KARAKTER REPRESENTASI S n

Ukuran: px
Mulai penontonan dengan halaman:

Download "KARAKTER REPRESENTASI S n"

Transkripsi

1 Buletin Ilmiah Math, Stat, dan Terapannya (Bimaster) Volume 7, No. (28), hal KARAKTER REPRESENTASI S n Megawati June, Helmi, Fransiskus Fran INTISARI Karakter merupakan trace pada setiap matriks representasi dari elemen grup. Karakter dikelompokkan menjadi karakter reducible dan karakter irreducible. Selain menggunakan matriks, karakter pada representasi S dapat dihitung menggunakan tablo Young. Tablo Young digunakan untuk menentukan tabloid dari λ partisi n (λ n) untuk memperoleh nilai dimensi dan karakter dari M yang merupakan representasi reducible dari S, sedangkan tablo Young standar digunakan untuk menentukan polytabloid dari λ n untuk memperoleh nilai dimensi dan karakter dari S yang merupakan representasi irreducible dari S. Kata Kunci : grup permutasi, teori representasi, tablo Young PENDAHULUAN Teori representasi diperkenalkan pada 896 oleh matematikawan Jerman F. G. Frobenius []. Teori representasi merupakan cabang matematika yang mempelajari struktur aljabar abstrak dengan mendeskripsikan elemennya melalui matriks dan operasi aljabar. Salah satu objek aljabar yang menggunakan teori representasi yaitu grup. Pada teori representasi grup, elemen dari grup direpresentasikan melalui matriks nonsingular untuk memperoleh karakter dari representasi grup tersebut. Karakter dari representasi grup merupakan trace pada matriks representasi yang bersesuaian dari elemen grup. Grup permutasi merupakan grup hingga yang memiliki elemen berupa himpunan permutasi dengan komposisi fungsi sebagai operasi grup. Selain menggunakan matriks representasi, cara lain yang digunakan untuk menghitung karakter grup permutasi adalah menggunakan tablo Young. Tablo Young merupakan objek kombinatorik yang digunakan dalam teori representasi grup permutasi yang diperkenalkan oleh Alfred Young, seorang matematikawan Cambridge University pada 9 [2]. Oleh sebab itu, dalam penelitian ini dibahas cara menghitung karakter dari representasi grup permutasi S menggunakan tablo Young. Berdasarkan uraian tersebut maka dengan menggunakan tablo Young dapat diperoleh nilai karakter dari grup permutasi S. Contoh kasus pada penelitian ini menggunakan S. Proses perhitungan karakter grup permutasi menggunakan tablo Young dimulai dengan menentukan jumlah elemen dari grup permutasi. Dari grup permutasi dapat diperoleh λ yang bersesuaian pada n. Untuk setiap partisi dari n dapat membentuk diagram Young. Selanjutnya didapat n! tablo Young pada setiap diagram Young yang terbentuk dari λ partisi (λ n). Tablo-tablo Young dengan baris yang equivalent dapat menghasilkan suatu tabloid. Jumlah tabloid yang dihasilkan merupakan dimensi representasi reducible dari S yang dikenal dengan modul permutasi. Karakter reducible S diperoleh dari jumlah tabloid yang barisnya tetap equivalent setelah dipermutasikan. Sedangkan untuk representasi irreducible dari S dikenal dengan modul Specht. Nilai dimensi diperoleh dari jumlah polytabloid standar dari λ partisi n (λ n) dan nilai karakter irreducible diperoleh dari jumlah polytabloid yang tetap setelah dipermutasikan. 33

2 34 M. JUNE, HELMI, F. FRAN TEORI REPRESENTASI Representasi dari grup G merupakan langkah untuk memvisualkan G sebagai grup matriks. Berikut diberikan definisi dari representasi grup. Definisi [3] Diberikan G suatu grup hingga dan diberikan GL(n, C) suatu grup dari matriks nonsingular derajat n atas C. Representasi ρ dari grup hingga G adalah homomorpisma ρ G GL(n, C) Contoh 2 Diberikan G = S dan π S. Lebih lanjut didefinisikan ρ(π) = (x ) dengan x = jika π(j) = i untuk lainnya. Matriks ρ(π) disebut matriks permutasi, karena hanya memuat bilangan nol dan satu, dengan bilangan satu berada pada setiap baris dan kolom [4]. Karena matriks permutasi memenuhi sifat homomorfisma pada Definisi, maka matriks permutasi merupakan matriks representasi untuk S. Untuk S dengan n = 3 dengan π S diperoleh matriks permutasi sebagai berikut ρ(e) =, ρ( 2) =, ρ(( 3)) = ρ((2 3)) =, ρ(( 2 3)) =, ρ(( 3 2)) = Representasi dikelompokkan menjadi dua yaitu representasi reducible dan representasi irreducible. Untuk mengelompokkan representasi tersebut digunakan G-modul. Adapun lebih jelasnya dapat dilihat pada Definisi 3, Teorema 4 dan Definisi berikut. Definisi 3 [3] Diberikan V suatu ruang vektor atas C dan G suatu grup. Ruang vektor V dikatakan Gmodul apabila terdapat perkalian vg, sedemikian sehingga i. vg V ii. v(gh) = (vg)h iii. v = v iv. (αv)g = α(vg) v. (u + v)g = ug + vg untuk setiap g, h, G, u, v V dan skalar α C. Teorema 4 [3] Misalkan ρ G GL(n, C) adalah representasi dari G atas C dan V = C. Ruang vektor V merupakan G-modul jika didefinisikan perkalian vg = vρ(g) untuk setiap v V dan g G. Definisi [] Representasi dikatakan reducible apabila G-modul V memiliki basis B untuk setiap g G yang menghasilkan bentuk matriks representasi berikut ρ(g) = A(g) B(g) C(g) atau ρ(g) = A(g) B(g) C(g) dengan A(g), C(g) masing-masing merupakan matriks persegi dari derajat r, s dan B(g) merupakan matriks (r s) dengan r, s dan r + s = n. Representasi dikatakan irreducible jika tidak reducible.

3 Karakter Representasi S 3 Contoh 6 Diberikan G = S, dan ruang vektor V = C memiliki basis B = {v + v + v, v, v }. Representasi ρ(e) merupakan matriks identitas derajat 3. Untuk g = ( 2) diperoleh ρ(( 2)) sebagai berikut (v + v + v )( 2) = v + v + v ; v ( 2) = v = (v + v + v ) v v ; v ( 2) = v jadi ρ(( 2)) =. Dengan cara yang sama diperoleh ρ(π) untuk 4 elemen lainnya dari S yaitu ρ(( 3)) =, ρ((2 3)) =, ρ(( 2 3)) =, ρ(( 3 2)) =. Dapat dilihat bahwa seluruh matriks tersebut membentuk representasi reducible ρ(π) = A(g) B(g) C(g) dengan A(g) = [], B(g) = [b b ] dan C(g) = c c c c. Contoh 7 Diberikan G = S, dan ruang vektor V = C. Terdapat subruang W dengan basis B = {w, w } dengan w = v v dan w = v v dengan v, v dan v merupakan basis standar. Representasi ρ(e) merupakan matriks identitas derajat 2. Untuk nilai g = ( 2) diperoleh ρ(( 2) ) sebagai berikut w ( 2) = (v v )( 2) = (v v ) = w ; w ( 2) = (v v )( 2) = v v = (v v ) + (v v ) = w + w ; jadi ρ(( 2) ) =. Dengan cara yang sama diperoleh ρ(π) untuk 4 elemen lainnya dari S yaitu ρ(( 3)) =, ρ((2 3)) =, ρ(( 2 3)) =, ρ(( 3 2)) =, Matriks yang dihasilkan membentuk representasi irreducible karena terdapat g G sehingga ρ(π) A(g) B(g) atau A(g) C(g) B(g) C(g). Nilai karakter dari representasi grup diperoleh dari trace pada setiap matriks representasi yang dihasilkan. Definisi karakter dapat dilihat pada Definisi 8 berikut. Definisi 8 [3] Diberikan ρ(g) dengan g G adalah representasi grup hingga G, maka karakter dari ρ adalah χ(g) = tr(ρ(g)). Karakter χ dikatakan karakter irreducible dari G jika χ merupakan karakter dari representasi irreducible, dan χ dikatakan reducible jika χ merupakan karakter dari representasi reducible. Contoh 9 Akan dihitung karakter dari representasi irreducible pada Contoh 7. Untuk ( 2) S dengan ρ(( 2)) =, karakter irreducible dari matriks representasi tersebut adalah χ(( 2)) = tr(ρ(( 2))) = tr = () + =

4 36 M. JUNE, HELMI, F. FRAN TABLO YOUNG Selain menghitung trace pada matriks representasi yang dihasilkan, nilai karakter representasi S juga dapat diperoleh menggunakan konsep tablo Young. Melalui tablo Young, nilai karakter reducible dari representasi S dapat diperoleh secara langsung dari tabloid yang dihasikan pada tablo Young dan nilai karakter irreducible diperoleh secara langsung dari polytabloid yang dihasilkan pada tablo Young standar. Grup permutasi S merupakan himpunan permutasi dari n elemen. Suatu partisi dari bilangan bulat n merupakan rangkaian dari bilangan bulat positif λ = (λ, λ,, λ ) dengan λ λ λ > dan n = λ + λ + + λ. Untuk menyatakan bahwa λ merupakan partisi dari n digunakan notasi λ n [4]. Sebagai contoh, n = memiliki partisi (), (4, ), (3, 2), (3,, ), (2, 2, ), (2,,, ), (,, ). Partisi digunakan untuk membentuk diagram Young. Adapun definisi diagram Young dapat dilihat pada Definisi berikut ini. Definisi [6] Diagram Young adalah kumpulan dari kotak-kotak yang membentuk baris yang bertumpu pada sebelah kiri, dengan jumlah kotak yang berurutan ke bawah sesuai urutan partisi. Diagram Young yang bersesuaian dengan λ = (λ, λ,, λ ) menunjukkan bahwa diagram Young memiliki l baris, d an λ kotak pada baris ke i. Contoh Diagram Young yang bersesuaian untuk n = adalah () (4, ) (3, 2) (3,, ) (2, 2, ) (2,,, ) (,,,, ) Apabila setiap kotak pada diagram Young diisi dengan bilangan dari satu sampai n, maka diagram tersebut dikatakan sebagai tablo Young dari partisi yang bersesuaian. Lebih jelasnya dapat dilihat pada Definisi 2 berikut. Definisi 2 [4] Suatu tablo T dari bentuk λ, diperoleh dengan mengisi kotak-kotak pada diagram Young dari λ dengan, 2,.., n, dengan masing-masing bilangan terjadi tepat satu kali. Tablo Young dari bentuk λ juga disebut λ-tablo. Contoh 3 Salah satu tablo Young dari λ = (4, ) adalah Apabila bilangan yang ada di dalam tablo Young meningkat pada setiap baris dan kolomnya maka tablo Young tersebut disebut tablo Young standar. Definisi tablo Young standar dapat dilihat pada Definisi 4 berikut. Definisi 4 [2] Tablo Young standar adalah tablo Young yang bilangan-bilangannya dalam urutan meningkat dengan masing-masing baris atau kolom dari kiri ke kanan dan atas ke bawah. Contoh Salah satu tablo Young standar dari λ = (4, ) adalah Tablo Young dengan entri yang equivalent disetiap barisnya merupakan suatu tabloid. Tabloid digambarkan dengan tablo Young tanpa palang vertikal di setiap barisnya.

5 Karakter Representasi S 37 Definisi 6 [4] Dua tablo T dan T adalah equivalent baris T T jika baris yang bersesuaian dari dua tablo tersebut memuat elemen yang sama. Tabloid dari bentuk λ atau λ-tabloid dinotasikan dengan {T} = {T T T} dengan T adalah λ-tablo. Contoh 7 Jika T = maka {T} = MODUL PERMUTASI (M λ ) Modul permutasi M merupakan representasi reducible dari S. Adapun definisi dari modul permutasi dapat dilihat pada Definisi 8 berikut ini. Definisi 8 [4] Misalkan λ n. Diberikan M yang dinotasikan sebagai ruang vektor yang memiliki basis berupa himpunan dari λ-tabloid. Ruang vektor M merupakan representasi reducible dari S yang dikenal sebagai modul permutasi yang bersesuaian pada λ. Contoh 9 Untuk n =, modul permutasi M (,) memiliki elemen basis sebagai berikut Dari Definisi 8 dapat disimpulkan bahwa dimensi dari M merupakan banyaknya tabloid dari λ n. Rumus untuk menghitung dimensi dari M diberikan pada Proposisi 2 berikut ini. Proposisi 2 [4] Jika λ = (λ, λ,, λ ), dim(m n! ) = λ! λ! λ!. Untuk nilai karakter dari M diperoleh dari jumlah tabloid yang entri pada setiap barisnya tidak berubah setelah dipermutasikan. Perhitungan karakter modul permutasi juga dapat menggunakan Proposisi 2 berikut. Proposisi 2 [6] Misalkan λ = (λ, λ,, λ ) adalah partisi dari n dan g S. Diberikan μ = (μ, μ,, μ ) tipe cycle dari g. Karakter χ dari representasi S pada M dievaluasi pada suatu elemen dari S yang equivalent dengan koefisien dari x x x dalam m (x + x + +x ). i Contoh 22 Karakter dari M (,) pada permutasi ( 2) dengan tipe cycle (2,,, ) sama dengan koefisien x x yang ada pada (x + x )(x + x ) yaitu 3. Dapat dilihat kembali pada Contoh 9, apabila dari kelima tabloid yang dihasilkan dipermutasikan dengan ( 2) maka tabloid yang entri pada setiap barisnya tidak berubah adalah sebagai berikut Nilai karakter lainnya dapat dihitung dengan cara yang sama, untuk nilai karakter M dengan n = ditunjukkan pada tabel berikut. Tipe cycle (,,,,) (2,,,) (2,2,) (3,,) (3,2) (4,) () M () M (,) 3 2 M (,) 4 2

6 38 M. JUNE, HELMI, F. FRAN M (,,) M (,,) M (,,,) 6 6 M (,,,,) 2 MODUL SPECHT (S λ ) Untuk tablo T dari n, grup baris dari T yang dinotasikan dengan R memuat permutasi yang hanya memindahkan elemen yang berada pada masing-masing baris pada T. Sedangkan, grup kolom C memuat permutasi yang hanya memindahkan elemen yang berada pada masing-masing kolom pada T [6]. Pada Definisi 23 berikut ini dijelaskan mengenai definisi polytabloid yang dihitung berdasarkan grup kolom. Definisi 23 [4] Jika T adalah suatu tablo Young, maka polytabloid adalah e = K {T} dengan K = sgn (π)π sehingga e = sgn(π)π{t}. Contoh 24 Jika T = maka e = Modul Specht merupakan submodul dari modul permutasi yang direntang oleh polytabloid e. Lebih jelasnya diberikan pada Definisi 2 berikut ini. Definisi 2 [4] Untuk setiap partisi λ, modul Specht yang dinotasikan dengan S merupakan submodul dari M yang direntang oleh polytabloid e, dengan T adalah seluruh tablo dari bentuk λ. Teorema 26 [4] Himpunan {e : T adalah λ tablo standar} merupakan basis untuk S. Contoh 27 Untuk n =, modul Specht S (,) memiliki elemen basis sebagai berikut e = e = e = Untuk menghitung dimensi dari modul Specht yang merupakan banyaknya tablo Young standar dari λ n pada Teorema 3. Terlebih dahulu diberikan definisi panjang hook pada Definisi 28 berikut. Definisi 28 [6] Suatu kotak pada diagram Young dinotasikan dengan u λ, hook pada u merupakan himpunan seluruh kotak yang lurus ke kanan dari u dan lurus ke bawah dari u, termasuk u itu sendiri. Jumlah kotak di dalam hook disebut panjang hook pada u dan dinotasikan dengan h dengan baris i dan kolom j. e =

7 Karakter Representasi S 39 Contoh 29 Misalkan λ = (4, 3, 3, 2, ). Panjang hook dari masing-masing kotak adalah sebagai berikut Teorema 3 [6] Diberikan λ n suatu diagram Young, maka jumlah tablo standar (f ) dari λ adalah n! dibagi panjang hook yang dihasilkan dari setiap kotak. dims = f = n!. h Untuk nilai karakter dari S diperoleh dari jumlah polytabloid yang tidak berubah setelah dipermutasikan. Perhitungan karakter modul Specht juga dapat menggunakan Teorema 3 berikut. Teorema 3 [4] Misalkan λ = (λ, λ,, λ ) adalah partisi dari n dan g S. Diberikan μ = (μ, μ,, μ ) tipe cycle dari g. Karakter dari representasi S pada S dievaluasi pada suatu elemen dari S yang equivalent dengan koefisien dari x x x dalam (x x ) (x + x + +x ). m i Contoh 32 Karakter dari S (,) pada permutasi ( 2) dengan tipe cycle (2,,, ) sama dengan koefisien x x yang ada pada (x x )(x + x )(x + x ) yaitu 2. Dapat dilihat kembali pada Contoh 27, apabila dari keempat polytabloid yang dihasilkan dipermutasikan dengan ( 2) maka diperoleh polytabloid berikut e ( 2) = = e e ( 2) = = e e ( 2) = = e e ( 2) = = e Dapat dilihat bahwa polytabloid yang memenuhi e ( 2) = e sebanyak tiga polytabloid dan e ( 2) = e sebanyak satu polytabloid sehingga jumlah keseluruhan sebanyak dua polytabloid. Nilai karakter lainnya dapat dihitung dengan cara yang sama, untuk nilai karakter S dengan n = ditunjukkan pada tabel berikut. Tipe cycle (,,,,) (2,,,) (2,2,) (3,,) (3,2) (4,) () S () S (,) S (,) - -

8 4 M. JUNE, HELMI, F. FRAN S (,,) 6-2 S (,,) S (,,,) S (,,,,) PENUTUP Berdasarkan pembahasan yang dilakukan, dapat disimpulkan bahwa seluruh nilai karakter grup permutasi dapat dihitung menggunakan tablo Young. Dimensi M dihitung berdasarkan banyaknya jumlah tabloid yang terbentuk dari tablo Young dan merupakan karakter M dari elemen identitas pada grup permutasi, sedangkan dimensi S dihitung berdasarkan banyaknya jumlah polytabloid standar dari tablo Young standar dan merupakan karakter S dari elemen identitas pada grup permutasi. Nilai karakter dari M dihitung berdasarkan banyaknya jumlah tabloid yang tetap setelah dipermutasikan, sedangkan nilai karakter dari S dihitung berdasarkan banyaknya jumlah polytabloid standar yang tetap setelah dipermutasikan. Nilai karakter dari reducible dari S selalu kurang dari atau sama dengan karakter irreducible. DAFTAR PUSTAKA []. Etingof P, Golberg O, Hensel S, Liu T, Schwendner A, Vaintrob D, Yudovina E. Introduction to Representation Theory. Providence: American Mathematical Society; 2. [2]. Laster, R. Complex Representation of S and Young Tableaux. Santa Cruz: University of California; 26. [3]. James G, Liebeck M. Representation and Characters of Groups. 2nd ed. Cambridge University Press. New York; 2. [4]. Sagan BE. The Symmetric Group: Representation, Combinatorical Algorithms, and Symmetric Function. New York: Springer Verlag; 2. []. Bannai E, Ito T. Algebraic Combinatorics I: Association Schemes. Cummings Publishing Company, Inc. California; 984. [6]. Fulton W. Young Tableaux: With Application to Representation Theory and Geometry. New York: Cambridge University Press; 997. MEGAWATI JUNE : Jurusan Matematika FMIPA UNTAN, Pontianak megawatijune@gmail.com HELMI : Jurusan Matematika FMIPA UNTAN, Pontianak helmi322@yahoo.co.id FRANSISKUS FRAN : Jurusan Matematika FMIPA UNTAN, Pontianak frandly88@gmail.com

GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA

GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA GRUP ALJABAR DAN -MODUL REGULAR SKRIPSI SARJANA MATEMATIKA OLEH: FITRIA EKA PUSPITA 07934028 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ANDALAS PADANG 2011 ABSTRAK Misalkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Representasi grup adalah perumuman dari homomorfisma Gl(V ) ke GL(n, F ) menjadi homomorfisma sebarang grup G ke Gl(n, F ). Telah diketahui bahwa macammacam

Lebih terperinci

MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER INTISARI

MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER INTISARI Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 6, No. (17), hal 7 34. MATRIKS BENTUK KANONIK RASIONAL DENGAN MENGGUNAKAN PEMBAGI ELEMENTER Ardiansyah, Helmi, Fransiskus Fran INTISARI Pada

Lebih terperinci

KARAKTERISTIK G-HOMOMORFISMA SKRIPSI SARJANA MATEMATIKA OLEH MEGA PARAMITASARI

KARAKTERISTIK G-HOMOMORFISMA SKRIPSI SARJANA MATEMATIKA OLEH MEGA PARAMITASARI KARAKTERISTIK G-HOMOMORFISMA SKRIPSI SARJANA MATEMATIKA OLEH MEGA PARAMITASARI 06 934 013 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ANDALAS PADANG 2011 ABSTRAK Misalkan

Lebih terperinci

RANK MATRIKS ATAS RING KOMUTATIF

RANK MATRIKS ATAS RING KOMUTATIF Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 1 (2013), hal. 63 70. RANK MATRIKS ATAS RING KOMUTATIF Eka Wulan Ramadhani, Nilamsari Kusumastuti, Evi Noviani INTISARI Rank dari matriks

Lebih terperinci

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal. 183-190 DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN Fidiah Kinanti, Nilamsari Kusumastuti, Evi Noviani

Lebih terperinci

OPERASI MODIFIKASI ARITMATIKA INTERVAL TERHADAP INVERS MATRIKS INTERVAL

OPERASI MODIFIKASI ARITMATIKA INTERVAL TERHADAP INVERS MATRIKS INTERVAL Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 1 (2016), hal 9-18 OPERASI MODIFIKASI ARITMATIKA INTERVAL TERHADAP INVERS MATRIKS INTERVAL Dodi Arianto, Helmi, Mariatul Kiftiah INTISARI

Lebih terperinci

DIAGONALISASI MATRIKS KOMPLEKS

DIAGONALISASI MATRIKS KOMPLEKS Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 3 (2015), hal 337-346 DIAGONALISASI MATRIKS KOMPLEKS Heronimus Hengki, Helmi, Mariatul Kiftiah INTISARI Matriks kompleks merupakan matriks

Lebih terperinci

SYARAT PERLU DAN SYARAT CUKUP AGAR REPRESENTASI QUIVER BERTIPE HINGGA

SYARAT PERLU DAN SYARAT CUKUP AGAR REPRESENTASI QUIVER BERTIPE HINGGA Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 96 104 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND SYARAT PERLU DAN SYARAT CUKUP AGAR REPRESENTASI QUIVER BERTIPE HINGGA HITDAYATURAHMI Program Studi Magister

Lebih terperinci

MODIFIKASI ARITMETIKA INTERVAL DAN PENERAPANNYA PADA SISTEM PERSAMAANINTERVAL LINEAR

MODIFIKASI ARITMETIKA INTERVAL DAN PENERAPANNYA PADA SISTEM PERSAMAANINTERVAL LINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 01, No. 1 (2012), hal 1 8. MODIFIKASI ARITMETIKA INTERVAL DAN PENERAPANNYA PADA SISTEM PERSAMAANINTERVAL LINEAR Mika Lasni Roha Saragih, Marisi

Lebih terperinci

PENGGUNAAN TEOREMA POLYA DALAM MENENTUKAN BANYAKNYA GRAF SEDERHANA YANG TIDAK SALING ISOMORFIS

PENGGUNAAN TEOREMA POLYA DALAM MENENTUKAN BANYAKNYA GRAF SEDERHANA YANG TIDAK SALING ISOMORFIS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 1 (2013), hal. 39-44. PENGGUNAAN TEOREMA POLYA DALAM MENENTUKAN BANYAKNYA GRAF SEDERHANA YANG TIDAK SALING ISOMORFIS Vivy Tri Rosalianti,

Lebih terperinci

KAJIAN OPERASI ARITMETIKA INTERVAL DAN SIFAT-SIFATNYA

KAJIAN OPERASI ARITMETIKA INTERVAL DAN SIFAT-SIFATNYA Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 19 28. KAJIAN OPERASI ARITMETIKA INTERVAL DAN SIFAT-SIFATNYA Analia Wenda, Evi Noviani, Nilamsari Kusumastuti INTISARI

Lebih terperinci

SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI KOMPLIT ( ) DENGAN

SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI KOMPLIT ( ) DENGAN PROSIDING ISBN : 978 979 6353 3 SPECTRUM PADA GRAF STAR ( ) DAN GRAF BIPARTISI OMPLIT ( ) A. DENGAN Oleh Imam Fahcruddin Mahasiswa Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri

Lebih terperinci

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS

KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 279 284. KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Adrianus Sumitro, Nilamsari Kusumastuti, Shantika Martha

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

ORDER UNSUR DARI GRUP S 4

ORDER UNSUR DARI GRUP S 4 Jurnal Matematika UNAND Vol. VI No. 1 Hal. 142 147 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ORDER UNSUR DARI GRUP S 4 FEBYOLA, YANITA, MONIKA RIANTI HELMI Program Studi Matematika, Fakultas Matematika

Lebih terperinci

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 91 98. SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Febrianti,

Lebih terperinci

Pertemuan 4 Aljabar Linear & Matriks

Pertemuan 4 Aljabar Linear & Matriks Pertemuan 4 Aljabar Linear & Matriks 1 Notasi : huruf besar tebal misalnya A, B, C Merupakan array dari bilangan, setiap bilangan disebut elemen matriks (entri matriks) Bentuk umum : m : jumlah baris (mendatar)

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

APLIKASI MATRIKS LESLIE UNTUK MEMPREDIKSI JUMLAH DAN LAJU PERTUMBUHAN SUATU POPULASI

APLIKASI MATRIKS LESLIE UNTUK MEMPREDIKSI JUMLAH DAN LAJU PERTUMBUHAN SUATU POPULASI Buletin Ilmiah Math Stat Dan Terapannya (Bimaster) Volume 02, No 3 (2013), hal 163-172 APLIKASI MATRIKS LESLIE UNTUK MEMPREDIKSI JUMLAH DAN LAJU PERTUMBUHAN SUATU POPULASI Yudha Pratama, Bayu Prihandono,

Lebih terperinci

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari

Lebih terperinci

KORESPONDENSI KARAKTER TERRESTRIKSI DAN TERINDUKSI BESERTA TABEL KARAKTER DARI REPRESENTASI GRUP HINGGA

KORESPONDENSI KARAKTER TERRESTRIKSI DAN TERINDUKSI BESERTA TABEL KARAKTER DARI REPRESENTASI GRUP HINGGA 1 Jurnal Scientific Pinisi, Volume 3, Nomor 1, April 2017, hlm. 1-9 KORESPONDENSI KARAKTER TERRESTRIKSI DAN TERINDUKSI BESERTA TABEL KARAKTER DARI REPRESENTASI RUP HINA Restu Cahyaningsih dan Budi Surodjo

Lebih terperinci

SIFAT NILAI EIGEN MATRIKS ANTI ADJACENCY DARI GRAF SIMETRIK

SIFAT NILAI EIGEN MATRIKS ANTI ADJACENCY DARI GRAF SIMETRIK Faktor Exacta 10 (2): 154-161, 2017 SIFAT NILAI EIGEN MATRIKS ANTI ADJACENCY DARI GRAF SIMETRIK NONI SELVIA noni.selvia@gmail.com Program Studi Teknik Informatika Fakultas Teknik,Matematika dan Ilmu Pengetahuan

Lebih terperinci

PEMBELAJARAN SISTEM TRANSFORMASI MӦBIUS (M, ) SEBAGAI SARANA MENYAMPAIKAN KONSEP GRUP. Guntur Maulana Muhammad * Dan Iden Rainal Ihsan **

PEMBELAJARAN SISTEM TRANSFORMASI MӦBIUS (M, ) SEBAGAI SARANA MENYAMPAIKAN KONSEP GRUP. Guntur Maulana Muhammad * Dan Iden Rainal Ihsan ** PEMBELAJARAN SISTEM TRANSFORMASI MӦBIUS (M, ) SEBAGAI SARANA MENYAMPAIKAN KONSEP GRUP Guntur Maulana Muhammad * Dan Iden Rainal Ihsan ** * Dosen Prodi Pendidikan Matematika FKIP Universitas Suryakancana

Lebih terperinci

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT

KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT KAJIAN MATRIKS JORDAN DAN APLIKASINYA PADA SISTEM LINEAR WAKTU DISKRIT Nama Mahasiswa : Aprilliantiwi NRP : 1207100064 Jurusan : Matematika Dosen Pembimbing : 1 Soleha, SSi, MSi 2 Dian Winda Setyawati,

Lebih terperinci

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian

Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Rio Yohanes 1, Nora Hariadi 2, Kiki Ariyanti Sugeng 3 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424, Indonesia rio.yohanes@sci.ui.ac.id,

Lebih terperinci

PERKALIAN MATRIKS PERSEGI MENGGUNAKAN ALGORITMA STRASSEN

PERKALIAN MATRIKS PERSEGI MENGGUNAKAN ALGORITMA STRASSEN Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 201 208. PERKALIAN MATRIKS PERSEGI MENGGUNAKAN ALGORITMA STRASSEN Yanti, Evi Noviani, Helmi INTISARI Perkalian matriks merupakan

Lebih terperinci

PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT

PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 6, No. 0 (017), hal 17 6. PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT Yuyun Eka Pratiwi, Mariatul Kiftiah,

Lebih terperinci

Perluasan Teorema Cayley-Hamilton pada Matriks

Perluasan Teorema Cayley-Hamilton pada Matriks Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika

BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika 1 BAB I PENDAHULUAN A. Latar Belakang Struktur aljabar merupakan salah satu bidang kajian dalam matematika yang dikembangkan untuk menunjang pemahaman mengenai struktur bilangan. Struktur atau sistem aljabar

Lebih terperinci

RUANG FAKTOR. Oleh : Muhammad Kukuh

RUANG FAKTOR. Oleh : Muhammad Kukuh Muhammad Kukuh, Ruang RUANG FAKTOR Oleh : Muhammad Kukuh Abstraksi Pada struktur aljabar dikenal istilah grup faktor yaitu Jika grup dan N Subgrup normal G, maka grup faktor dengan operasi Apabila G ruang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

PEMBELAJARAN SISTEM TRANSFORMASI MӦBIUS (M, ) SEBAGAI SARANA MENYAMPAIKAN KONSEP GRUP.

PEMBELAJARAN SISTEM TRANSFORMASI MӦBIUS (M, ) SEBAGAI SARANA MENYAMPAIKAN KONSEP GRUP. PEMBELAJARAN SISTEM TRANSFORMASI MӦBIUS (M, ) SEBAGAI SARANA MENYAMPAIKAN KONSEP GRUP Iden Rainal Ihsan 1, Guntur Maulana Muhammad 2 1 Program Studi Pendidikan Matematika FKIP Universitas Islam Nusantara,

Lebih terperinci

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR

ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM PERSAMAAN INTERVAL LINEAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 313 322. ALGORITMA ELIMINASI GAUSS INTERVAL DALAM MENDAPATKAN NILAI DETERMINAN MATRIKS INTERVAL DAN MENCARI SOLUSI SISTEM

Lebih terperinci

A 10 Diagonalisasi Matriks Atas Ring Komutatif

A 10 Diagonalisasi Matriks Atas Ring Komutatif A 10 Diagonalisasi Matriks Atas Ring Komutatif Joko Harianto 1, Puguh Wahyu Prasetyo 2, Vika Yugi Kurniawan 3, Sri Wahyuni 4 1 Mahasiswa S2 Matematika FMIPA UGM, 2 Mahasiswa S2 Matematika FMIPA UGM, 3

Lebih terperinci

Bilangan Stirling Jenis Kedua ( Stirling Number of the Second Kind ) Definisi 1. Bilangan Stirling jenis kedua, dinotasikan dengan

Bilangan Stirling Jenis Kedua ( Stirling Number of the Second Kind ) Definisi 1. Bilangan Stirling jenis kedua, dinotasikan dengan Bilangan Stirling Jenis Kedua ( Stirling Number of the Second Kind ) Definisi 1. Bilangan Stirling jenis kedua, dinotasikan dengan, adalah banyaknya cara menyusun partisi suatu himpunan dengan elemen ke

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta

UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Yogyakarta Bahan Ajar: BAB POKOK BAHASAN I MODUL ATAS RING Direncanakan

Lebih terperinci

Pembelajaran Klasifikasi Geometris dari Transformasi Mӧbius Suatu Sarana Penyampaian Konsep Grup

Pembelajaran Klasifikasi Geometris dari Transformasi Mӧbius Suatu Sarana Penyampaian Konsep Grup SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Pembelajaran Klasifikasi Geometris dari Transformasi Mӧbius Suatu Sarana Penyampaian Konsep Grup PM -45 Iden Rainal Ihsan Program Studi Pendidikan

Lebih terperinci

Aplikasi Matriks Circulant Untuk Menentukan Nilai Eigen Dari Graf Sikel (Cn)

Aplikasi Matriks Circulant Untuk Menentukan Nilai Eigen Dari Graf Sikel (Cn) Aplikasi Matriks Circulant Untuk Menentukan Nilai Eigen Dari Graf Sikel (Cn) T 24 Siti Rahmah Nurshiami dan Triyani Program Studi Matematika, Fakultas Sains dan Teknik Universitas Jenderal soedirman, Purwokerto

Lebih terperinci

METODE REGION APPROACH UNTUK KESEIMBANGAN LINTASAN

METODE REGION APPROACH UNTUK KESEIMBANGAN LINTASAN Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 5, No. 03(2016), hal 205 212. METODE REGION APPROACH UNTUK KESEIMBANGAN LINTASAN Maria Pitriani Miki, Helmi, Fransiskus Fran INTISARI Lintasan

Lebih terperinci

ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG

ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 235-244 ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG Hidayu Sulisti, Evi Noviani, Nilamsari Kusumastuti

Lebih terperinci

Teorema Jacobson Density

Teorema Jacobson Density Teorema Jacobson Density Budi Santoso 1, Fitriani 2, Ahmad Faisol 3 Jurusan Matematika FMIPA, Unila, Bandar Lampung, Indonesia 1,2,3 E-mail: budi.klik@gmail.com Abstrak. Misalkan adalah ring (tidak harus

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

Aplikasi Teorema Polya Pada Enumerasi Graf Sederhana

Aplikasi Teorema Polya Pada Enumerasi Graf Sederhana Aplikasi Teorema Polya Pada Enumerasi Graf Sederhana M. Faisal Baehaki Jurusan Teknik Informatika Institut Teknologi Bandung, Bandung 40135 e-mail: faisal.baihaki@comlabs.itb.ac.id Intisari Metode untuk

Lebih terperinci

MODUL ATAS RING MATRIKS ( ) Arindia Dwi Kurnia Universitas Jenderal Soedirman Ari Wardayani Universitas Jenderal Soedirman

MODUL ATAS RING MATRIKS ( ) Arindia Dwi Kurnia Universitas Jenderal Soedirman Ari Wardayani Universitas Jenderal Soedirman Prosiding Seminar Nasional Matematika dan Terapannya 2016 p-issn : 2550-0384; e-issn : 2550-0392 MODUL ATAS RING MATRIKS Arindia Dwi Kurnia Universitas Jenderal Soedirman arindiadwikurnia@gmail.com Ari

Lebih terperinci

PENYAJIAN SECARA GEOMETRI HIMPUNAN PEMBENTUK DNA

PENYAJIAN SECARA GEOMETRI HIMPUNAN PEMBENTUK DNA PENYAJIAN SECARA GEOMETRI HIMPUNAN PEMBENTUK DNA Isah Aisah, Departemen Matematika FMIPA UNPAD, Jatinangor, isah.aisah@unpad.ac.id Abstrak Kode genetik adalah satu set instruksi untuk mentransfer data

Lebih terperinci

Volume 9 Nomor 1 Maret 2015

Volume 9 Nomor 1 Maret 2015 Volume 9 Nomor 1 Maret 015 Jurnal Ilmu Matematika dan Terapan Maret 015 Volume 9 Nomor 1 Hal. 1 10 KARAKTERISASI DAERAH DEDEKIND Elvinus R. Persulessy 1, Novita Dahoklory 1, Jurusan Matematika FMIPA Universitas

Lebih terperinci

KARAKTERISASI ALJABAR PADA GRAF BIPARTIT. Soleha, Dian W. Setyawati Institut Teknologi Sepuluh Nopember, Surabaya

KARAKTERISASI ALJABAR PADA GRAF BIPARTIT. Soleha, Dian W. Setyawati Institut Teknologi Sepuluh Nopember, Surabaya KARAKTERISASI ALJABAR PADA GRAF BIPARTIT Soleha, Dian W. Setyawati Institut Teknologi Sepuluh Nopember, Surabaya ABSTRAK. Pada artikel ini dibahas penggunaan teknik aljabar linier untuk mempelajari graf

Lebih terperinci

BAB II KAJIAN TEORI. definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang

BAB II KAJIAN TEORI. definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang BAB II KAJIAN TEORI Pada Bab II ini berisi kajian teori. Di bab ini akan dijelaskan beberapa definisi mengenai grup, ring, dan lapangan serta teori-teori pengkodean yang mendasari teori kode BCH. A. Grup

Lebih terperinci

POLINOMIAL KARAKTERISTIK MATRIKS DALAM ALJABAR MAKS-PLUS. 1. Pendahuluan

POLINOMIAL KARAKTERISTIK MATRIKS DALAM ALJABAR MAKS-PLUS. 1. Pendahuluan POLINOMIAL KARAKTERISTIK MATRIKS DALAM ALJABAR MAKS-PLUS Maryatun, Siswanto, dan Santoso Budi Wiyono Program Studi Matematika FMIPA UNS Abstrak Polinomial dalam aljabar maks-plus dapat dinotasikan sebagai

Lebih terperinci

ENUMERASI DIGRAF TIDAK ISOMORFIK

ENUMERASI DIGRAF TIDAK ISOMORFIK Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 ENUMERASI DIGRAF TIDAK ISOMORFIK Mulyono Jurusan Matematika FMIPA UNNES Email:

Lebih terperinci

OPTIMALISASI MASALAH PENUGASAN MENGGUNAKAN METODE HUNGARIAN (Studi kasus pada PT Pos Indonesia (Persero) Pontianak)

OPTIMALISASI MASALAH PENUGASAN MENGGUNAKAN METODE HUNGARIAN (Studi kasus pada PT Pos Indonesia (Persero) Pontianak) Buletin Ilmiah Mat. Stat. danterapannya (Bimaster) Volume 04, No. 3 (2015), hal 363-370 OPTIMALISASI MASALAH PENUGASAN MENGGUNAKAN METODE HUNGARIAN (Studi kasus pada PT Pos Indonesia (Persero) Pontianak)

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ruang vektor adalah suatu grup abelian yang dilengkapi dengan operasi pergandaan skalar atas suatu lapangan. Suatu ruang vektor dapat dikawankan dengan ruang

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

AUTOMORFISME GRAF LENGKAP DENGAN PENDEKATAN TEORI GRUP. Mulyono. Abstrak. ( ), dapat disimpulkan bahwa

AUTOMORFISME GRAF LENGKAP DENGAN PENDEKATAN TEORI GRUP. Mulyono. Abstrak. ( ), dapat disimpulkan bahwa 6 AUTOMORFISME GRAF LENGKAP DENGAN PENDEKATAN TEORI GRUP Mulyono Abstrak Suatu ) terdiri dari himpunan simpul disimbolkan ) ) dan himpunan jalur disimbolkan ) ) di mana ) Menurut teorema isomorfisme dua

Lebih terperinci

Rencana Perkuliahan. Kelas : A, B, C, D. SKS/JS : 3/3 : Yus Mochamad Cholily

Rencana Perkuliahan. Kelas : A, B, C, D. SKS/JS : 3/3 : Yus Mochamad Cholily Rencana Perkuliahan Jurusan : Matematika Mata Kuliah : Struktur Aljabar Semester : IV (empat) Kelas : A, B, C, D. SKS/JS : 3/3 Pengajar : Yus Mochamad Cholily 1. Pendahuluan. Struktur Aljabar atau dikenal

Lebih terperinci

Bab 3 Gelanggang Polinom Miring

Bab 3 Gelanggang Polinom Miring Bab 3 Gelanggang Polinom Miring Dalam bab ini akan dibahas mengenai Gelanggang Poliom Miring mulai dengan bentuk yang sederhana (satu variabel) sampai ke bentuk yang lebih kompleks (banyak variabel) berikut

Lebih terperinci

PROSIDING ISBN : Dzikrullah Akbar 1), Sri Wahyuni 2)

PROSIDING ISBN : Dzikrullah Akbar 1), Sri Wahyuni 2) Modul Strongly Supplemented A 6 Dzikrullah Akbar 1), Sri Wahyuni 2) 1) Mahasiswa S2 Matematika Jurusan Matematika FMIPA UGM Email : dzikoebar@yahoo.com 2) Dosen PS S2 Matematika Jurusan Matematika FMIPA

Lebih terperinci

SISTEM LINEAR DALAM ALJABAR MAKS-PLUS

SISTEM LINEAR DALAM ALJABAR MAKS-PLUS PROSIDING ISBN : 978-979-16353-9-4 SISTEM LINEAR DALAM ALJABAR MAKS-PLUS Anita Nur Muslimah 1, Siswanto 2, Purnami Widyaningsih 3 A-1 Jurusan Matematika FMIPA UNS 1 anitanurmuslimah@yahoo.co.id, 2 sis.mipauns@yahoo.co.id,

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS TEORI GRUP SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi

BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang

Lebih terperinci

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 58 62 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE SISKA NURMALA SARI Program Studi Matematika, Fakultas

Lebih terperinci

II. KONSEP DASAR GRUP. abstrak (abstract algebra). Sistem aljabar (algebraic system) terdiri dari suatu

II. KONSEP DASAR GRUP. abstrak (abstract algebra). Sistem aljabar (algebraic system) terdiri dari suatu II KONSEP DASAR GRUP Suatu cabang matematika yang mempelajari struktur aljabar dinamakan aljabar abstrak abstract algebra Sistem aljabar algebraic system terdiri dari suatu himpunan obyek satu atau lebih

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS

KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS KEBEBASAN LINEAR GONDRAN-MINOUX DAN REGULARITAS DALAM ALJABAR MAKS-PLUS Annisa Rahmawati, Siswanto, Muslich Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret

Lebih terperinci

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR Merintan Afrina S Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

SKRIPSI. untuk memenuhi sebagian persyaratan. mencapai derajat Sarjana S-1. Program Studi Matematika

SKRIPSI. untuk memenuhi sebagian persyaratan. mencapai derajat Sarjana S-1. Program Studi Matematika REPRESENTASI GRUP G ATAS LAPANGAN F DAN FG MODUL SKRIPSI untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Program Studi Matematika Diajukan Oleh : Siti Mahfudzoh 09610037 Kepada PROGRAM

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini akan diberikan beberapa materi yang akan diperlukan di dalam pembahasan, seperti: matriks secara umum; matriks yang dipartisi; matriks tereduksi dan taktereduksi; matriks

Lebih terperinci

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar

II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com 2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut

Lebih terperinci

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak Kajian mengenai Konstruksi Aljabar Simetris Kiri Menggunakan Fungsi Linier Sofwah Ahmad Departemen Matematika FMIPA UI Kampus UI Depok 16424 sofwahahmad@sciuiacid Abstrak Aljabar merupakan suatu ruang

Lebih terperinci

K-ALJABAR. Iswati dan Suryoto Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275

K-ALJABAR. Iswati dan Suryoto Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275 K-ALJABAR Iswati Suryoto Jurusan Matematika FMIPA UNDIP Jl Prof H Soedarto, SH, Semarang 50275 ABSTRAK -aljabar adalah suatu struktur aljabar yang dibangun atas suatu grup sehingga sifat-sifat yang berlaku

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU

BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60 Abstract. Let g [0 ] [0] is piecewise continuous monotone

Lebih terperinci

Karakteristik Koproduk Grup Hingga

Karakteristik Koproduk Grup Hingga Jurnal Matematika Integratif ISSN 1412-6184 Vol. 9 No. 2, Oktober 2013 pp. 31-37 Karakteristik Koproduk Grup Hingga Edi Kurniadi, Stanley P.Dewanto, Alit Kartiwa Jurusan Matematika FMIPA Universitas Padjadjaran

Lebih terperinci

Modul Faktor Dari Modul Supplemented

Modul Faktor Dari Modul Supplemented Modul Faktor Dari Modul Supplemented A 16 Puguh Wahyu Prasetyo S2 Matematika FMIPA UGM, Yogyakarta Email : puguhwp@gmail.com Ari Suparwanto Jurusan Matematika FMIPA UGM, Yogyakarta Email : ari_suparwanto@ugm.ac.id

Lebih terperinci

PREDIKSI JUMLAH LULUSAN DAN PREDIKAT KELULUSAN MAHASISWA FMIPA UNTAN TAHUN ANGKATAN 2013/2014 DENGAN METODE RANTAI MARKOV

PREDIKSI JUMLAH LULUSAN DAN PREDIKAT KELULUSAN MAHASISWA FMIPA UNTAN TAHUN ANGKATAN 2013/2014 DENGAN METODE RANTAI MARKOV Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3(2015), hal 347-352. PREDIKSI JUMLAH LULUSAN DAN PREDIKAT KELULUSAN MAHASISWA FMIPA UNTAN TAHUN ANGKATAN 2013/2014 DENGAN METODE RANTAI

Lebih terperinci

Pembelajaran Klasifikasi Geometris dari Transformasi Möbius

Pembelajaran Klasifikasi Geometris dari Transformasi Möbius SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2015 Pembelajaran Klasifikasi Geometris dari Transformasi Möbius Suatu Sarana Penyampaian Konsep Grup Iden Rainal Ihsan Program Studi Pendidikan

Lebih terperinci

METODE SIMPLEKS FUZZY UNTUK PERMASALAHAN PEMROGRAMAN LINEAR DENGAN VARIABEL TRAPEZOIDAL FUZZY

METODE SIMPLEKS FUZZY UNTUK PERMASALAHAN PEMROGRAMAN LINEAR DENGAN VARIABEL TRAPEZOIDAL FUZZY Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 01 No. 1 (2012) hal 23 30. METODE SIMPLEKS FUZZY UNTUK PERMASALAHAN PEMROGRAMAN LINEAR DENGAN VARIABEL TRAPEZOIDAL FUZZY Anastasia Tri Afriani

Lebih terperinci

II. TINJAUAN PUSTAKA. real. T dinamakan himpunan indeks dari proses atau ruang parameter yang

II. TINJAUAN PUSTAKA. real. T dinamakan himpunan indeks dari proses atau ruang parameter yang II. TINJAUAN PUSTAKA 2.1 Proses Stokastik Stokastik proses = { ( ), } adalah kumpulan dari variabel acak yang didefinisikan pada ruang peluang (Ω, ς, P) yang nilai-nilainya pada bilangan real. T dinamakan

Lebih terperinci

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Jurnal Penelitian Sains Volume 14 Nomer 1(A) 14103 Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Yuli Andriani Jurusan Matematika FMIPA,

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

& & # = atau )!"* ( & ( ( (&

& & # = atau )!* ( & ( ( (& MATRIKS ======PENGERTIAN====== Matriks merupakan Susunan bilangan-bilangan yang membentuk segi empat siku-siku. Susunan bilangan-bilangan tersebut dinamakan entri dalam matriks. Matriks dinotasikan dengan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

BILANGAN KROMATIK LOKASI UNTUK JOIN DARI DUA GRAF

BILANGAN KROMATIK LOKASI UNTUK JOIN DARI DUA GRAF Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 23 31 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI UNTUK JOIN DARI DUA GRAF YULI ERITA Program Studi Matematika, Pascasarjana Fakultas

Lebih terperinci

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan:

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan: Dimensi dari Suatu Ruang Vektor Jika suatu ruang vektor V memiliki suatu himpunan S yang merentang V, maka ukuran dari sembarang himpunan di V yang bebas linier tidak akan melebihi ukuran dari S. Teorema

Lebih terperinci

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n. Oleh : Yogi Sindy Prakoso ( ) JURUSAN MATEMATIKA. Company

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n. Oleh : Yogi Sindy Prakoso ( ) JURUSAN MATEMATIKA. Company DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n Oleh : Yogi Sindy Prakoso (1206100015) JURUSAN MATEMATIKA Company FAKULTAS MATEMATIKA Click to DAN add ILMU subtitle PENGETAHUAN ALAM INSTITUT TEKNOLOGI

Lebih terperinci

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE

MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE MENENTUKAN PERPANGKATAN MATRIKS TANPA MENGGUNAKAN EIGENVALUE Rini Pratiwi 1*, Rolan Pane 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

PEWARNAAN GRAF: POLINOMIAL KROMATIK DAN TEOREMA INVERSI MOBIUS

PEWARNAAN GRAF: POLINOMIAL KROMATIK DAN TEOREMA INVERSI MOBIUS PEWARNAAN GRAF: POLINOMIAL KROMATIK DAN TEOREMA INVERSI MOBIUS Nurul Miftahul Jannah, Dr. Agung Lukito, M.S. Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya

Lebih terperinci

Similaritas Uniter Matriks Repesentasi Grup Berhingga

Similaritas Uniter Matriks Repesentasi Grup Berhingga Similaritas Uniter Matriks Repesentasi Grup Berhina Oleh: Musthofa Jurusan Pendidikan Matematika FMIPA UNY Abstrak Misalkan G sembaran rup berhina dan GLm(C himpunan semua matriks nonsinular berukuran

Lebih terperinci

Kode, GSR, dan Operasi Pada

Kode, GSR, dan Operasi Pada BAB 2 Kode, GSR, dan Operasi Pada Graf 2.1 Ruang Vektor Atas F 2 Ruang vektor V atas lapangan hingga F 2 = {0, 1} adalah suatu himpunan V yang berisi vektor-vektor, termasuk vektor nol, bersama dengan

Lebih terperinci

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1 Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

II.TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung

II.TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung II.TINJAUAN PUSTAKA Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung dalam penelitian ini. 2.1. Konsep Dasar Teori Graf Graf G didefinisikan sebagai pasangan himpunan terurut

Lebih terperinci

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN

MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN MATHunesa Jurnal Ilmiah Matematika Volume 2 No.6 Tahun 2017 ISSN 2301-9115 GRAF TOTAL SUATU MODUL BERDASARKAN SUBMODUL SINGULER Dian Ambarsari (S1 Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

Lampiran 1 Pembuktian Teorema 2.3

Lampiran 1 Pembuktian Teorema 2.3 LAMPIRAN 16 Lampiran 1 Pembuktian Teorema 2.3 Sebelum membuktikan Teorema 2.3, terlebih dahulu diberikan beberapa definisi yang berhubungan dengan pembuktian Teorema 2.3. Definisi 1 (Matriks Eselon Baris)

Lebih terperinci

Spektrum Graf Konjugasi dan Komplemen Graf Konjugasi dari Grup Dihedral

Spektrum Graf Konjugasi dan Komplemen Graf Konjugasi dari Grup Dihedral Spektrum Graf Konjugasi dan Komplemen Graf Konjugasi dari Grup Dihedral Abdussakir Universitas Islam Negeri Maulana Malik Ibrahim Malang Jalan Gajayano 50 Malang, telp (0341) 551354, fax (0341) 572533

Lebih terperinci

BILANGAN KROMATIK LOKASI DARI GRAF ULAT

BILANGAN KROMATIK LOKASI DARI GRAF ULAT Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 1 6 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI DARI GRAF ULAT AIDILLA DARMAWAHYUNI, NARWEN Program Studi Matematika, Fakultas Matematika

Lebih terperinci