dibawah kurvanya, artinya: Luas dibawah kurva distribusi normal antara x 1 dan x 2 = Luas dibawah kurva distribusi normal standard antara z 1 dan z 2 Dengan z 1 = (x 1 -μ)/σ dan z 2 = (x 2 -μ)/σ. Sehingga cukup dibuat tabel distribusi normal standard kumulatif saja!

11 f(z) Menghitung Probabilitas dengan 1-11 Kurva Normal: P(0 < Z < 1.56) StandardNormal Distribution Standard Normal Probabilities { Z Lihat baris 1.5 dan kolom.06 untuk mencari P(0 <Z<1.56) =

12 f(z) Contoh Soal CONTOH!! Untuk sebaran normal dengan µ=50; σ=10 hitunglah bahwa X mengambil sebuah nilai antara 45 dan 62! Jawab : Z1=(45-50)/10 = -0.5 Z2=(62-50)/10=1.2 Maka P(45<X<62) = P(-0.5<Z<1.2) StandardNormal Distribution P(45<X<62)= P(-0.5<Z<1.2) =P(Z<1.2) P(Z<-0.5) = = Z

13 Kerjakan Untuk sebaran normal dengan µ=40; σ=6 hitunglah bahwa X mengambil sebuah nilai antara 42 dan 51

14 Contoh: Hitung Luas Pergunakanlah tabel distribusi normal standard untuk menghitung luas daerah : a) Di sebelah kanan z=1.84 b) Antara z=-1.97 s/d z=0.86 Jawab. Ingat bahwa luas yg diberikan dalam tabel distribusi normal kumulatif adalah luas dari z=- s/d z 0 tertentu: P(z<z 0 ). a) P(z>1.84) = 1 P(z 1.84) = = a) P(-1.97 <z<0.86) = P(z<0.86) P(z<-1.97) = =

15 Memakai Distribusi Normal Dalam Arah Kebalikan Diketahui luas dibawah distribusi normal yg diinginkan yang terkait dengan besar probabilitas, ingin dicari nilai variabel random X yg terkait. Contoh. Misalkan distribusi normal memiliki μ=40 σ=6, carilah nilai x 0 sehingga: a) P(x<x 0 ) = 45% b) P(x>x 0 )=14% Jawab. a) Kita mulai dengan mencari nilai Z yg sama luasnya. P(z<z 0 ) = 45% = 0.45 dari tabel z 0 = z 0 = (x 0 -μ)/σ x 0 = μ + σz 0 = 40 +6*(-0.13) = 39.22

16 Memakai Distribusi Normal Dalam Arah Kebalikan Jawab. b) Kita mulai dengan mencari nilai Z yg sama luasnya. P(z>z 0 ) = 14% P(z<z 0 ) = 1- P(z>z 0 ) = = 0.86 P(z<z 0 ) = 0.86 dari tabel z 0 = 1.08 z 0 = (x 0 -μ)/σ x 0 = μ + σz 0 = 40 +6*(1.08) = 46.48

17 Kerjakan Sebuah sebaran normal dengan µ = 200 dan σ 2 = 100, hitunglah nilai x 0 sehingga P(x<x 0 ) = 45%

18 Contoh Penerapan Distribusi Normal Sebuah perusahaan lampu celup bawah air mengetahui bahwa umur lampunya (sebelum putus) terdistribusi secara normal dengan rata-rata umurnya 800 jam dan standard deviasinya 40 jam. Carilah probabilitas bahwa sebuah bolam produksinya akan: a. Berumur antara 778 jam dan 834 jam b. Berumur kurang dari 750 jam atau lebih dari 900 jam Jawab. μ= 800 σ=40. P(778<x<834) x 1 =778 z 1 = (x 1 -μ)/σ = ( )/40 = x 2 =834 z 2 = (x 2 -μ)/σ = ( )/40 = 0.85 P(778<x<834) = P(-0.55<z<0.85) = P(z<0.85)-P(z<-0.55) = =

19 Contoh Penerapan Distribusi Normal b) Berumur kurang dari 750 jam atau lebih dari 900 jam μ= 800 σ=40. P(x< 750 atau x>900) x 1 =750 z 1 = (x 1 -μ)/σ = ( )/40 = x 2 =900 z 2 = (x 2 -μ)/σ = ( )/40 = 2.5 P(x< 750 atau x>900) = P(z<-1.25) + P(z>2.5) = P(z<-1.25) + 1- P(z<2.5) = 1 + P(z<-1.25) - P(z<2.5) = =

20 Kerjakan! Rata-rata nilai kuliah statistik diketahui 60 dengan standard deviasi 15. a) Jikalau diinginkan 20% murid mendapat nilai A dan diketahui distribusi nilai normal, berapakah batas bawah nilai agar mendapat A? b) Selanjutnya diinginkan yg mendapat B adalah sebanyak 35%. Berapakah batas bawah B?

21 Terima Kasih

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial

DISTRIBUSI NORMAL. Pertemuan 3. 1 Pertemuan 3_Statistik Inferensial DISTRIBUSI NORMAL Pertemuan 3 1 Pertemuan 3_Statistik Inferensial Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal

Lebih terperinci

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1

DISTRIBUSI NORMAL. Pertemuan 3. Distribusi Normal_M. Jainuri, M.Pd 1 DISTRIBUSI NORMAL Pertemuan 3 1 Distribusi Normal Pertama kali diperkenalkan oleh Abraham de Moivre (1733). De Moivre menemukan persamaan matematika untuk kurva normal yang menjadi dasar dalam banyak teori

Lebih terperinci

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP

STATISTICS. Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL WEEK 6 TELKOM POLTECH/HANUNG NP STATISTICS WEEK 6 Oleh: Hanung N. Prasetyo DISTRIBUSI NORMAL Pengantar: Dalam pokok bahasan disini memuat beberapa distribusi kontinyu yang sangat penting di bidang statistika. diantaranya distribusi normal.

Lebih terperinci

KURVA NORMAL. (Sumber: Buku Metode Statistika tulisan Sudjana)

KURVA NORMAL. (Sumber: Buku Metode Statistika tulisan Sudjana) KURVA NORMAL (Sumber: Buku Metode Statistika tulisan Sudjana) Distribusi Normal (Distribusi GAUSSE) Kurva Normal Suatu alat statistik yang sangat penting untuk menaksir dan meramalkan peristiwa-peristiwa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Distribusi Normal Salah satu distribusi frekuensi yang paling penting dalam statistika adalah distribusi normal. Distribusi normal berupa kurva berbentuk lonceng setangkup yang

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

Jenis Distribusi. 1. Distribusi Probabilitas 2. Distribusi Binomial (Bernaulli) 3. Distribusi Multinomial 4. Distribusi Normal (Gauss)

Jenis Distribusi. 1. Distribusi Probabilitas 2. Distribusi Binomial (Bernaulli) 3. Distribusi Multinomial 4. Distribusi Normal (Gauss) Ir Tito Adi Dewanto Jenis Distribusi 1. Distribusi Probabilitas 2. Distribusi Binomial (Bernaulli) 3. Distribusi Multinomial 4. Distribusi Normal (Gauss) Pengantar Kunci aplikasi probabilitas dalam statistik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Revenue Management Belakangan ini revenue management telah mendapat perhatian dunia sebagai salah satu aplikasi dari operations research (OR) yang paling sukses. Revenue management

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

OUT LINE. Distribusi Probabilitas Normal. Pengertian Distribusi Probabilitas Normal. Distribusi Probabilitas Normal Standar

OUT LINE. Distribusi Probabilitas Normal. Pengertian Distribusi Probabilitas Normal. Distribusi Probabilitas Normal Standar 3 OUT LINE Pengertian Distribusi Probabilitas Normal Distribusi Probabilitas Normal Distribusi Probabilitas Normal Standar Penerapan Distribusi Probabilitas Normal Standar Pendekatan Normal Terhadap Binomial

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Beberapa Distribusi Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Beberapa Distribusi Peluang Kontinu Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Distribusi Seragam Kontinu Distribusi Seragam kontinu

Lebih terperinci

SEBARAN PENARIKAN CONTOH

SEBARAN PENARIKAN CONTOH STATISTIK (MAM 4137) SEBARAN PENARIKAN CONTOH Ledhyane Ika Harlyan 2 Outline Sebaran Penarikan Contoh Sebaran Penarikan Contoh Bagi Nilai Tengah Sebaran t Sebaran Penarikan contoh bagi beda dua mean Parameter

Lebih terperinci

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT.

KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. KONSEP DASAR PROBABILITAS DAN DISTRIBUSI PROBABILITAS LELY RIAWATI, ST, MT. EKSPERIMEN suatu percobaan yang dapat diulang-ulang dengan kondisi yang sama CONTOH : Eksperimen : melempar dadu 1 kali Hasilnya

Lebih terperinci

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal 1 Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

statistika untuk penelitian

statistika untuk penelitian statistika untuk penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2013 Freeaninationwallpaper.blogspot.com Apa itu Statistika? Statistika adalah ilmu yang mempelajari cara pengumpulan,

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

DISTRIBUSI NORMAL. RatuIlmaIndraPutri

DISTRIBUSI NORMAL. RatuIlmaIndraPutri DISTRIBUSI NORMAL RatuIlmaIndraPutri Distribusi normal menggunakan variabel acak kontinu. Distribusi normal sering disebut DISTRIBUSI GAUSS. Distribusi ini merupakan salah satu yang paling penting dan

Lebih terperinci

MODUL DISTRIBUSI PROBABILITAS EKSPONENSIAL

MODUL DISTRIBUSI PROBABILITAS EKSPONENSIAL MODUL DISTRIBUSI PROBABILITAS EKSPONENSIAL Tujuan Praktikum: Membantu mahasiswa memahami materi Distribusi Eksponensial Pengambilan keputusan dari suatu kasus dengan menggunakan kaidah dan syarat Distribusi

Lebih terperinci

DISTRIBUSI PROBABILITAS NORMAL

DISTRIBUSI PROBABILITAS NORMAL DISTRIBUSI PROBABILITAS NORMAL 1 KARAKTERISTIK DISTRIBUSI KURVA NORMAL 1. Kurva berbentuk genta ( = Md= Mo) 2. Kurva berbentuk simetris 3. Kurva normal berbentuk asimptotis 4. Kurva mencapai puncak pada

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat rengganis.rachmat@gmail.com 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG

Tugas Kelompok. Mata Kuliah Metodologi Penelitian Kuantitatif. Judul Makalah Revisi DISTRIBUSI PELUANG Tugas Kelompok Mata Kuliah Metodologi Penelitian Kuantitatif Judul Makalah Revisi DISTRIBUSI PELUANG Kajian Buku Pengantar Statistika Pengarang Nana Sudjana Tugas dibuat untuk memenuhi tugas mata kuliah

Lebih terperinci

ANALISIS DATA DALAM STATISTIK

ANALISIS DATA DALAM STATISTIK 1. Pengertian Analisis Data ANALISIS DATA DALAM STATISTIK Analisis data diartikan sebagai upaya mengolah data menjadi informasi, sehingga karakteristik atau sifat-sifat data tersebut dapat dengan mudah

Lebih terperinci

DISTRIBUSI NORMAL. Fitri Yulianti

DISTRIBUSI NORMAL. Fitri Yulianti DISTRIBUSI NORMAL Fitri Yulianti KARAKTERISTIK DISTRIBUSI KURVA NORMAL 1. Kurva berbentuk genta ( = Md= Mo) 2. Kurva berbentuk simetris 3. Kurva normal berbentuk asimptotis 4. Kurva mencapai puncak padaa

Lebih terperinci

Metode Statistika. Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution)

Metode Statistika. Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Metode Statistika Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Konsep Peubah Acak Peubah acak merupakan suatu fungsi yang memetakan ruang kejadian (daerah

Lebih terperinci

DISTRIBUSI PROBABILITAS NORMAL

DISTRIBUSI PROBABILITAS NORMAL DISTRIBUSI PROBABILITAS NORMAL 1 OUTLINE BAGIAN II Probabilitas dan Teori Keputusan Konsep-konsep Dasar Probabilitas Distribusi Probabilitas Diskret Distribusi Normal Teori Keputusan Pengertian dan Karakteristik

Lebih terperinci

DISTRIBUSI PELUANG.

DISTRIBUSI PELUANG. DISTRIBUSI PELUANG readonee@yahoo.com Distribusi? Peluang? Distribusi Peluang? Distribusi = sebaran, pencaran, susunan data Peluang : Ukuran/derajat ketidakpastian suatu peristiwa Distribusi Peluang adalah

Lebih terperinci

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS

DISTRIBUSI PELUANG KONTINYU DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat mencakup nilai pecahan maupun mencakup range/ rentang nilai tertentu. Karena terdapat

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Data adalah bentuk jamak dari datum, yang dapat diartikan sebagai informasi yang diterima yang bentuknya dapat berupa angka, kata-kata, atau dalam bentuk lisan dan tulisan

Lebih terperinci

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1

MK Statistik Bisnis 2 MultiVariate. Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Haryoso Wicaksono, S.Si., M.M., M.Kom. 1 Descriptive Statistics mengandung metoda dan prosedur yang digunakan untuk pengumpulan, pengorganisasian, presentasi dan memberikan karakteristik terhadap himpunan

Lebih terperinci

4. Sebaran Peluang Kontinyu

4. Sebaran Peluang Kontinyu 4. Sebaran Peluang Kontinyu EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 1. Sebaran normal/gauss. Luas daerah di bawah kurva normal 3. Hampiran normal untuk sebaran binomial 4. Sebaran

Lebih terperinci

STATISTIKA. Distribusi Binomial. Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai. Distribusi Normal

STATISTIKA. Distribusi Binomial. Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai. Distribusi Normal STATISTIKA Distribusi Normal Distribusi Binomial Ingat contoh pemilihan 1 kegiatan (Kegiatan A) dari 4 kegiatan untuk didanai Distribusi Binomial Histogram Distribusi Probabilitas Sukses Statistika Distribusi

Lebih terperinci

Binomial Distribution. Dyah Adila

Binomial Distribution. Dyah Adila Binomial Distribution Dyah Adila Binomial Distribution adalah bentuk percobaan yang memiliki syarat-syarat sebagai berikut: 1. Percobaan dilakukan sebanyak n kali. 2. Setiap percobaan memiliki dua hasil

Lebih terperinci

Makalah Sebagai Salah Satu Tugas dalam Mata Kuliah ANALISIS STATISTIK. Oleh: 1. Trilius Septaliana KR ( ) 2. Aisyah ( )

Makalah Sebagai Salah Satu Tugas dalam Mata Kuliah ANALISIS STATISTIK. Oleh: 1. Trilius Septaliana KR ( ) 2. Aisyah ( ) MOMEN, KEMIRINGAN DAN KERUNCINGAN, DISTRIBUSI NORMAL, DISTRIBUSI T, DISTRIBUSI F, DISTRIBUSI BINOMIAL, DISTRIBUSI POISSON, UJI NORMALITAS DAN HOMOGENITAS, UJI F DAN t, HIPOTESIS, DAN ANOVA Makalah Sebagai

Lebih terperinci

Distribusi Probabilitas Kontinyu Teoritis

Distribusi Probabilitas Kontinyu Teoritis Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi

Lebih terperinci

Distribusi Frekuensi

Distribusi Frekuensi Distribusi Frekuensi Statistik Industri Beberapa Istilah 1 Beberapa (cont ) Kelas interval : banyaknya objek yang dikumpulkan dalam kelompok tertentu, berbentuk interval a b ex: kelas interval pertama

Lebih terperinci

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output:

KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: KULIAH ANALISIS STATISTIK DATA SIMULASI Tipe-tipe simulasi berdasarkan analisis output: 1. Terminating simulation 2. Nonterminating simulation: a. Steady-state parameters b. Steady-state cycle parameters

Lebih terperinci

MATERI STATISTIK II. Genrawan Hoendarto

MATERI STATISTIK II. Genrawan Hoendarto MATERI STATISTIK II Teori Probabilitas Variabel Acak dan Nilai Harapan Distribusi Teoritis Distribusi Sampling Pengujian Hipotesis Regresi dan Korelasi Linear Sederhana Statistik Nonparametrik Daftar Pustaka

Lebih terperinci

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016

PENS. Probability and Random Process. Topik 2. Statistik Deskriptif. Prima Kristalina Maret 2016 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 2. Statistik Deskriptif Prima Kristalina Maret 2016 1 Outline [2][1] 1. Penyajian Data o Tabel

Lebih terperinci

LAB MANAJEMEN DASAR MODUL STATISTIKA 1

LAB MANAJEMEN DASAR MODUL STATISTIKA 1 LAB MANAJEMEN DASAR MODUL STATISTIKA 1 Nama : NPM/Kelas : Fakultas/Jurusan : Hari dan Shift Praktikum : Fakultas Ekonomi Universitas Gunadarma Kelapa dua E531 1 UKURAN STATISTIK Pendahuluan Ukuran statistik

Lebih terperinci

PERBANDINGAN KURVA PADA DISTRIBUSI UNIFORM DAN DISTRIBUSI BINOMIAL

PERBANDINGAN KURVA PADA DISTRIBUSI UNIFORM DAN DISTRIBUSI BINOMIAL Statistika, Vol., No., Mei PERBANDINGAN KURVA PADA DISTRIBUSI UNIFORM DAN DISTRIBUSI BINOMIAL Moh. Yamin Darsyah, Dwi Haryo Ismunarti Program Studi S Statistika Universitas Muhammadiyah Semarang, Jl. Kedung

Lebih terperinci

D I S T R I B U S I P R O B A B I L I T A S

D I S T R I B U S I P R O B A B I L I T A S D I S T R I B U S I P R O B A B I L I T A S Amiyella Endista Email : amiyella.endista@yahoo.com Website : www.berandakami.wordpress.com Distribusi Probabilitas Kunci aplikasi probabilitas dalam statistik

Lebih terperinci

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang

STK 211 Metode statistika. Materi 4 Peubah Acak dan Sebaran Peluang STK 211 Metode statistika Materi 4 Peubah Acak dan Sebaran Peluang 1 Pendahuluan Soal ujian masuk PT diselenggarakan dengan sistem pilihan berganda. Jika jawaban benar diberi nilai 4, salah dikurangi 1

Lebih terperinci

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data

Statistik Dasar. 1. Pendahuluan Persamaan Statistika Dalam Penelitian. 2. Penyusunan Data Dan Penyajian Data Statistik Dasar 1. Pendahuluan Persamaan Statistika Dalam Penelitian 2. Penyusunan Data Dan Penyajian Data 3. Ukuran Tendensi Sentral, Ukuran Penyimpangan 4. Momen Kemiringan 5. Distribusi Normal t Dan

Lebih terperinci

MINGGU KE-X: DISTRIBUSI CONTINOUS

MINGGU KE-X: DISTRIBUSI CONTINOUS MINGGU KE-: DISTRIBUSI CONTINOUS Tujuan Instruksional Umum : 1. Mahasiswa memahami apa yang dimaksud dengan distribusi continuous 2. Mahasiswa memahami perbedaan antara distribusi diskrit dengan distribusi

Lebih terperinci

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak

25/09/2013. Konsep Peubah Acak. Metode Statistika (STK211) Peubah Acak Diskret. Kuis. Tipe Peubah Acak Konsep Peubah Acak Metode Statistika (STK11) Pertemuan V Konsep Peubah Acak dan Sebaran Peluang (Random Variable Concept and Probability Distribution) Peubah acak merupakan suatu fungsi yang memetakan

Lebih terperinci

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya

Lebih terperinci

Probabilitas & Distribusi Probabilitas

Probabilitas & Distribusi Probabilitas Probabilitas & Distribusi Probabilitas Probabilitas Definisi peluang untuk terjadi atau tidak terjadi Probabilitas untuk keluarnya mata satu dalam pelemparan satu kali sebuah dadu? Berapakah peluang seorang

Lebih terperinci

Kuliah 4. Ukuran Penyebaran Data

Kuliah 4. Ukuran Penyebaran Data Kuliah 4. Ukuran Penyebaran Data Mata Kuliah Statistika Dr. Ir. Rita Rostika MP. 21 Maret 2012 Prodi Perikanan Fakultas Perikanan dan Ilmu Kelautan Universitas Padjadjaran Content Rentang Data Rentang

Lebih terperinci

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU

MODUL II DISTRIBUSI PELUANG DISKRIT DAN KONTINU DISTRIBUSI PELUANG DISKRIT DAN KONTINU A. TUJUAN PRAKTIKUM Melalui praktikum Modul II ini diharapkan praktikan dapat: 1. Mengenal jenis dan karakteristik dari beberapa distribusi peluang. 2. Menguji dan

Lebih terperinci

Nilai Harapan / Nilai Ekspektasi

Nilai Harapan / Nilai Ekspektasi EKSPEKTASI Misalkan sebuah eksperimen menghasilkan k peristiwa, dan peluang masing-masing peristiwa P 1, P, P k dan untuk tiap peristiwa terdapat satuan (bobot d 1, d d k ) maka ekspektasi eksperimen itu

Lebih terperinci

Statistik Deskriptif dengan Microsoft Office Excel

Statistik Deskriptif dengan Microsoft Office Excel Statistik Deskriptif dengan Microsoft Office Excel Junaidi, Junaidi I. Prosedur Statistik Deskriptif pada Excel Statistik deskriptif adalah statistik yang bertujuan untuk mendeskripsikan atau menggambarkan

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS BAB 7 DISTRIBUSI PROBABILITAS Kompetensi Menjelaskan distribusi probabilitas Indikator 1. Menjelaskan distribusi hipergeometris 2. Menjelaskan distribusi binomial 3. Menjelaskan distribusi multinomial

Lebih terperinci

DISTRIBUSI PELUANG TEORITIS

DISTRIBUSI PELUANG TEORITIS Distribusi Teoritis 1/ 15 DISTRIBUSI PELUANG TEORITIS 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.. PEUBAH ACAK Fungsi yang mendefinisikan

Lebih terperinci

Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan ANALISIS FREKUENSI. Statistika dan Probabilitas

Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan ANALISIS FREKUENSI. Statistika dan Probabilitas Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan ANALISIS FREKUENSI Statistika dan Probabilitas 2 Regresi Linear Tabel data x i y i = f(x i ) 1 0.5 2 2.5 3 2 4 4 5 3.5 6 6

Lebih terperinci

DISTRIBUSI PROBABILITAS FERDIANA YUNITA

DISTRIBUSI PROBABILITAS FERDIANA YUNITA DISTRIBUSI PROBABILITAS FERDIANA YUNITA DEFINISI DISTRIBUSI PROBABILITAS Model untuk variable acak, yg menggambarkan cara probabilitas tersebar pada semua nilai yang mungkin terjadi dari variable acak

Lebih terperinci

PERCOBAAN 5 DISTRIBUSI PROBABILITAS KHUSUS

PERCOBAAN 5 DISTRIBUSI PROBABILITAS KHUSUS PERCOBAAN 5 DISTRIBUSI PROBABILITAS KHUSUS 5.1. Tujuan : Setelah melaksanakan praktikum ini mahasiswa diharapkan mampu : Membedakan beberapa jenis distribusi probabilitas variabel acak Menggunakan fungsi

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI Bab 2 LANDASAN TEORI 2.1. Penaksiran Parameter Jika adalah nilai parameter populasi yang belum diketahui harganya, maka dapat ditaksir oleh nilai statistik, dan disebut sebagai penaksir atau fungsi keputusan.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pendahuluan Projek R mulai dikembangkan oleh Robert Gentlemean dan Ross Ihaka dari departemen statistika di universitas Auckland pada tahun 1995. R merupakan lanjutan pengembangan

Lebih terperinci

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM 1.11 Chebyshev s Inequality DISTRIBUTIONS OF RANDOM VARIABLE (Ketaksamaan Chebyshev) A. Pendahuluan DISTRIBUSI VARIABEL RANDOM Konsep atau rumus yang berhubungan dengan Ketaksamaan Chebyshev Ekspektasi

Lebih terperinci

BAB 3: NILAI RINGKASAN DATA

BAB 3: NILAI RINGKASAN DATA BAB 3: NILAI RINGKASAN DATA Penyajian data dalam bentuk tabel dan grafik memberikan kemudahan bagi kita untuk menggambarkan data dan membuat kesimpulan terhadap sifat data. Namun tabel dan grafik belum

Lebih terperinci

PENYAJIAN DATA. Etih Sudarnika Laboratorium Epidemiologi Fakultas Kedokteran Hewan IPB

PENYAJIAN DATA. Etih Sudarnika Laboratorium Epidemiologi Fakultas Kedokteran Hewan IPB PENYAJIAN DATA Etih Sudarnika Laboratorium Epidemiologi Fakultas Kedokteran Hewan IPB Proses Pengumpulan Data???? Pencatatan Data Numerik Variable Record ID Nama Spesies Hasil Uji HI 1 Ahmad Ayam broiler

Lebih terperinci

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT

UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah, ST., MT SIGN TEST Sign Test Digunakan untuk menguji hipotesa tentang MEDIAN dan DISTRIBUSI KONTINYU. Pengamatan dilakukan pada median dari sebuah distribusi

Lebih terperinci

3/25/2013. KANIA EVITA DEWI, S.Pd., M.Si

3/25/2013. KANIA EVITA DEWI, S.Pd., M.Si KANIA EVITA DEWI, S.Pd., M.Si Daftar distribusi frekuensi Digunakan untuk menyajikan data kuantitatif. Kelebihan menggunakan distribusi frekuensi adalah mempunyai gambaran menyeluruh secara jelas mengenai

Lebih terperinci

Statistika Deskriptif & Distribusi Frekuensi

Statistika Deskriptif & Distribusi Frekuensi Statistika Deskriptif & Distribusi Frekuensi Oleh: Zulhan Widya Baskara FAKULTAS TEKNOLOGI PERTANIAN Mataram, September 2014 Statistika Statistika Deskriptif Statistika Inferensial Statistika Deskriptif

Lebih terperinci

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan

I. PENDAHULUAN. merangkum, dan mempresentasikan data dengan cara informatif. Sedangkan I. PENDAHULUAN 1.1 Latar Belakang Statistika merupakan ilmu tentang pengumpulan, pengaturan, analisis, dan pendugaan data untuk membantu proses pengambilan keputusan secara lebih efisien. Ilmu statistika

Lebih terperinci

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT

UKURAN NILAI SENTRAL&UKURAN PENYEBARAN. Tita Talitha, MT UKURAN NILAI SENTRAL&UKURAN PENYEBARAN Tita Talitha, MT DISTRIBUSI FREKWENSI PENGERTIAN distribusi frekwensi adalah suatu tabel dimana banyaknya kejadian / frekwensi didistribusikan ke dalam kelas-kelas

Lebih terperinci

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Distribusi Peluang Teoritis. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

ANALISIS GRAFIK KENDALI np YANG DISTANDARISASI UNTUK PENGENDALIAN KUALITAS DALAM PROSES PENDEK

ANALISIS GRAFIK KENDALI np YANG DISTANDARISASI UNTUK PENGENDALIAN KUALITAS DALAM PROSES PENDEK ANALISIS GRAFIK KENDALI np YANG DISTANDARISASI UNTUK PENGENDALIAN KUALITAS DALAM PROSES PENDEK Yayuk Nurkotimah dan Fachrur Rozi Jurusan Matematika UIN Maulana Malik Ibrahim Malang e-mail: ocy_cute9@yahoo.com

Lebih terperinci

PERTEMUAN KE 2 HIPOTESIS

PERTEMUAN KE 2 HIPOTESIS PERTEMUAN KE 2 HIPOTESIS DEFINISI Jawaban sementara terhadap masalah penelitian yang kebenarannya masih harus diuji secara empiris. Pernyataan mengenai keadaan populasi yang akan diuji kebenarannya berdasarkan

Lebih terperinci

Fungsi Kepadatan Probabilitas

Fungsi Kepadatan Probabilitas Fungsi Kepadatan Probabilitas Achmad Basuki Politeknik Elektronika Negeri Surabaya 2004 Gambaran Permasalahan Fungsi Distribusi Data Dalam Statistik [1] Perusahaan jasa penjualan telur ayam kampung yang

Lebih terperinci

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR

MODUL TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR TEORI ESTIMASI ATAU MENAKSIR MODUL 9 TEORI ESTIMASI ATAU MENAKSIR. Pendahuluan Untuk menginginkan mengumpulkan populasi kita lakukan dengan statistik berdasarkan data yang diambil secara sampling yang

Lebih terperinci

FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A Oleh : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS KEGURUAN DAN ILMU PENDIDIKIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 Wijaya : Statistika 0 I. PENDAHULUAN Statistika adalah

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) III. DISTRIBUSI FREKUENSI 3.1 Pendahuluan Tujuan dari pembuatan tabel distribusi frekuensi adalah untuk mengatur data mentah (data yang belum dikelompokkan) ke dalam bentuk yang rapi tanpa mengurangi inti

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DASAR Kode : EK11. B230 / 3 Sks

SATUAN ACARA PERKULIAHAN MATA KULIAH STATISTIKA DASAR Kode : EK11. B230 / 3 Sks Minggu Pokok Bahasan ke dan TIU 1 1Pendahuluan tentang konsep statistika dan notasi penjumlahan Sub Pokok Bahasan dan Sasaran Belajar 1.1. Konsep statistika statistika Mahasiswa dapat menjelaskan kegunaan

Lebih terperinci

Pendahuluan. Angka penting dan Pengolahan data

Pendahuluan. Angka penting dan Pengolahan data Angka penting dan Pengolahan data Pendahuluan Pengamatan merupakan hal yang penting dan biasa dilakukan dalam proses pembelajaran. Seperti ilmu pengetahuan lain, fisika berdasar pada pengamatan eksperimen

Lebih terperinci

Bab 5 Distribusi Sampling

Bab 5 Distribusi Sampling Bab 5 Distribusi Sampling Pendahuluan Untuk mempelajari populasi kita memerlukan sampel yang diambil dari populasi yang bersangkutan. Meskipun kita dapat mengambil lebih dari sebuah sampel berukuran n

Lebih terperinci

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan.

Distribusi Peluang Teoritis. Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Distribusi Peluang Teoritis 1. Pendahuluan Titik-titik contoh di dalam Ruang Sampel (S) dapat disajikan dalam bentuk numerik/bilangan. Peubah Acak Fungsi yang mendefinisikan titik-titik contoh dalam ruang

Lebih terperinci

Aplikasi Probabilitas dan Statistika Dalam Bidang Sistem Informasi Manajemen

Aplikasi Probabilitas dan Statistika Dalam Bidang Sistem Informasi Manajemen Aplikasi Probabilitas dan Statistika Dalam Bidang Sistem Informasi Manajemen Made Gde Aghes Saktiasher Totok (18209027) Program Studi Sistem dan teknologi Informasi Sekolah Teknik Elektro dan Informatika

Lebih terperinci

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS DISTRIBUSI ERLANG DAN PENERAPANNYA Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS nia.rini.purita2316@gmail.com, getut.uns@gmail.com ABSTRAK

Lebih terperinci

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata dan Statistika dan Fungsi Peluang Adam Hendra Brata acak adalah sebuah fungsi yang memetakan hasil kejadian yang ada di alam (seperti : buka dan tutup; terang, redup dan gelap; merah, kuning dan hijau;

Lebih terperinci

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd.

SATUAN ACARA TUTORIAL (SAT) Mata Kuliah : Statistika Dasar/PAMA 3226 SKS : 3 SKS Tutorial : ke-1 Nama Tutor : Adi Nur Cahyono, S.Pd., M.Pd. Tutorial : ke-1 Nama Tutor : a. Menjelaskan pengertian statistik; b. Menjelaskan pengertian statistika; c. Menjelaskan pengertian data statistik; d. Menjelaskan contoh macam-macam data; e. Menjelaskan

Lebih terperinci

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel

LANDASAN TEORI. menyatakan hubungan antara variabel respon Y dengan variabel-variabel 5 II. LANDASAN TEORI 2.1 Model Regresi Poisson Analisis regresi merupakan metode statistika yang populer digunakan untuk menyatakan hubungan antara variabel respon Y dengan variabel-variabel prediktor

Lebih terperinci

6 Departemen Statistika FMIPA IPB

6 Departemen Statistika FMIPA IPB Suplemen Responsi Pertemuan ANALISIS DATA KATEGORIK (STK351) 6 Departemen Statistika FMIPA IPB Pokok Bahasan Sub Pokok Bahasan Referensi Waktu Uji Kebaikan Suai Khi- Kuadrat untuk Sebaran Kontinu dan Uji

Lebih terperinci

RANCANGAN AKTIVITAS TUTORIAL (RAT)

RANCANGAN AKTIVITAS TUTORIAL (RAT) RANCANGAN AKTIVITAS TUTORIAL (RAT) Nama Mata Kuliah/ sks/ Kode : Statistika Dasar/ 3/ PAMA 3226 Nama Tutor/ NPP : Adi Nur Cahyono, S.Pd., M.Pd./088201206 Deskripsi Singkat Mata Kuliah : Mata kuliah ini

Lebih terperinci

DISTRIBUSI PROBABILITAS VARIABEL RANDOM

DISTRIBUSI PROBABILITAS VARIABEL RANDOM Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan DISTRIBUSI PROBABILITAS VARIABEL RANDOM Statistika dan Probabilitas 2 Distribusi probabilitas variabel random diskrit Distribusi

Lebih terperinci

DISTRIBUSI VARIABEL RANDOM

DISTRIBUSI VARIABEL RANDOM DISTRIBUSI VARIABEL RANDM Distribusi Variabel Diskrit Distribusi variabel diskrit adalah salah satu variabel acak yang diasumsikan memiliki bilangan terbatas dari nilai-nilai yang berbeda. Contoh : Waktu

Lebih terperinci

Materi dan Jadual Tatap Pokok Bahasan Sub Pokok Bahasan Statistika (MMS 2401) Muka Materi dan Jadual Materi dan Jadual

Materi dan Jadual Tatap Pokok Bahasan Sub Pokok Bahasan Statistika (MMS 2401) Muka Materi dan Jadual Materi dan Jadual Materi dan Jadual Statistika(MMS 2401) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Tatap Muka Pokok Bahasan 1. Statistika Deskriptif 2. Statistika Deskriptif

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

Misalkan peluang seorang calon mahasiswa IT Telkom memilih prodi TI adalah sebesar 0.6. Berapa peluang bahwa ;

Misalkan peluang seorang calon mahasiswa IT Telkom memilih prodi TI adalah sebesar 0.6. Berapa peluang bahwa ; Responsi SOAL 1: Misalkan peluang seorang calon mahasiswa IT Telkom memilih prodi TI adalah sebesar 0.6. Berapa peluang bahwa ; Orang keenam yang mendaftar seleksi adalah orang keempat yang memilih TI

Lebih terperinci

PENS. Probability and Random Process. Topik 6a. Pengujian Hipotesis 1. Prima Kristalina Mei 2015

PENS. Probability and Random Process. Topik 6a. Pengujian Hipotesis 1. Prima Kristalina Mei 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 6a. Pengujian Hipotesis 1 Prima Kristalina Mei 2015 1 Outline 1. Pengertian Hipotesis 2. Tingkat

Lebih terperinci

HIDROLOGI ANALISIS DATA HUJAN

HIDROLOGI ANALISIS DATA HUJAN HIDROLOGI ANALISIS DATA HUJAN Analisis Frekuensi dan Probabilitas Sistem hidrologi terkadang dipengaruhi oleh peristiwaperistiwa yang luar biasa, seperti hujan lebat, banjir, dan kekeringan. Besaran peristiwa

Lebih terperinci

1.0 Distribusi Frekuensi dan Tabel Silang

1.0 Distribusi Frekuensi dan Tabel Silang ANALISIS DESKRIPTIF 1.0 Distribusi Frekuensi dan Tabel Silang 1.1 Pengantar Statistik deskriptif Statistika deskriptif adalah bidang statistika yang mempelajari tatacara penyusunan dan penyajian data yang

Lebih terperinci

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH danardono@ugm.ac.id Program Studi Statistika Jurusan Matematika FMIPA UGM Materi dan Jadual Minggu ke- Pokok Bahasan Sub Pokok Bahasan 1. Pendahuluan 1 Perkuliahan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Distribusi Logistik Distribusi logistik merupakan distribusi yang memiliki fungsi kepekatan peluang kontinu. Bentuk kurva distribusi logistik adalah simetris dan uni modal. Bentuk

Lebih terperinci

Menentukan Kepala atau Ekor?

Menentukan Kepala atau Ekor? Menentukan Kepala atau Ekor? Ketika ditanya mengenai keluaran dari suatu pelemparan koin, apakah biasanya kebanyakan orang akan memilih angka atau gambar secara sama? Mari kita lakukan investigasi mengenai

Lebih terperinci

Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1

Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1 Lampiran 2 LEMBAR KERJA KELOMPOK MAHASISWA 1 Program Studi : Pendidikan Matematika Mata Kuliah : Kalkulus Materi : Integral (Penggunaan integral pada luas daerah bidang rata) Waktu : 2 x 50 menit KELOMPOK

Lebih terperinci